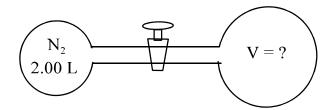
Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1210 Autumn Semester 2022 Quiz XI


All Sections November 20, 2022

Name	Rec. TA/time

Show <u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit.

1. (4 pts) Mercury has a density of 13.6 g/mL. The pressure measured using a mercury barometer is 745.0 mm Hg. How high would a column of a new high tech oil (density 5.50 g/mL) be at this same pressure **AND** would this be a reasonably useful barometer? (**EXPLAIN**!). (1 in = 2.54 cm, 1 ft = 0.3048 m)

2. (5 pts) Two flasks are connected by a stopcock. Both flasks are held at the same temperature. The 2.00 L flask is filled with N_2 at a pressure of 1456 mm Hg. The flask with an unknown volume, V, was evacuated (contains no gas). The stopcock is opened and the N_2 fills both flasks. The resulting pressure after the N_2 fills both flasks is 416 mm Hg? What is the volume, V, of the flask on the right (in liters, L)?

3.	(5 pts) What <u>volume</u> will 1.60 g of O_2 occupy at STP? (atomic weights: $O = 16.00$)
4.	(5 pts) Consider a cylinder fitted with a movable piston that can expand against the atmosphere. The initial pressure, volume and absolute temperature inside the cylinder are P_i , V_i and T_i . What is the new temperature of the system when the pressure is tripled and the volume is decreased to one half of the original volume?

5.	(4 pts) Consider three one-liter flasks labeled A, B, and C filled with the gases NO, NO_2 , and N_2O , respectively, each at STP. What can be said about the number of molecules of each gas? (atomic weights: $N = 14.01$, $O = 16.00$)
6.	(5 pts) A cylinder of containing H_2 gas with a volume of 18.0 L and a pressure of 35.0 atm at a temperature of 23.0 °C is used to fill smaller cylinders with a volume of 2.00 L. How many smaller cylinders can be filled at a temperature of 25.0 °C to a volume of 2.00 L and a pressure of 745.0 torr (assuming all the gas can be transferred to the smaller cylinders). (1 atm = 760 mmHg = 760 torr = 101.325 kPa = 14.7 lb/in²)

7.	(4 pts) Five identical 1.0-L flasks contain the	e following gases each at 0°C and 1 atm pressure.	The
	densities (g/L) of the gases are listed below.	Which gas has the LARGEST molar mass?	

Gas 1	Gas 2	Gas 3	Gas 4	Gas 5
0.178	3.16	0.715	0.760	1.25

8. (5 pts) The empirical formula of a volatile liquid is C_2H_4O . A 0.345-gram sample of its vapor occupied 85.0 mL at $100.0^{\circ}C$ and 0.942 atm. What is the <u>molecular formula</u> for the compound? (Atomic weights: H = 1.008, C = 12.01, O = 16.00)

9. (5 pts) What volume (L) of NO at 500° C and 0.5 atm will be produced in the following reaction if 10.0 L of oxygen reacts with excess NH₃ and the volume of NO is measured under the same conditions of temperature and pressure? (atomic weights: N = 14.01, H = 1.008, O = 16.00)

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$$

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

Avogadro's number, N_A , = 6.02 x 10^{23} particles/mole

molar volume at STP = 22.41L

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	ША	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	Er	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C}$)