Dr. Zellmer Time: 7 PM Sun. 30 min

Chemistry 1210 Autumn Semester 2022 Quiz III

ALL Sections September 18, 2022

Name	Rec. TA/time

Show ALL your work or EXPLAIN to receive full credit.

1. (5 pts) Calculate the <u>mass percent</u> composition of ALL elements in $Ca_3(PO_4)_2$. (At. wts: Ca = 40.08, P = 30.97, O = 16.00) (Must show all work.)

2. (3 pts) Cisplatin, an anticancer drug, has the molecular formula $Pt(NH_3)_2Cl_2$. How many moles of hydrogen atoms are in 2.8 x 10^{-4} g of cisplatin? (At. Wts.: H = 1.008, N = 14.01, Cl = 35.45, Pt = 195.1; Mol. wt: 300.07)

- 3. (3 pts) Elements represented by atomic symbols A and Z form molecular compounds AZ(g) and A_2Z (1). For 6.00 g samples of each of the two compounds at 25°C,
 - a) one can state that there are the same number of molecules in both samples.
 - b) one can state that there are fewer molecules of AZ than A_2Z .
 - c) one can state that there are more molecules of AZ than A_2Z .
 - d) one can not make a statement about the number of molecules because the states of the samples are different.
 - e) one can not make a statement about the number of molecules because the atomic weights of **A** and **Z** are not given.

	only carbon and fluorine gives a mass perce experimentally determined molecular weigh
a) (5 pts) What is the empirical formula ?	
b) (2 pts) What is the molecular formula ?	Not asked for on the quiz.

4.

5.	(7 pts) A 0.589 g s burned completely of the compound?	ample of an organic in air to produce 0. (Atomic weights:	c compound contact 733 g of CO_2 and $C = 12.01$, $H = 1.0$	ining only carbon, 0.299 g of H_2O . V 008, $O = 16.00$)	hydrogen and oxyg What is the empirica	gen was ıl formula

6. (4 pts) Given the balanced equation below, how many moles of hydrogen can be produced from the complete reaction of 3.860×10^{-1} mol of Fe with excess water? (At. Wts.: H = 1.008, O = 16.00, Fe = 55.85)

$$3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \rightarrow \text{Fe}_3\text{O}_4(\text{aq}) + 4 \text{ H}_2(\text{g})$$

7. (5 pts) How many **grams** of oxygen (O_2), reacting with excess C_2H_6 , are required to form 35.0 g of carbon dioxide (CO_2), according to the following equation? (At. Wt.: H = 1.01 O = 16.00, C = 12.01; Mol. Wt: C_2H_6 = 30.08, O_2 = 32.00, CO_2 = 44.01, H_2O = 18.02)

$$2 \; C_2 H_6 \quad + \quad 7 \; O_2 \quad \rightarrow \quad 4 \; CO_2 \quad + \quad 6 \; H_2 O$$

8.	(6 pts) Calcium hydroxide reacts with phosphoric acid according to the following equation.	Which
	substance is the limiting reagent when 1.00 mol of Ca(OH) ₂ reacts with 0.50 mol of H ₃ PO ₄ ?	How many
	moles of the excess reagent remain after completion of the reaction?	

$$3 \; Ca(OH)_2 \, (s) \;\; + \;\; 2 \; H_3 PO_4 \, (aq) \;\; \rightarrow \;\; Ca_3(PO_4)_2 \, (aq) \;\; + \;\; 6 \; H_2 O \, (\ell)$$

9. (3 pts) Which of the following are **strong electrolytes**?

HF HCl $Cu(ClO_3)_2$ $Ca(OH)_2$ C_2H_5OH

USEFUL INFORMATION

$1 \text{ amu} = 1.66 \times 10^{-24} \text{ g}$ Avogadro's number = 6.02×10^{23} particles/mole

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	81.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)