Batteries and Fuel Cells

Section 20.7

Batteries Around Us

Batteries and Fuel Cells

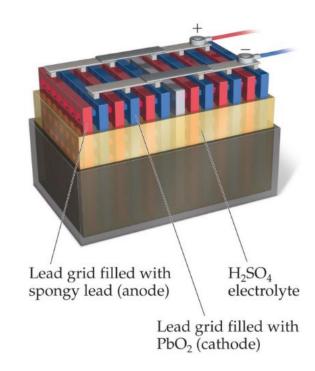
Battery - A portable, self-contained power source that consists of one or more voltaic cells.

Primary Cell - A battery that cannot be recharged.

Secondary Cell - A battery that can be recharged from an external power source.

Fuel Cell - Fuel is supplied (not self contained) driving redox reactions that generate electricity.

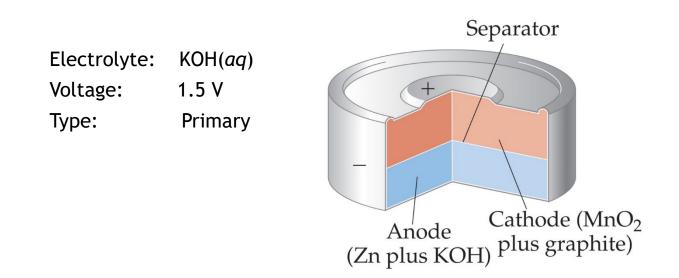
Lead Acid Battery


Electrolyte:	H ₂ SO ₄ (aq)
Voltage:	2.05 V
Туре:	Secondary

Anode: $Pb(s) + HSO_4^-(aq) \rightarrow PbSO_4(s) + H^+(aq) + 2 e^ E^\circ = -0.36 V$

Cathode: $PbO_2(s) + HSO_4^{-}(aq) + 3 H^+ + 2 e^- \rightarrow PbSO_4(s) + 2 H_2O(l)$ E° = 1.69 V

$$E^{\circ} = E^{\circ}_{red}(cathode) - E^{\circ}_{red}(anode)$$


 $E^{\circ} = 1.69 \text{ V} - (-0.36 \text{ V}) = 2.05 \text{ V}$

What element is being oxidized at the anode?

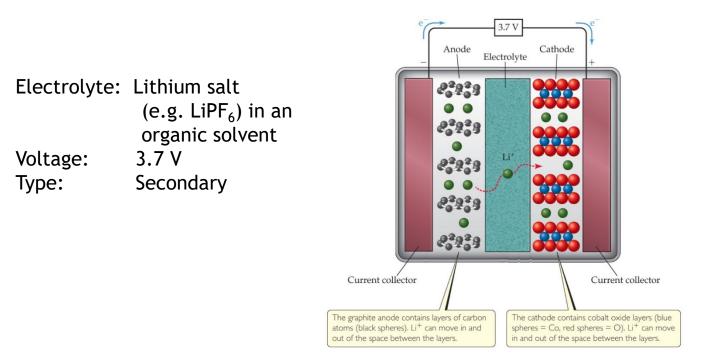
What species is being reduced at the cathode?

Alkaline Battery

Cathode Rxn: 2 MnO₂(s) + 2 H₂O(l) + 2 $e^- \rightarrow 2$ MnO(OH)(s) + 2 OH⁻(aq)

Nickel-Cadmium (Nicad) Battery

Electrolyte: KOH(aq) Voltage: 1.2 V Type: Secondary

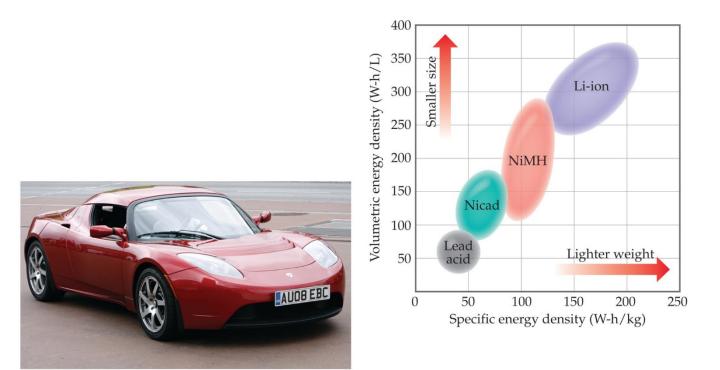


Anode: $Cd(s) + 2 OH^{-}(aq) \rightarrow Cd(OH)_{2}(s) + 2e^{-}$

Cathode: 2 NiO(OH)(s) + H₂O(l) + 2e⁻ \rightarrow 2 Ni(OH)₂(s) + 2 OH⁻(aq)

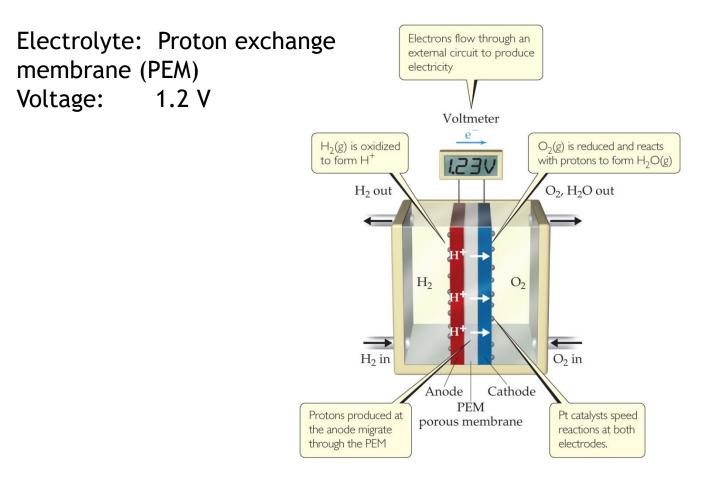
Table 20.1 Standard Reduction Potentials in Water at 25 °C	
$E^{\circ}_{red}(V)$	Reduction Half-Reaction
+2.87	$F_2(g) + 2 e^- \longrightarrow 2 F^-(aq)$
+1.51	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^- \longrightarrow Mn^{2+}(aq) + 4 H_2O(l)$
+1.36	$\operatorname{Cl}_2(g) + 2 e^- \longrightarrow 2 \operatorname{Cl}^-(aq)$
+1.33	$Cr_2O_7^{2-}(aq) + 14 H^+(aq) + 6 e^- \longrightarrow 2 Cr^{3+}(aq) + 7 H_2O(l)$
+1.23	$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(l)$
+1.06	$\operatorname{Br}_2(l) + 2 e^- \longrightarrow 2 \operatorname{Br}^-(aq)$
+0.96	$NO_3^-(aq) + 4 H^+(aq) + 3 e^- \longrightarrow NO(g) + 2 H_2O(l)$
+0.80	$\operatorname{Ag}^+(aq) + e^- \longrightarrow \operatorname{Ag}(s)$
+0.77	$Fe^{3+}(aq) + e^- \longrightarrow Fe^{2+}(aq)$
+0.68	$O_2(g) + 2 H^+(aq) + 2 e^- \longrightarrow H_2O_2(aq)$
+0.59	$MnO_4^-(aq) + 2 H_2O(l) + 3 e^- \longrightarrow MnO_2(s) + 4 OH^-(aq)$
+0.54	$l_2(s) + 2 e^- \longrightarrow 2 l^-(aq)$
+0.40	$O_2(g) + 2 H_2O(l) + 4 e^- \longrightarrow 4 OH^-(aq)$
+0.34	$\operatorname{Cu}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Cu}(s)$
0 [defined]	$2 \operatorname{H}^+(aq) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g)$
-0.28	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(s)$
-0.44	$\operatorname{Fe}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Fe}(s)$
-0.76	$\operatorname{Zn}^{2+}(aq) + 2 e^{-} \longrightarrow \operatorname{Zn}(s)$
-0.83	$2 \operatorname{H}_2\operatorname{O}(l) + 2 \operatorname{e}^- \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-(aq)$
-1.66	$Al^{3+}(aq) + 3e^- \longrightarrow Al(s)$
-2.71	$Na^+(aq) + e^- \longrightarrow Na(s)$
-3.05	$\operatorname{Li}^+(aq) + e^- \longrightarrow \operatorname{Li}(s)$

Li-ion Battery



Anode: $Li_xC(s) \rightarrow C(s) + x Li^+(aq) + x e^-$

Cathode: $\text{Li}_{1-x}\text{CoO}_2(s) + x \text{Li}^+(aq) + x e^- \rightarrow \text{LiCoO}_2(s)$


https://www.youtube.com/watch?v=G5McJw4KkG8

Batteries and Electric Vehicles

Tesla Roadster

Hydrogen Fuel Cell

Anode: 2 $H_2(g) \rightarrow 4 H^+ + 4 e^-$

Cathode: $O_2(g) + 4 H^+ + 4 e^- \rightarrow H_2O(l)$