Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1210 Autumn Semester 2022 Quiz IX

All sections November 6, 2022

Name	Rec. TA/time
CI ATT 1 ENDY ATM 1 C 11	1'.
Show <u>ALL</u> your work or <u>EXPLAIN</u> to receive full	credit.

1 (5 nts) Draw the Lewis structure of the bromate ion RrQ^- conforming to the L

1. (5 pts) Draw the Lewis structure of the bromate ion, BrO₃⁻ conforming to the Lewis octet (noble gas) rule, <u>and</u> put the formal charges on each atom. (Must show work or explain what you are doing and show and account for all valence electrons and formal charges.)

2.	(5 pts) Draw the Lewis structure of the selenite ion, SeO ₃ ²⁻ , conforming to the Lewis octet (noble gas) rule, <u>and</u> put the formal charges on each atom. (Must show work or explain what you are doing and show and account for all valence electrons and formal charges.)
3.	(5 pts) Draw the Lewis structure of the selenite ion, SeO ₃ ²⁻ , conforming to the Formal Charge rules, <u>and</u> put the formal charges on each atom. (Must show work or explain what you are doing and show and account for all valence electrons and formal charges.)

4.	(5 pts) Draw the Lewis structure for ICl ₂ ⁻ . How many lone pair(s) of electrons are there in the valence shell of the central atom?
5.	(5 pts) Draw the resonance structures for the nitrite ion, NO ₂ ⁻ . These indicate,
	n electron pair in the molecule alternates back and forth between the two nitrogen-oxygen bonds so t the two different bonds seem to exchange positions.
nit	ne two bonds in the nitrite ion are of equal length and the electron distribution in the two rogen-oxygen bonds is identical with an electron pair being shared by all three atoms to give ond order of 1.5.
C. Tl	ne electron distribution in the two nitrogen-oxygen bonds differs, as do their bond lengths.
	he molecule revolves around an axis through the nitrogen atom between the two oxygen atoms so e two different nitrogen-oxygen bonds seem to exchange positions.
E. Tl	ne nitrite ion exists as two different molecules which simultaneously exist.

6.	(8 pts) Draw the all the possible resonance structures of the cyanate ion, NCO ⁻ , conforming to the Lewis octet rule <u>and</u> put the formal charges on each atom. Also , indicate which would likely be the dominate structure . (Must show work or explain what you are doing and show and account for all valence electrons and formal charges. Also, explain your reasoning for your choice of the dominate structure.)

7	(2 mtm)	Which of the fellowing does NOT conform to the Lewis Heateth (1
1.	(5 pts)	Which of the following does NOT conform to the Lewis "octet" (a	noble gas	ruie:

- 1) NO_2^- 2) PF_5
- 3) HCN
- 4) BCl₃
- 5) CO

(3 pts) Of the possible bonds between nitrogen atoms (single, double, and triple), this of the following 8. are ture? Multiple answers possible.

- a) a triple bond is longer than a single bondb) a double bond is stronger than a triple bond
- c) a single bond is stronger than a triple bond d) a double bond is longer than a triple bond
- e) a single bond is stronger than a double bond
- f) a triple bond is stronger than a double bond

9. (3 pts) Which of the following bonds is most likely to be the **shortest**?

- a) C = C
- b) C = N
- c) O = O
- d) C C
- e) $C \equiv C$

10.	(6 pts) Consider the following molecules and list their <u>molecular</u> shapes (NOT the electron domain geometries), <u>bond angles</u> and whether they are <u>polar or nonpolar</u> . (Provide the Lewis structure and a short explanation for your choices.)											
	AsH_3											
	AlF_3											
	$\mathrm{H}_2\mathbf{S}$											
	${ m SiH_2F_2}$											

11.	(6 pts) Draw the Lewis structure of IF_4^+ . What is its electron-domain geometry?	What is its molecular
	geometry? What are the bond angles? (Show work or explain.)	

- 12. (4 pts) Which of the following species is **trigonal pyramidal**?
- 1) SO_3^{2-} 2) NO_2^{-} 3) CO_3^{2-} 4) BCl_3 5) NF_3

- 13. (6 pts) Consider the following molecules and select those that are <u>non</u>polar.
 - 1) PBr₃
- 2) BH₃
- 3) H_2S 4) CH_2Cl_2 5) CS_2

USEFUL INFORMATION

1 amu =
$$1.66 \times 10^{-24} \text{ g}$$

Avogadro's number, N_A , = 6.02 x 10^{23} particles/mole

$$1 \text{ Å} = 10^{-10} \text{ m}$$

electron charge, $e = 1.602 \times 10^{-19} \text{ C}$ 1 D = 3.34 x $10^{-30} \text{ C} \cdot \text{m}$ $\mu = \text{Q} \cdot \text{r}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)