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Treatment of Numerical Data

I. Recording Data
When numerical data are recorded, three kinds of information must be conveyed: 
the magnitude of the number, how well the number is known, and the units used 
in making the measurement. The magnitude of the number simply specifies “how 
much”; for example 4, 40, or 400. The units could be 4 °C or pH of 4, 40 milliamps 
or 40 drops, 400 milliliters or 400 grams. Units must be specified.

Proper use of significant figures relates how well a number is known. If an instru-
ment has a digital readout, all numbers displayed are recorded and are significant. 
For example, the display on an analytical balance might be 21.3480 g, with six sig-
nificant figures. The mass displayed for the same object weighed on a top-loading 
balance would be 21.35 g, with four significant figures. The uncertainty is assumed 
to be ±1 in the right-most digit (e.g., 0.0001 g on an analytical balance).

When an instrument has a scale, the significant figures are all of the digits we know 
exactly plus one that we estimate. Thus, if a scale is marked off in whole units, we 
estimate and record in the tenths place. If the scale is marked in tenths, we estimate 
in the hundredths place. The same is true for volumetric equipment. If a volume of 
exactly 15 mL is measured in a 50-mL beaker marked off in 10-mL increments, the 
volume would be recorded as 15 mL, with two significant figures. If a 25-mL buret 
is used, markings at 0.1 mL intervals permit estimating into the hundredths place, 
and the volume is recorded as 15.00 mL, with four significant figures. The last digit 
in both is an estimate and could not be altered after the measurement was taken.

Notice the zeros in 40, 400, and 15.00. Are they significant? Sometimes zeros are 
used as “placeholders”—to establish the magnitude of the number. At other times, 
a zero is written because the number in that place is known to be zero. Some rules 
are useful in writing numbers and interpreting written numbers.
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1. Zeros to the right of a nonzero digit and to the right of the decimal point are significant. 
The number 15.00 has four significant figures.

2. Zeros between significant figures are significant. All of the following numbers have 
four significant figures.

  1005    10.50    150.0    1.005

3. Leading zeros are not significant. These are placeholders to the left of the first nonzero 
digit. The following numbers all have three significant figures.

  0.0400     0.000650     0.00605

4. A whole number that ends in zero, such as 40 or 400, is ambiguous. It is not clear 
whether the zeros are placeholders or known quantities. It is generally assumed that 
they are placeholders and are not significant. To remove the ambiguity, scientific nota-
tion should be used. In scientific notation, significant figure information is in the coef-
ficient and decimal point information is in the exponent.

  If 400 means Write Number of Significant Figures
 a number between 300 and 500 4 × 102 one
 a number between 390 and 410 4.0 × 102 two
 a number between 399 and 401 4.00 × 102 three

Some numbers are exact; they have no uncertainty and have an infinite number of sig-
nificant figures. Numbers can be exact by count or by definition. The 40 drops mentioned 
previously are exact by count. Numbers used in converting units within the metric system 
are exact by definition. There are exactly 1000 mL in a liter. There are exactly 1000 g in a 
kilogram.

II. Calculations Using Significant Figures
When a measured quantity is used in a calculation, the resulting number must still reflect the 
precision of the measured quantity. A mathematical operation can neither improve a mea-
sured number nor make it less precise. There are two rules for using significant figures in 
calculations. One is for addition and subtraction; the other is for multiplication and division.

THE ADDITION-SUBTRACTION RULE

The right-most digit to be retained is in the last place common to all numbers. The follow-
ing examples illustrate this rule.

 (a)    34.060 (b) 439.5 (c)   6.845
    4.2    27  – 5.92  
  + 81.57     + 6.01    0.925
    119.830  472.51 rounds to 0.92
 rounds to 119.8 rounds to 473

In (a), the last place common to all numbers is the tenths place. The rounding rule used here 
is: If the left-most number to be discarded is less than 5, round down—the extra numbers 
are dropped. In (b), the last place common to all numbers is the units place. The rounding 
rule here is: If the left-most number to be discarded is greater than 5, or 5 followed by 
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nonzero digits, round up—increase the last digit to be retained by one. In (c), the last place 
common to both numbers is the hundredths place. The rounding rule here is: If the number 
to be discarded is 5 or 5 followed only by zeros, round even (your instructor may not be 
using this rule in lecture). The last number to be retained is unchanged if it is even; it is 
increased by one if it is odd (i.e., the last number to be retained is rounded even). Rounding 
the numbers below to two significant figures illustrates the “round even” rule further.

 2.35  rounds to 2.4
 2.45  rounds to 2.4
 2.4501  rounds to 2.5
 2.550  rounds to 2.6

THE MULTIPLICATION-DIVISION RULE

The answer has the same number of significant figures as the quantity with the least number 
of significant figures. The following examples illustrate this rule.

 (a) 645 : 0.13 = 83.85  rounds to 84

 (b) 645 ÷ 12.90 = 50  correctly reported as 50.0 or 5.00 × 101

In (a), the quantity with the least number of significant figures is 0.13 with two. The answer 
must have two significant figures. In (b), the quantity with the least number of significant 
figures is 645 with three. To show three significant figures, the answer of 50, which appears 
on the calculator, must be rewritten.

If a calculation requires a combination of processes, the appropriate rule is applied to each 
process. The following examples illustrate this statement.

 (a) (12.39 – 5.8147) ÷ 9.317 = 0.706

 (b) (12.39 : 0.02317) + 5.8147 = 6.1018

In (a), the answer to the subtraction is good to the hundredths place, resulting in three 
significant figures. The result of the division and the final answer must therefore have three 
significant figures. In (b), the answer to the multiplication has four significant figures, good 
to the fourth place past the decimal point. Since the number being added is also good to the 
fourth place, the digit in the fourth place in the answer is also significant. 

In addition to these two rules, significant figures apply in logarithms. When taking the 
logarithm of a number, such as finding pH value from the concentration of H+, the signifi-
cant information is displayed after the decimal point. This calculation—a common base 10 
log —is defined as “a quantity representing the power 10 must be raised to equal a desired 
value.” For example, 

 log 1500 = 3.1760, therefore 103.1760  = 1500

In the above example, you will notice that (while all digits are kept during the calculation) 
the 7 is underlined as the last significant digit. Why is this the case, if the number 1500 
only contains 2 significant figures and 3.17 is 3? A logarithm is actually composed of two 
parts, the characteristic (number before the decimal place) and the mantissa (the numbers 
after). Since the characteristic only tells us the order of magnitude, it is not considered a 
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significant digit. Therefore, only the mantissa contains significant information. In other 
words, if you take the log of a number with N significant figures, the log should have N 
decimal places. 

 [H+] = 0.056 M

 pH = –log[H+] = –log [0.056 M] = 1.251811 = 1.25

In this example, the original value, 0.056 M, has 2 significant figures (N = 2). Therefore, 
two decimal places are considered significant, and the value reported is 1.25 (N = 2 decimal 
places).

In all combination calculations, all numbers should be carried through the calculation and 
the answer correctly rounded at the end. Rounding at each step can produce significant 
rounding errors.

III. Reporting Results
The determination of a numerical value is rarely done with one experiment; two, three or 
more trials are performed. The result of N trials is generally reported as an average.

 average
N

sum of results of N trials

If results of a molecular weight determination are 45.2, 31.8, and 49.7 g/mol, the average is

 
. . .

average
3

45 2 31 8 49 7
 = 42.23 = 42.2 g/mol

To express the precision of the measurements, how close the determinations are to each 
other, we calculate a deviation and an average deviation. The deviation is the difference 
between an individual measurement and the average.

 deviation, d = individual measurement – average

For the numbers given above, the deviations are 

 d = 45.2 – 42.23 = 2.97 = 3.0

 d = 31.8 – 42.23 = –10.43 = –10.4

 d = 49.7 – 42.23 = 7.47 = 7.5

The average deviation is calculated using absolute values, symbolized by enclosing the 
quantity between vertical lines.

 average deviation
N

N1 2 3 gd d d d

For the numbers above,

 
. . .

average deviation
3

3 0 10 4 7 5
 = 6.97

The average deviation indicates uncertainty in the units place, so the answer should be 
reported as 42 ± 7 g/mol. Note that all intermediate digits were kept during the calculation.
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IV. Identifying and Handling Outliers

You might have noticed that one of the values is significantly different from the other two. 
Are we justified in ignoring the value of 31.8 g/mol in calculating the average? To answer 
that question, we calculate a standard deviation, v.

 
N 1–

N1
2

2
2

3
2 2g

v
d d d d

For the numbers above, the standard deviation is

 
. . .

.
2

9 0 108 16 56 25
9 31v

Note that all digits were kept during the intermediate calculation. 

If the deviation for an individual measurement is greater than the standard deviation, that 
measurement can be discarded. Trial 2, with a deviation of 10.4, can be ignored in calculat-
ing the average. Recalculation of the average and average deviation produces the following.

 
. .

.average
2

45 2 49 7
47 4

 d = 45.2 – 47.4 = –2.2

 d = 49.7 – 47.4 = 2.3

 
. .

.average deviation
2

2 2 2 3
2 2

The number would be reported as 47 ± 2 g/mol.

The relative deviation or relative error expresses the deviation or error in relation to the 
average or true value. For the molecular weight example discussed above, the relative de-
viation, expressed as a percent, is

 relative deviation = 
.

.
. %

average

average deviation
100

47 4

2 2
100 4 6: :

If the true value is known to be 47.9 g/mol, the percent error can be calculated.

 percent error = 
.

. .
%

true value

value true value
100

47 9

47 4 47 9
100 1

experimental – –
–: :

The negative sign indicates that the experimental value is underestimating the true value. 
Percent error is sometimes reported as the absolute value, 1% in this case. However, as the 
sign tells us some information about the data, we often use it in the lab.

V. Calculating Slope Using a Graph

The equation of a straight line, defined as

 y = mx + b

where m is the slope of the line and b is the point at which the line crosses the y-axis, is 
often used to find slope. See the example graph on the next page, depicting the variation 
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of ln [A] with time for the reaction of potassium permanganate with oxalic acid. The value 
of the rate constant, k, is characteristic of the relationship between concentration of A and 
time. It is determined from the slope of the graph.
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Variation of the Natural Log of the Molar Concentration of A with
Time for the Reaction of Potassium Permanganate with Oxalic Acid
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To calculate the slope, use two points on the line, not two data points. Choose points that 
are far apart from each other where the line crosses an intersection of grid lines. The slope 
of the line is calculated as follows:

 
( )

. ( . ) .
.slope

x

y

s s
s

1080 250

4 25 2 75

830

1 50
1 81 10

–

– – – –
– 3 1– –#

D

D

The value of k is 1.81 × 10–3 s–1.




