Dr. Zellmer Time: 7 PM Sun. 30 min

Chemistry 1210 Autumn Semester 2022 Quiz VIII

All Sections October 30, 2022

Name	e Rec. TA/time
Show	ALL your work or EXPLAIN to receive full credit.
1.	(6 pts) Al ₂ O ₃ reacts with hydrochloric acid. Complete and balance the reaction (include state symbols).
2.	(6 pts) Potassium reacts with water. Complete and balance the reaction (include state symbols)
3.	 (3 pts) Consider the valence electron configuration of ns²np⁵ and the following statements. Which of the statements are <u>true</u>? Elements with this electron configuration form -1 anions. Elements with this electron configuration are expected to have large positive electron affinities. Elements with this electron configuration are nonmetals. Elements with this configuration form acidic oxides.

4.		listed are arranged in order of <u>increasing nonmetallic</u> character?												
	a) Pb(82)	b) As(33) c) 1	Br(35) d) Sb(5	1) e) Se(34)										
5.	(3 pts) Which of the following statements is INCORRECT ?													
	a) $_{37}$ Rb is more metallic than $_{19}$ K.													
	b) The electr	b) The electron affinity of ₅₆ Ba is less negative than that for ₅₂ Te.												
	c) The radius of $_{33}$ As is smaller than that of $_{31}$ Ga.													
	d) The ionic radius of P^{3-} is smaller than that of Ca^{2+} .													
	e) ₅₅ Cs forms	a cation <u>more</u> ea	sily than 56Ba doe	s.										
6.	(2 pts) Which	of the following	are basic oxides or	acidic oxides? Why	?									
	SO_3	CaO	Al_2O_3	CO_2										
	(2)													
7.	· - ·		ionic or molecula	r.										
	PbCl ₂	TeH_2	Fe_2O_3	SO_2										

8.	(5 pts) Show the relationship between lattice energy (LE), charge and distance between the charges and use it to explain which compound in each pair should have the greater LE.
	a) show the equation for lattice energy, LE.
	b) FeBr ₃ or FeBr ₂
	c) CaO or MgO
9.	(3 pts) Which of the following bonds has the largest dipole moment?
10	a) H—C b) H—O c) H—Cl d) H—N e) O—F
10.	(3 pts) Which of the following compounds would you expect to be ionic? 1) SF ₆ 2) H ₂ O ₂ 3) FeF ₃ 4) PbF ₂ 5) SO ₃

11.	If the electronegativity difference between elements A and X is 1.0 , the bond in AX will most likely be										
	a) ionic	b) polar covalent	c) nonpolar pure covalent								
12.		e effective charge (i.e. the partial cha	l length is 1.63 Å. (Show work and explain!) arge), in units of <i>e</i> , on the Cl and F atoms lead								

USEFUL INFORMATION

1 amu =
$$1.66 \times 10^{-24} \text{ g}$$

Avogadro's number, N_A , = 6.02 x 10^{23} particles/mole

$$1 \text{ Å} = 10^{-10} \text{ m}$$

electron charge, $e = 1.602 \times 10^{-19} \text{ C}$ 1 D = 3.34 x $10^{-30} \text{ C} \cdot \text{m}$ $\mu = Q \cdot \text{r}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26 2	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44 4	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	Os	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108 1	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)