Batteries and Fuel Cells

Section 20.7

Batteries Around Us

Batteries and Fuel Cells

Battery - A portable, self-contained power source that consists of one or more voltaic cells.

Primary Cell - A battery that cannot be recharged.

Secondary Cell - A battery that can be recharged from an external power source.

Fuel Cell - Fuel is supplied (not self contained) driving redox reactions that generate electricity.

Lead Acid Battery

Electrolyte:	$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
Voltage:	2.05 V
Type:	Secondary

Anode: $\quad \mathrm{Pb}(\mathrm{s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$ $\mathrm{E}^{\circ}=-0.36 \mathrm{~V}$

Cathode: $\mathrm{PbO}_{2}(\mathrm{~s})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ $\mathrm{E}^{\circ}=1.69 \mathrm{~V}$
$E^{\circ}=E^{\circ}{ }_{\text {red }}($ cathode $)-E^{\circ}{ }_{\text {red }}($ anode $)$
$E^{\circ}=1.69 \mathrm{~V}-(-0.36 \mathrm{~V})=2.05 \mathrm{~V}$

Lead grid filled with PbO_{2} (cathode)

What element is being oxidized at the anode?
What species is being reduced at the cathode?

Alkaline Battery

Anode Rxn: $\quad \mathrm{Zn}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-}$

Cathode Rxn: $\quad 2 \mathrm{MnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{MnO}(\mathrm{OH})(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Nickel-Cadmium (Nicad) Battery

Electrolyte: $\mathrm{KOH}(\mathrm{aq})$

Voltage:	1.2 V
Type:	Secondary

Anode: $\quad \mathrm{Cd}(\mathrm{s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{e}^{-}$

Cathode: $2 \mathrm{NiO}(\mathrm{OH})(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Table 20.1 Standard Reduction Potentials in Water at $25^{\circ} \mathrm{C}$

$\mathrm{E}_{\mathrm{red}}^{\circ}(\mathrm{V})$	$\mathrm{Reduction} \mathrm{Half-Reaction}_{+2.87}+1.51$
+1.36	$\mathrm{~F}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}(a q)$
+1.33	$\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)$
+1.23	$\mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(a q)$
+1.06	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l)$
+0.96	$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
+0.80	$\mathrm{Br}_{2}(l)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}(a q)$
+0.77	$\mathrm{NO}_{3}^{-}(a q)+4 \mathrm{H}^{+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
+0.68	$\mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(s)$
+0.59	$\mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(a q)$
+0.54	$\mathrm{O}_{2}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q)$
+0.40	$\mathrm{MnO}_{4}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}(s)+4 \mathrm{OH}^{-}(a q)$
+0.34	$\mathrm{l}_{2}(s)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{l}^{-}(a q)$
$0[$ defined $]$	$\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(a q)$
-0.28	$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s)$
-0.44	$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}(g)$
-0.76	$\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(s)$
-0.83	$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s)$
-1.66	$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(s)$
-2.71	$2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H} 2(g)+2 \mathrm{OH}^{-}(a q)$
-3.05	$\mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(s)$
	$\mathrm{Na}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(s)$
	$\mathrm{Li}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Li}(s)$

Li-ion Battery

Electrolyte: Lithium salt
(e.g. LiPF_{6}) in an organic solvent
Voltage:
3.7 V

Type:
Secondary

Anode: $\quad \mathrm{Li}_{\mathrm{x}} \mathrm{C}(\mathrm{s}) \rightarrow \mathrm{C}(\mathrm{s})+x \mathrm{Li}^{+}(\mathrm{aq})+x \mathrm{e}^{-}$

Cathode: $\mathrm{Li}_{1-x} \mathrm{CoO}_{2}(\mathrm{~s})+x \mathrm{Li}^{+}(\mathrm{aq})+x \mathrm{e}^{-} \rightarrow \mathrm{LiCoO}_{2}(\mathrm{~s})$

Batteries and Electric Vehicles

Tesla Roadster

Hydrogen Fuel Cell

Electrolyte: Proton exchange
membrane (PEM)
Voltage: $\quad 1.2 \mathrm{~V}$

Anode: $\quad 2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$

Cathode: $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

