Chapter 18

Environmental Chemistry

I) Earth's Atmosphere

A) <u>4 regions based on temperature</u>

1) Troposphere

Temp. dec. w. inc. altitude - min. of ~ 215 K at 10 km (at tropopause)

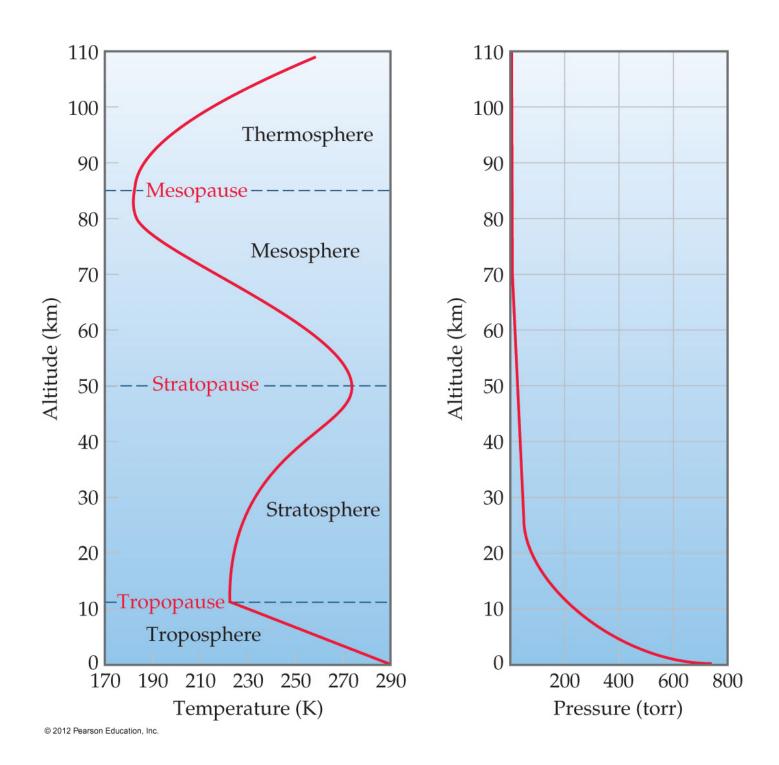
2) Stratosphere

Temp. inc. w. inc. altitude

- max. of ~ 275 K at 50 km (at stratopause) 3) Mesosphere

Temp. dec. w. inc. altitude

- min. of ~ 180 K at 85 km (at mesopause)


4) Thermosphere

Temp. inc. w. inc. altitude

- max. of ~ 260 K at 110 km

Mixing across boundaries (indicated with suffix "-pause") is slow

- pollutants don't move quickly from one region to another

B) Pressure

Dec. in regular way w. inc. in altitude

- drops more rapidly at lower elevations

 due to compressibility of atmosphere (amount of material at various elevations)

troposphere & stratosphere

- 99.9% of mass (75% in tropo.)

C) Composition

Lighter particles rise to top - comp. not uniform

- $N_2 \& O_2$: ~ 99% of atmosphere at sea level
- CO₂ & noble gases - most of other 1%
- 1) <u>Conc</u>

Mole Fraction

 $P_g = X_g P_{tot}$

Vol Fraction = Mole Fraction

Component*	Content (mole fraction)	Molar Mass (g/mol)
Nitrogen	0.78084	28.013
Oxygen	0.20948	31.998
Argon	0.00934	39.948
Carbon dioxide	0.000382	44.0099
Neon	0.00001818	20.183
Helium	0.00000524	4.003
Methane	0.000002	16.043
Krypton	0.00000114	83.80
Hydrogen	0.0000005	2.0159
Nitrous oxide	0.0000005	44.0128
Xenon	0.00000087	131.30

TABLE 18.1 • The Major Components of Dry Air Near Sea Level

*Ozone, sulfur dioxide, nitrogen dioxide, ammonia, and carbon monoxide are present as trace gases in variable amounts.

Often use ppm - Vol ppm 1 ppm = 1 part vol/10⁶ parts vol = 1 mol cmpd/10⁶ mol air = $X_g * 10^6$

a) Ex : The partial pressure of CO in an area is 6.02 x 10⁻³ torr when the total pressure is 755 torr. What is its conc. in ppm?

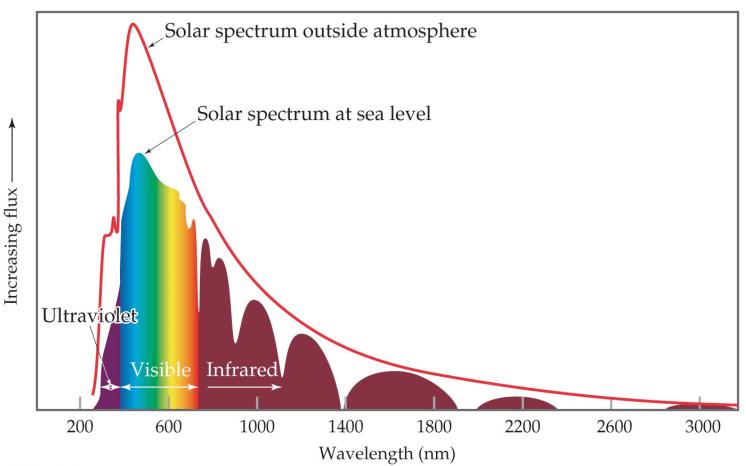
1) <u>Reactivity</u>

- N_2 very low reactivity
- O_2 very reactive
- forms acidic oxides w. nonmetals CO_2 SO_2 SO_3 react w. H_2O to form acids H_2CO_3 H_2SO_3 H_2SO_4 - forms basic oxides w. metals Na₂O CaO react w. H_2O to form bases NaOH Ca(OH)₂

D) Photochemistry of the Atmosphere

Radiation passing through upper atmosphere causes two kinds of chemical changes:

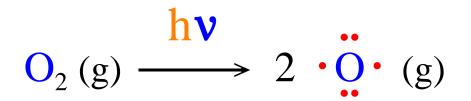
photodissociation


&

photoionization

Remember:

$$\mathbf{E}_{\text{photon}} = \mathbf{h} \, \mathbf{v} = \frac{\mathbf{h} \, \mathbf{c}}{\lambda}$$


 $h = 6.63 \times 10^{-34} J \cdot s$ (Planck's const.)

© 2012 Pearson Education, Inc.

1) Photodissociation

Chemical bond breakage due to absorption of a photon

Occurs mostly above 130 km

a) Ex : The bond energy of O_2 is 495 kJ/mol. Will a photon with a wavelength of 425 nm cause dissociation? 2) Photoionization

Absorption of a photon by a molecule (or atom) resulting in the ejection of an e^-

Cation

Occurs for N_2 , O_2 , O & NO at altitudes above 90 km

- high-energy uv radiation

λ < 135 nm

- these wavelengths are completely filtered out E) Ozone in the Stratosphere

O₃ key absorber of photons w. 240 nm ≤ λ ≤ 310 nm ~ 90% of ozone in stratosphere - occurs mostly near stratopause

1) Formation of Ozone

 $O(g) + O_2(g) \longrightarrow O_3^*(g)$

rxn. releases 105 kJ/mol

- O_3^* contains excess energy
- O₃^{*} decomposes easily if energy not dissipated

collide w. another particle, M, & transfer energy to it $O(g) + O_2(g) \rightleftharpoons O_3^*(g)$ $O_3^*(g) + M(g) \rightarrow O_3(g) + M^*(g)$ $O(g) + O_2(g) + M(g) \rightleftharpoons O_3(g) + M^*(g)$ $M : usually N_2 \text{ or } O_2$

Highest rate of formation of O_3 occurs at ~ 50 km

 balance between stabilizing collisions & radiation energetic enough to dissociate O₂ 2) Photodissociation of Ozone

O₃ dissociates by absorption of photons w. $\lambda < 1140$ nm

- strongest absorption is:

 $240 \text{ nm} \leq \lambda \leq 310 \text{ nm}$

Have cyclic process of O₃ formation & decomposition

$$\begin{split} O_2(g) &+ h \mathbf{v} \rightarrow O(g) + O(g) \\ O(g) + O_2(g) + M(g) \rightarrow O_3(g) + M^*(g) \\ & \text{(heat released)} \end{split}$$

 $O_{3}(g) + hv \rightarrow O_{2}(g) + O(g)$ $O(g) + O(g) + M(g) \rightarrow O_{2}(g) + M^{*}(g)$ (heat released)

Radiant energy => thermal energy Temp rise in stratosphere II) Human Activities & Atmosphere

A) Chlorofluorocarbons (CFCs) & Ozone

 $CFCl_3$ (Freon 11)

 CF_2Cl_2 (Freon 12)

Unreactive in lower atmosphere

- insoluble in H₂O

 not removed by rain or dissolution in oceans

Cause ozone depeletion

Photolysis of CFCs

light-induced rupture of C-Cl bond $190 \text{ nm} \leq \lambda \leq 225 \text{ nm}$ Occurs at greatest rate at ~ 30 km $CF_2Cl_2(g) + h\nu \rightarrow CF_2Cl(g) + Cl(g)$ $Cl(g) + O_3(g) \rightarrow ClO(g) + O_2(g)$ rate = k [C1][O₃] $k = 7.2 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ (at 298 K)

 $ClO(g) + hv \rightarrow O(g) + Cl(g)$

Sequence of steps resulting in:

 $2 \operatorname{Cl}(g) + 2 \operatorname{O}_{3}(g) \rightarrow 3 \operatorname{ClO}(g) + 2 \operatorname{O}_{2}(g)$ $2 \operatorname{ClO}(g) + h \nu \rightarrow 2 \operatorname{O}(g) + 2 \operatorname{Cl}(g)$ $\operatorname{O}(g) + \operatorname{O}(g) \rightarrow \operatorname{O}_{2}(g)$

 $2 O_3(g) \xrightarrow{\text{Cl}} 3 O_2(g)$

Cl acts as a catalyst

each Cl atom destroys ~ $10^5 O_3$ molec. before being destroyed itself

Ozone Hole - Oct. 1989 O_3 levels over South Pole dropped to ~ 60% of Aug. levels

- since 1996 leveled off

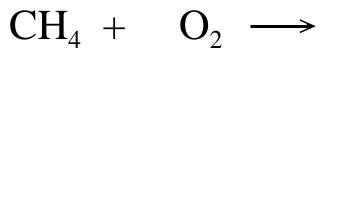
B) Sulfur Cmpds and Acid Rain

 $S_8(s) + 8 O_2(g) \longrightarrow 8 SO_2(g)$

SO₂ most serious health hazard

~ 87 million tons (7.9 x 10¹³ g) SO₂ released worldwide every year

China produces 22 million tons/year


combustion of coal accounts for 65% of SO_2 released annually in US

EPA's new standard (2010) for SO_2 emissions:

75 ppb/hr (about ¹/₂ previous)

SO₂ major contributor to acid rain

1) Combustion rxns of Hydrocarbons, Alcohols and Sulfur Cmpds

$CH_3OH + O_2 \longrightarrow$

 $CH_3SH + O_2 \longrightarrow$

3) Natural Rainwater

Naturally Acidic pH ~ 5.6 due mainly to CO_2 $CO_2(g) + H_2O(\ell) \longrightarrow H_2CO_3(aq)$ $K_{a1} = 4.3 \times 10^{-7}$ $K_{a2} = 5.6 \times 10^{-11}$

Can usually be neutralized by CO_3^{2-} (and other basic anions) in soil & HCO_3^{-} in waterways (acts as buffer)

4) Acid Rain

 $2 \operatorname{SO}_{2}(g) + 8 \operatorname{O}_{2}(g) \longrightarrow 2 \operatorname{SO}_{3}(g)$

 $SO_2(g) + H_2O(\ell) \longrightarrow H_2SO_3(aq)$ For H_2SO_3

> $K_{a1} = 1.7 \times 10^{-2}$ $K_{a2} = 6.4 \times 10^{-8}$

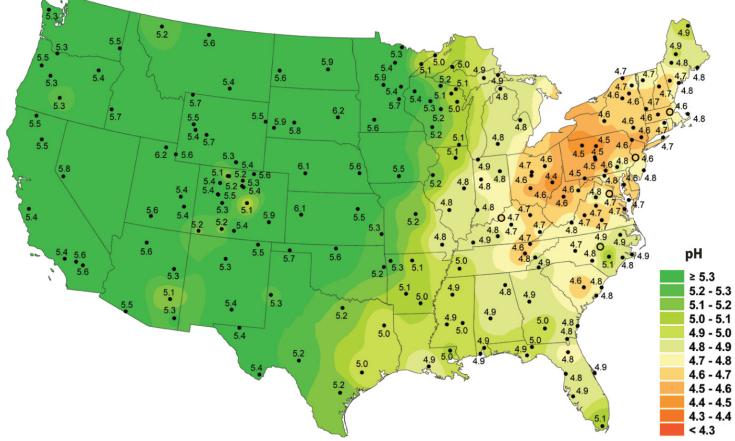
 $SO_3(g) + H_2O(\ell) \longrightarrow H_2SO_4(aq)$ For H_2SO_4

> K_{a1} Very Large (strong acid) $K_{a2} = 1.2 \times 10^{-2}$

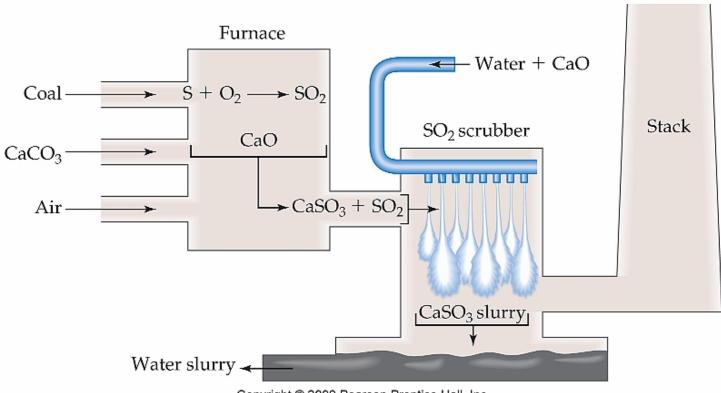
a) Ex : What is the pH of a soln. containing 1.0 g SO₂ in 1.0 L of soln.?

Natural Waterways

pH: 6.5 - 8.5


Most organisms die at

pH < 4.0


About 500 lakes in northeast & Canada are now devoid of life

Corrodes metals & building materials CaCO₃ (limestone) - more soluble in acidic soln.

Clean Air Act (~ 1980) - reduced SO_2 emissions by > 40% by requiring use of scrubbers on power plants

© 2012 Pearson Education, Inc.

Copyright © 2009 Pearson Prentice Hall, Inc.

C) Nitrogen Oxides & Photochem Smog

Majority of NO_x (x = 1 or 2) emissions (~ 50%) comes from transportation & some other from electric power plants

1) <u>Nitric Oxide</u>, NO

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

 $\Delta H = 180.8 \text{ kJ} \text{ (endothermic)}$

- $K_{p} \approx 10^{-15}$ at 300 K
- $K_p \approx 0.05$ at 2400 K

(temp. auto cylinder)

More favorable (more NO) at high temp.

2) Nitrogen Dioxide, NO₂

$$2 \text{ NO } (g) + O_2(g) \rightleftharpoons 2 \text{ NO}_2(g)$$
$$\Delta H = -180.8 \text{ kJ (exothermic)}$$
$$K_p \approx 10^{12} \text{ at } 300 \text{ K}$$
$$K_p \approx 10^{-5} \text{ at } 2400 \text{ K}$$

3) Photochemical Smog

Photodissociation of NO_2 initiates rxns associated with smog

 $NO_2(g) + hv \rightarrow NO(g) + O(g)$

 $O(g) + O_2(g) + M(g) \rightarrow O_3(g) + M^*(g)$

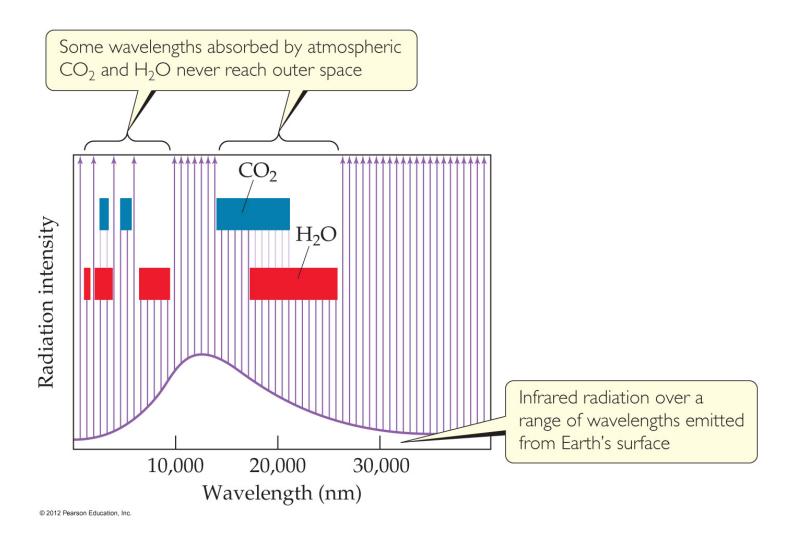
- NO : slightly toxic but also an impt. physiological cmpd. (vasodilator)
- NO₂ : yellow-brown, poisonous, choking odor

when put in H_2O leads to HNO_3 & contributes to acid rain

 O_3 : reactive, toxic at grd. level

D) Greenhouse Gases & Climate Chg.

Atmosphere is essential in maintaining a reasonably uniform & moderate temp. on Earth's surface


 H_2O and CO_2 absorb IR radiation leaving surface and radiate part of it back to the surface as heat.

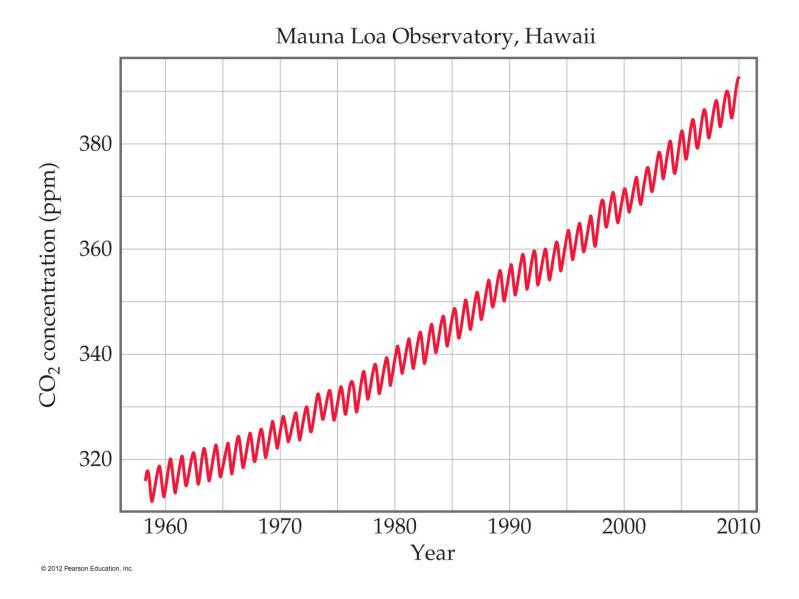
Greenhouse Effect

H₂O & CO₂ main greenhouse gases

1) <u>H</u>₂O

largest contributor to GH effect. Without it Earth would cool off greatly at night.

plays secondary but very impt. role in affecting surface temp.


Combustion of fossil fuels responsible for majority of extra CO₂

get ~ 3 g of CO_2 per g of gasoline (mostly C_8H_{18})

~ $2.2 \times 10^{16} \text{ g} (24 \times 10^9 \text{ tons})$ of CO₂ annually

CO₂ levels remained fairly constant for about 10,000 yr until about 300 yr ago (Industrial Revolution)

- steady inc. since (by ~30%)

In last 120 yrs avg. temp. inc. somewhere between 0.4 & 0.8 °C (0.8 - 1.4 °F)

3) Climate Change

Rise in CO_2 seems to parallel a rise in global air temp.

Are these changes a natural occurrence or caused by human activity?

97% of Climatologists agree human activity plays a major role in the level of GH gases and rise in temp.

Temp. inc. affect wind and ocean currents in ways that will cool some areas <u>and</u> warm others

Some areas (Alaska, Arctic, Northern Eurasia) have warmed by up to 6 °C (10 °F) while other areas (N. Atlantic & Central N. Pacific) have cooled somewhat

- some due to natural phenomena but not all

a) Fixes?

Capture CO₂

- store it undergrd.
- use it for other purposes

Will only account for a small fraction of emissions

4) Other Greenhouse Gases

a) <u>CH₄ (methane)</u>

1 CH_4 has ~ 25 times greenhouse effect of 1 CO_2

Inc. from pre-industrial values of about 0.3 - 0.7 ppm to ~ 1.8 ppm

Biological processes, landfills, ruminant animals, natural gas extraction & transport.

Inc. by ~ 1%/yr due to humans

Causes production of other GH gases in atmosphere

- climate effects are about half those of CO_2

b) CFCs and HFCs

CFCs : chloroflurocarbons

HFCs : hydroflurocarbons

Used as refrigerants

HFCs replaced CFCs to help protect ozone

Unintended consequences

III) Earth's Water

A) Oceans & Seas

Salty water

fairly constant composition - mostly NaCl

Vol. of 1.35 x 10^9 km³ (1.35 x 10^{21} L)

- 97.2% of all H₂O

remaining H₂O
2.1% in ice caps and glaciers
0.6% fresh water

Transport of heat, salts & other chemicals throughout ocean influenced by changes in physical prop. of seawater

Affects ocean currents & climate

Only 3 commercially impt. substances

NaCl, Br, Mg

CO₂ absorption by ocean plays impt. role in global climate

pH: 8.0 - 8.3

pH dec. due to inc. in CO_2 in air - forms H_2CO_3 B) Freshwater & Groundwater

< 500 ppm of dissolved salts & solids

US has ~ $1.7 \times 10^{15} \text{ L} (660 \times 10^{12} \text{ gal})$ estimated reserve of freshwater

~ 9×10^{11} L used every day

Personal consumption: ~ 300 L/day

- way above subsistence level

Groundwater

- ~ 20% freshwater in aquifers
 - can be very pure
 - sometimes contaminated naturally (As found around world)

IV) Human Activities & Water

KEEP IT CLEAN !!!

A) Contamination

- 1) Heavy Metals
 - Pb²⁺, Hg²⁺, Cd²⁺, Sr²⁺, As, Th
 - take the place of essential minerals Zn, Cu, Mg, Ca
 - deactivate enzymes
- 2) Fertilizers

Nitrogen and Phosphorus Excessive algae & plant growth

3) Organics

Dioxanes, PCBs, solvents (benzene, dichloromethane - CH_2Cl_2)

 accumulate in environment & living organisms

4) Pharmaceuticals

Hormones (birth control), Narcotics, Antipsychotics, etc.

In water supply. Effects aquatic life.

5) Trihalomethanes (THMs)

CHCl₃, CHBr₃, CHCl₂Br, CHClBr₂ carcinogens, endocrine disruptors V) Green Chemistry

A) <u>Supercritical solvents</u>

Reusable, more environ. friendly

Replace volatile organic solvents (some are carcinogenic)

supercritical CO₂:

dry cleaning, decaffeinating coffee, producing polymers

supercritical H₂O:

polyethylene terephthalate (PET) and other polyester fibers.

B) <u>Recycling</u>

Many things are recyclable

Cuts down on waste in landfills

Many plastics (polymers) recyclable

#1 and **#2** almost everywhere

others can be recycled but not in many locations

TABLE 12.6Categories Used for RecyclingPolymeric Materials in the United States

Number	Abbreviation	Polymer
1	PET or PETE	Polyethylene terephthalate
2	HDPE	High-density polyethylene
3	V or PVC	Polyvinyl chloride (PVC)
4	LDPE	Low-density polyethylene
5	PP	Polypropylene
6	PS	Polystyrene

© 2012 Pearson Education, Inc.

TABLE 12.5 • Polymers of Commercial Importance				
Polymer	Structure	Uses		
Addition Polymers				
Polyethylene	$-(CH_2-CH_2)_n$	Films, packaging, bottles		
Polypropylene	$\begin{bmatrix} CH_2 & -CH \\ \\ CH_3 \end{bmatrix}_n$	Kitchenware, fibers, appliances		
Polystyrene		Packaging, disposable food containers, insulation		
Polyvinyl chloride (PVC)	$\begin{bmatrix} CH_2 & -CH \\ \\ CI \end{bmatrix}_n$	Pipe fittings, clear film for meat packaging		
Condensation Polymers				
Polyurethane	$\begin{bmatrix} C - NH - R - NH - C - O - R' - O \\ \parallel & \parallel \\ O & O \end{bmatrix}_{n}^{n}$ R, R' = -CH ₂ -CH ₂ - (for example)	"Foam" furniture stuffing, spray-on insulation, automotive parts, footwear, water-protective coatings		
Polyethylene terephthalate (a polyester)	$\begin{bmatrix} O-CH_2-CH_2-O-C\\O\\O\end{bmatrix}_n$	Tire cord, magnetic tape, apparel, soft-drink bottles		
Nylon 6,6	$\begin{bmatrix} NH + CH_2 \rightarrow_6 NH - C - (CH_2)_4 - C \\ \parallel & \parallel \\ O & O \end{bmatrix}_n$	Home furnishings, apparel, carpet, fishing line, toothbrush bristles		
Polycarbonate	$ \begin{bmatrix} O & CH_3 & O \\ I & CH_3 & O \\ CH_3 & O & C \end{bmatrix}_n $	Shatterproof eyeglass lenses, CDs, DVDs, bulletproof windows, greenhouses		

© 2012 Pearson Education, Inc.