Chapter 20

Electrochemistry

Electrochemical Cell

Consists of electrodes which dip into an electrolyte \& in which a chem. rxn. uses or generates an electric current

Voltaic (Galvanic) Cell

Spont. rxn. - produces electrical energy

- current supplied to external circuit

Electrolytic Cell

electrical energy is used to drive an otherwise nonspont. rxn.

I) Oxidation - Reduction Rx's (Redox)

Involves loss of e^{-}by one element \& gain of e^{-}by another element

Oxidation: lose e^{-}
(inc. in oxidation \#)
Reduction: gain e^{-}
(dec. in oxidation \#)

Oxidizing agent: substance that (oxidant) is reduced

Reducing agent: (reductant)
substance that
is oxidized

$\mathrm{Zn}+\mathrm{Br}_{2} \longrightarrow \mathrm{ZnBr}_{2}$

Zn lost $\mathrm{e}^{-} \Rightarrow$ oxidized

Br gained $\mathrm{e}^{-} \Rightarrow$ reduced

A) Oxidation Numbers

"Charge" an atom would have if both e^{-}in each bond are assigned to the more electronegative atom.

1) Elemental Form

$$
\begin{aligned}
& \mathrm{Cu}, \quad \mathrm{H}_{2}, \quad \mathrm{O}_{2}, \quad \mathrm{~S}_{8} \\
& \text { ox. } \#=0 \quad \text { (zero) }
\end{aligned}
$$

2) Monatomic Ion

$$
\left.\begin{array}{l}
\text { ox. \# }=\text { charge } \\
\mathrm{Na}^{+}, \mathrm{Zn}^{2+}, \mathrm{Al}^{3+}, \mathrm{O}^{2-}, \mathrm{Br}^{-} \\
\text {Group IA } \Rightarrow+1 \\
\text { Group IIA } \Rightarrow+2 \\
\text { (Always) } \\
\text { Group IIIA } \Rightarrow+3
\end{array} \quad \text { (Always) } \text { (usually) }\right) ~ l
$$

3) Hydrogen

$\mathrm{H} \Rightarrow+1 \quad$ (usually)

exceptions

$$
\begin{aligned}
& \text { hydrides, } \mathrm{H} \Rightarrow-1 \\
& \mathrm{NaH}, \mathrm{CaH}_{2}
\end{aligned}
$$

4) Oxygen

$$
\mathrm{O} \Rightarrow-2 \text { (usually) }
$$

exceptions

peroxides, $\mathrm{O}_{2}{ }^{2-} \quad \mathrm{O} \Rightarrow-1$

$$
\mathrm{H}_{2} \mathrm{O}_{2} \quad \mathrm{Na}_{2} \mathrm{O}_{2}
$$

superoxides, $\mathrm{O}_{2}{ }^{\mathbf{1 -}} \mathrm{O} \Rightarrow-1 / 2$
KO_{2}
5) Fluorine

$$
F \Rightarrow-1 \quad \text { Always }
$$

6) Halogens: $\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$
-1 except when combined w. a more E.N. element
CBr_{4} : $\mathrm{Br} \Rightarrow-1$
can be : $-1,0,+1,+3,+5,+7$

$$
\mathrm{ClO}_{4}^{-}:+7
$$

7) Sum of ox. no.'s of atoms in neutral cmpds. $=$

$$
0 \text { (zero) }
$$

8) Sum of ox. no.'s of atoms in a polyatomic ion = charge
9) Ox. no. can not be:
more positive than the group \# or
more negative than (group \# - 8)
B) Examples
10) Ex 1: What is ox. \# of N in NH_{3} ?
$\# x_{\mathrm{N}}+3(+1)=0$

$$
\# x_{\mathrm{N}}=-3
$$

2) Ex 2: What is ox. \# of N in NO_{3}^{-}?
$\# x_{\mathrm{N}}+3(-2)=-1$
$\# x_{\mathrm{N}}=+5$
3) Ex 3: What is ox. \# of N in NO_{2}^{-}?
$\# x_{\mathrm{N}}+2(-2)=-1$
$\# x_{\mathrm{N}}=+3$
4) Ex 4: What is ox. \# of Xe in XeOF_{4} ?

5) Ex 5:
 What is ox. \# of Cr in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$?

C) Redox Reactions

Involves transfer of e^{-}between species or change in ox. \# of atoms

Oxidation: inc. in ox. \#
(lose e ${ }^{-}$)
Reduction:
dec. in ox. \#

$$
\text { (gain e }{ }^{-} \text {) }
$$

1) Ex 1: Combustion
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2) Ex 2: What is being oxidized and reduced? What is the oxidizing agent and reducing agent? How many electrons are transferred?
$\mathrm{P}_{4}+10 \mathrm{HClO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}+10 \mathrm{HCl}$

II) Balancing Redox Reactions

A) Half-Reaction Method
focus on ox. \& red. process separately

\# e^{-}lost in
\# e^{-}gained in
ox. half-rx. red. half-rx.

1) Write eqn. in net ionic form

 Skeleton Eqn.
2) Write 2 half-rx. - one for

 ox. \& one for red.3) Determine coef. req. to balance atoms other than H \& O
4) Bal. O atoms by adding $\mathrm{H}_{2} \mathrm{O}$ to side needing O atoms
5) $\mathrm{Bal} . \mathrm{H}$ atoms by adding H^{+} to side needing H atoms

Acidic soln.
6) Bal. charge in each eqn. by adding e^{-}to more (+) side
red. $1 / 2-r x=>e^{-}$on reactant side
ox. $1 / 2-\mathrm{rx}=>\mathrm{e}^{-}$on product side
7) Multiply each $1 / 2-r x$ by factor so:
total \# e ${ }^{-}$lost $=$total $\# \mathrm{e}^{-}$gained

7a) If run. in basic soln., add OH^{-}to both sides of $1 / 2$-rxs. to neutralize H^{+}

Cancel $\mathrm{H}_{2} \mathrm{O}$ as needed.

8) Add $1 ⁄ 2$-rx \& cancel $\mathrm{e}^{-} \&$ other species common to both sides of eq.
B) Ex 1: Bal. following redox eqn. in acidic soln.
$\mathrm{Pt}+\mathrm{NO}_{3}^{-}+\mathrm{Cl}^{-} \longrightarrow \mathrm{PtCl}_{6}^{2-}+\mathrm{NO}$ (acidic)

$$
\text { 1) Step } 2 \text { - divide into } 1 / 2 \text {-rx. }
$$

$\mathrm{Pt}+\mathrm{Cl}^{-} \longrightarrow \mathrm{PtCl}_{6}{ }^{2-}$ (ox.)

$$
\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{NO} \quad \text { (red.) }
$$

2) Step 3 - bal. atoms other than O \& H

$$
\mathrm{Pt}+\mathrm{Cl}^{-} \longrightarrow \mathrm{PtCl}_{6}^{2-}
$$

3) Steps 4 \& $5-$ Bal. O \& H
$\mathrm{NO}_{3}{ }^{-}+\quad \longrightarrow \mathrm{NO}+$
4) Step 6 - Bal. Charge
$\mathrm{Pt}+6 \mathrm{Cl}^{-} \longrightarrow \mathrm{PtCl}_{6}{ }^{2-}$
$\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+} \quad \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}$
5) Step 7 - Multiply by factors so \# e^{-}lost $=$\# e^{-}gained
$\left(\mathrm{Pt}+6 \mathrm{Cl}^{-} \longrightarrow \mathrm{PtCl}_{6}{ }^{2-}+4 \mathrm{e}^{-}\right)$
$\left(\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{Pt}+\mathrm{Cl}^{-} \longrightarrow \mathrm{PtCl}_{6}^{2-}+\mathrm{e}^{-}$
$\mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
6) Step 8 - Add eqns \& cancel
$\mathrm{Pt}+\mathrm{Cl}^{-}+\mathrm{NO}_{3}{ }^{-}+\mathrm{H}^{+}$
$\mathrm{PtCl}_{6}^{2-}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
C) Ex 2: Bal. following redox eqn. in basic soln.
$\mathrm{MnO}_{4}^{-}+\mathrm{Br}^{-} \longrightarrow \mathrm{MnO}_{2}+\mathrm{Br}_{2} \quad$ (basic)

III) Voltaic (Galvanic) Cells

Consists of 2 half-cells connected by an external circuit.

Half-cell

portion of an electrochem. cell in which a $1 / 2$-rx occurs
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$

Cell rxn : net rxn. which occurs in the voltaic cell

Fig. 20.6 Terminology Used in Describing Voltaic Cell

A) Half-cell Rxns

1) Anode (-)

Anode: electrode at which ox. occurs
ox. half-rx
$\mathrm{Zn}(\mathrm{s}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
Zn^{2+} ions produced at electrode

- move away leaving e- behind
e^{-}flow out of anode
(towards the cathode)

2) Cathode (+)

Cathode: electrode at which red. occurs
red. half-rx
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{s})$
Cu^{2+} ions discharged at electrode

- removes e^{-}from electrode
e^{-}flow into the cathode (appears to attract e^{-})

Soln. on right has a - chg.
Soln. on left has a + chg.
anions must move from

$$
\text { lt. } \longleftarrow \mathrm{rt.}
$$

Accomplishes 2 things

> 1) Carry chg.
2) Preserves electrical neutrality

Salt Bridge
tube of electrolyte in a gel connected to the half-cells

> - allows flow of ions but prevents mixing of the diff. solns.
B) Cell Notation

Shorthand description of cell

1) Ions in soln.

$$
\begin{gathered}
\mathrm{Zn}(\mathrm{~s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{~s}) \\
\text { anode } \begin{array}{c}
\text { salt } \\
\text { bridge }
\end{array} \quad \text { cathode } \\
\mid \text { vertical line is a phase boundary }
\end{gathered}
$$

2) Gaseous Reactant or Product

use inert electrode
$\mathrm{Zn}(\mathrm{s})\left|\mathrm{Zn}^{2+}(\mathrm{aq}) \| \mathrm{Cl}_{2}(\mathrm{~g})\right| \mathrm{Cl}^{-}(\mathrm{aq}) \mid \mathrm{Pt}$
anode $\begin{gathered}\text { salt } \\ \text { bridge }\end{gathered}$
anode :
cathode :

3) Ions in Diff. Ox. States

use inert electrode
$\operatorname{Sn}(\mathrm{s})\left|\operatorname{Sn}^{2+}(\mathrm{aq}) \| \operatorname{Sn}^{4+}(\mathrm{aq}), \mathrm{Sn}^{2+}(\mathrm{aq})\right| \mathrm{Pt}$
anode $\begin{gathered}\text { salt } \\ \text { bridge }\end{gathered}$
anode :
cathode :

IV) Standard Cell (Electrode) Potentials

A) Electromotive Force

Work req. to move a charge from a region of low electric pot. energy to a region of high electric pot. energy.
$\mathrm{w}=$ charge $\times \Delta$ P.E.
Joules $=$ Coulombs • Volts

$$
1 \mathrm{~J}=1 \mathrm{C} \cdot \mathrm{~V}
$$

Δ P.E. (V) : diff. in electric potential between 2 points
work done by a voltaic cell to move n moles of e^{-}is given by:

$$
\mathrm{w}_{\max }=-\mathrm{nF} \mathrm{E}_{\mathrm{cell}}
$$

F : faraday constant, $9.65 \times 10^{4} \mathrm{C}$ charge on 1 mole of e^{-}
$\mathrm{E}_{\text {cell }}$: electromotive force (emf)

max. potential diff. between electrodes of a cell

$$
\Delta \mathrm{G}=-\mathrm{nF} \mathrm{E}_{\mathrm{cell}}
$$

NOTE: Spont. rxn.
$\Delta \mathrm{G}<0 \quad \mathrm{E}_{\text {cell }}>0$

B) Cell (Electrode) Potentials

$$
\begin{aligned}
E_{\text {cell }} & =E_{\text {red }}+E_{\text {ox }} \\
E_{\text {ox }} & =-E_{\text {red }} \text { for reverse run. }
\end{aligned}
$$

Tabulate reduction pot. called electrode pot., $\mathrm{E}_{\text {red }}$

$$
\mathrm{Zn}(\mathrm{~s}) \longrightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \mathrm{E}_{\mathrm{ox}}=-\mathrm{E}_{\mathrm{Zn}}
$$

$$
\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(\mathrm{~s}) \quad \mathrm{E}_{\mathrm{red}}=\mathrm{E}_{\mathrm{Cu}}
$$

$$
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{Cu}}+\left(-\mathrm{E}_{\mathrm{Zn}}\right)
$$

$$
=\mathrm{E}_{\mathrm{Cu}}-\mathrm{E}_{\mathrm{Zn}}
$$

$$
\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cathode }}-\mathrm{E}_{\text {anode }}
$$

C) Standard Reduction Potentials

Standard emf: $\mathrm{E}_{\text {cell }}^{0}$

emf of a cell under standard-state conditions

Standard reduction pot. $\mathrm{E}_{\text {red }}^{0}$

 reduction (electrode) pot. when conc. of solutes are $1 \mathrm{M} \&$ gas pressures are 1 atm , at a specified temp.- measured relative to a reference electrode
- standard H electrode (SHE)
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(\mathrm{~g})$

$$
\mathrm{E}_{\mathrm{H}_{2}}^{\mathrm{o}}=0.00 \mathrm{~V}
$$

More
positive

More
negative

TABLE 20.1 • Standard Reduction Potentials in Water at $25^{\circ} \mathrm{C}$

$\boldsymbol{E}_{\text {red }}^{\circ}(\mathbf{V})$	Reduction Half-Reaction
+2.87	$\mathrm{~F}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}(a q)$
+1.51	$\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)$
+1.36	$\mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(a q)$
+1.33	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l)$
+1.23	$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
+1.06	$\mathrm{Br}_{2}(l)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}(a q)$
+0.96	$\mathrm{NO}_{3}{ }^{-}(a q)+4 \mathrm{H}^{+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
+0.80	$\mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}^{-}(s)$
+0.77	$\mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(a q)$
+0.68	$\mathrm{O}_{2}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q)$
+0.59	$\mathrm{MnO}_{4}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}(s)+4 \mathrm{OH}^{-}(a q)$
+0.54	$\mathrm{I}_{2}(s)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}(a q)$
+0.40	$\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(a q)$
+0.34	$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s)$
$0[$ defined $]$	$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}(g)$
-0.28	$\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(s)$
-0.44	$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s)$
-0.76	$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(s)$
-0.83	$2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q)$
-1.66	$\mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(s)$
-2.71	$\mathrm{Na}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(s)$
-3.05	$\mathrm{Li}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Li}(s)$

D) Strengths of Ox. \& Red. Agents

Arranged in table w. greatest tendency for red. at top

Strongest ox. agents are at the upper left $\left(\mathrm{F}_{2}, \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}, \mathrm{H}_{2} \mathrm{O}_{2}\right)$

Strongest red. agents are at the lower right (Li, $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$)

Note
For a spont. rxn the stronger ox. \& red. agents will be the reactants

Most negative values of $E_{\text {red }}^{\circ}$
© 2012 Pearson Education, Inc.

TABLE 20.1 - Standard Reduction Potentials in Water at $25^{\circ} \mathrm{C}$

$\boldsymbol{E}_{\text {red }}^{\circ}(\mathbf{V})$	Reduction Half-Reaction
+2.87	$\mathrm{~F}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{~F}^{-}(a q)$
+1.51	$\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}(l)$
+1.36	$\mathrm{Cl}_{2}(g)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}(a q)$
+1.33	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+14 \mathrm{H}^{+}(a q)+6 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}(a q)+7 \mathrm{H}_{2} \mathrm{O}(l)$
+1.23	$\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)$
+1.06	$\mathrm{Br}_{2}(l)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-}(a q)$
+0.96	$\mathrm{NO}_{3}^{-}(a q)+4 \mathrm{H}^{+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)$
+0.80	$\mathrm{Ag}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(s)^{+0.77}$
+0.68	$\mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+}(a q)$
+0.59	$\mathrm{O}_{2}(g)+2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}(a q)$
+0.54	$\mathrm{MnO}_{4}^{-}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)+3 \mathrm{e}^{-} \longrightarrow \mathrm{MnO}_{2}(s)+4 \mathrm{OH}^{-}(a q)$
+0.40	$\mathrm{I}_{2}(s)+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}(a q)$
+0.34	$\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(a q)$
$0[$ defined $]$	$\mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}(s)$
-0.28	$2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H} \mathrm{H}_{2}(g)$
-0.44	$\mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Ni}(s)$
-0.76	$\mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(s)$
-0.83	$\mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}(s)$
-1.66	$2 \mathrm{H}_{2} \mathrm{O}(l)+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}(g)+2 \mathrm{OH}^{-}(a q)$
-2.71	$\mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-} \longrightarrow \mathrm{Al}(s)$
-3.05	$\mathrm{Na}^{+}(a q)+\mathrm{e}^{-} \longrightarrow \mathrm{Na}(s)$

1) Ex 1 : Which will be the stronger red. agent under standard conditions, Sn^{2+} (to Sn^{4+}) or $\mathrm{Fe}\left(\right.$ to Fe^{2+})
$\mathrm{E}_{\text {red }}^{0}$ (V)
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Sn}^{2+}(\mathrm{aq}) \quad+0.154$
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{s}) \quad-0.440$

E) Calc. Cell emf's from Std. Pot.

$\mathrm{E}_{\text {red }}^{0}(\mathrm{~V})$

$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}(\mathrm{s}) \quad-0.13$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \operatorname{Ag}(\mathrm{s}) \quad+0.80$

1) run. is spont. w. stronger red. agent (one most easily ox.) on left (as reactant), Pb

Reverse of Pb electrode rn.

NOTE: For a voltaic cell the cathode must be run. w. more $+\mathrm{E}_{\text {red }}^{\circ}$ - Ag electrode in this case
$\mathrm{Pb}(\mathrm{s}) \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}(\mathrm{s})$

2) Multiply run. 2 (Ag run) by 2 to balance the e^{-}

$\mathrm{E}_{\text {red }}^{o}$ NOT multiplied by factor

- intensive quantity
$\mathrm{Pb}(\mathrm{s}) \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
$2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Ag}(\mathrm{s})$

3) Add eqns to get overall cell run
$\mathrm{Pb}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
$\mathrm{Pb}(\mathrm{s})\left|\mathrm{Pb}^{2+}(\mathrm{aq}) \| \mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s})$

4) Calc. cell potential, $E_{\text {cell }}^{\circ}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }}^{\circ} & =\mathrm{E}_{\text {cathode }}^{\circ}-\mathrm{E}_{\text {anode }}^{\mathrm{o}} \\
& =\mathrm{E}_{\mathrm{Ag}}^{\mathrm{o}}-\mathrm{E}_{\mathrm{Pb}}^{\circ}
\end{aligned}
$$

II) Equilibrium Constants from emf's

$$
\Delta G^{\circ}=-n F E_{\text {cell }}^{\circ}
$$

Also,

$$
\begin{aligned}
& \Delta G^{\circ}=-R T \ln K \\
& \therefore \quad n F E_{\text {cell }}^{0}=R T \ln K \\
& E_{\text {cell }}^{0}=\frac{R T}{n F} \ln K \\
& \text { or } \\
& E_{\text {cell }}^{0}=\frac{2.303 R T}{n F} \log K
\end{aligned}
$$

At $25^{\circ} \mathrm{C}$

$$
E_{\text {cell }}^{\circ}=\frac{0.0592}{n} \log K \quad \text { (in volts) }
$$

A) Ex's

1) Calc. $A G^{\circ}$ at $25^{\circ} \mathrm{C}$ for the $\mathrm{Pb}-\mathrm{Ag}$ cell.

$$
\Delta G^{0}=-n F E^{0}
$$

2) Calc. the equil. constant K.

$$
E_{\text {cell }}^{0}=\frac{0.0592}{n} \log K
$$

B) Ex 2 : What are ΔG° and K for the following cell?

$$
\begin{aligned}
& A l(s) / A l^{3+}(\text { aq }) / / P_{b}^{2+}(\text { aq }) / P b(s) \\
& \mathrm{Al}^{3+}+3 e^{-} \longrightarrow A l \\
& -\frac{E^{\circ}}{-1.66} \\
& \mathrm{~Pb}^{2+}+2 e^{-} \rightarrow \mathrm{Pb} \\
& -0.13
\end{aligned}
$$

III) Dependence of emf on Conc.
A) Nernst Equation

$$
\begin{gathered}
\Delta G=\Delta G^{\circ}+R T \ln Q \\
-n F E_{\text {cell }}=-n F E_{\text {cell }}^{0}+R T \ln Q \\
E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{R T}{n F} \ln Q
\end{gathered}
$$

At $25^{\circ} \mathrm{C}$,

$$
E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.0592}{n} \log Q
$$

(in volts)

1) Ex: Determine the voltage of the following cell:

$$
C_{r} / C_{r}^{3+}(0.010 \mathrm{~m}) \| \mathrm{Pb}^{2+}(1.00 \mathrm{~m}) / \mathrm{Pb}
$$

B) Electrode Pot. for NonStandard Conditions Can use the Nernsteqn to find the electrode pot. when conc. is not 1 m thor pressure is not 1 atm

1) Ex: what is the pot. of the iron electrode $\mathrm{Fe}^{2 t}(\mathrm{ag}) / \mathrm{Fe}(\mathrm{s})$ when the $\mathrm{Fe}^{2 t}$ conc. is $1.0 \times 10^{-4} \mathrm{~m}$?

$$
\begin{aligned}
& P t \mid H_{2}\left(1 a t_{m}\right) / H^{+}(1 \mathrm{~m}) / / \mathrm{Fe}^{2 t}\left(1.0 \times 10^{-4} \mathrm{~m}\right) / \mathrm{Fe}(\mathrm{~s}) \\
& \begin{aligned}
E_{c e \|} & =E\left(\mathrm{Fe}^{2 t} / \mathrm{Fe}\right)-E^{0}\left(H^{+} / H_{2}\right) \\
& =E\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)
\end{aligned}
\end{aligned}
$$

Using Nernst eqn.,

$$
E\left(\mathrm{Fe}^{2 t} / \mathrm{Fe}\right)=E^{0}\left(\mathrm{Fe}^{2 t} \mid \mathrm{Fe}\right)-\frac{0.0592}{n} \log Q
$$

To find $n \times$ exp. for Q write overall $r x$.

$$
\begin{aligned}
& \mathrm{Fe}^{2+}(\text { aq })+\mathrm{H}_{2}(\mathrm{q}) \rightleftharpoons \mathrm{Fe}(\mathrm{~s})+2 \mathrm{H}^{+}(\text {ag }) \\
& n=2 \quad+ \\
& Q=\frac{\left[\mathrm{H}^{+}\right]^{2}}{\left[\mathrm{Fe}^{2+}\right] \mathrm{H}_{2}}=\frac{1^{2}}{\left[\mathrm{Fe}^{2+}\right] \cdot 1}=\frac{1}{\left[\mathrm{Fe}^{2+]}\right]} \\
& \therefore \quad E\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)=E^{0}\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)-\frac{0.0592}{2} \log \frac{1}{\left[\mathrm{Fe}^{2+}\right]} \\
& \\
& =-0.41-0.1184 \\
& \\
& =-0.53 \mathrm{~V}
\end{aligned}
$$

2) Ex: Determine unknown conc. of Cd^{2+}.

$$
\begin{aligned}
& \left.C d / C d^{2 t}(a g), ? m\right) \| \mathrm{Ag}^{+}(1 m) \mid \mathrm{Ag} \\
& C d+2 \mathrm{Ag}^{+} \rightarrow C d^{2+}+2 \mathrm{Ag}
\end{aligned}
$$

measure $E_{\text {cell }}=1.44 \mathrm{~V}$

$$
\begin{gathered}
E_{c e 11}=E_{c e 11}^{0}-\frac{0.0592}{n} \log \frac{\left[\mathrm{Cd}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \\
1.44=1.20-\frac{0.0592}{2} \log \left[\mathrm{Cd}^{2+}\right] \\
\log \left[\mathrm{Cd}^{2+}\right]=-8.11 \\
{\left[\mathrm{Cd}^{2+}\right]=7.8 \times 10^{-9} \mathrm{~m}}
\end{gathered}
$$

C) Determination of PH

$$
\mathrm{Pt} \mid H_{2}\left(1 \mathrm{la} t_{m}\right) / H^{+}(\text {(est } t \operatorname{son})\| \| H^{+}(1 \mathrm{~m}) \mid H_{2}\left(1 a_{\mathrm{tan}}\right) / P t
$$

$E_{\text {cell }}$ is due to test sola. half-cell

$$
\begin{gathered}
\frac{1}{2} H_{2}(1 \mathrm{~atm}) \rightleftharpoons H^{+}(\text {test sol. })+e^{-} \\
E_{\text {cell }}=-0.0592 \log \left[H^{+}\right], 25^{\circ} \mathrm{C}
\end{gathered}
$$

or

$$
p H=\frac{E_{\text {cell }}}{0.0592}
$$

D) Concentration Cells

Cell based solely on emf generated bee. of diff. in conc.
Use same electrode for both cathode of anode

- diff. conc. in each $\frac{1}{2}$-cell
Fred is same for both electrodes

$$
\begin{array}{ll}
C: M^{2 t}(\text { aq })+2 e^{-} \rightarrow M(s) & E_{\text {red }}^{0}=0.40 \mathrm{~V} \\
A: M(s) \rightarrow M^{2 t}(\text { aq })+2 e^{-} & E_{\text {red }}^{0}=0.40 \mathrm{~V}
\end{array}
$$

$$
\begin{aligned}
E_{\text {cell }}^{0} & =E_{\text {cat }}^{0}-E_{a n}^{0} \\
& =(0.40 \mathrm{~V})-(0.40 \mathrm{~V}) \\
& =0 \mathrm{~V}
\end{aligned}
$$

For a voltaic cell ox. occurs in $\frac{1}{2}$-cell containing the more dilute sorn.

- anode

$$
\begin{aligned}
& A: M(s) \rightarrow M^{2+}(\text { aq, dilute })+2 e^{-} \\
& C: \frac{M^{2 t}(\text { aq, conc })+2 e^{-} \rightarrow M(s)}{M^{2+}(\text { aq, conc }) \rightarrow M^{2+}(\text { aq, dilute })}
\end{aligned}
$$

$$
\begin{aligned}
E_{\text {cell }} & =E_{\text {cell }}^{0}-\frac{0.0592 \mathrm{~V}}{n} \log Q \\
& =0-\frac{0.0592 \mathrm{~V}}{n} \log \frac{\left[\mathrm{~m}^{2+}\right]_{\text {dilate }}}{\left[\mathrm{n}^{2+}\right]_{\text {conc }}} \\
E_{\text {cell }} & =-\frac{0.0592 \mathrm{~V}}{n} \log \frac{\left[\mathrm{~m}^{2+}\right]_{\text {dilate }}}{\left[n^{2+}\right]_{\text {conc }}}
\end{aligned}
$$

Note:
For voltaic cell Q is $\frac{\text { [dilute] }}{\text { [conc] }}$

1) Ex: What is the Excel using a Cu electrode w. Cu^{2+} conc. of 0.00100 M and 2.00 M ?

$$
\mathrm{Cu}^{2+}(\text { aq })+2 e^{-} \rightarrow \mathrm{Cu}(\mathrm{~s}) \quad E^{0}=+0.337 \mathrm{~V}
$$

(III) Practical Applications
A) Corrosion Protection

Iron rusts
$\mathrm{Fe} \rightarrow \mathrm{Fe}^{2+}+2 e^{-}$ox.

Place $F e$ in contact w. a more active metal (more easily oxidized)

Felfe ${ }^{2 t}$ becomes cathode
Metal becomes anode
Cathodic Protection

1) Under ground Pipe

Fe pipe connected to Mg or Z_{n} rod

$$
\mathrm{Mg}+\mathrm{Fe}^{2 t} \rightarrow \mathrm{Mg}^{2 t}+\mathrm{Fe}
$$

2) Galvanized Iron

$$
\mathrm{Zn}+\mathrm{Fe}^{2 t} \rightarrow \mathrm{Zn}^{2 \dagger}+\mathrm{Fe}
$$

B) Fuel Cells

Convert energy of combustion directly into electrical energy

$$
\begin{aligned}
& 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{e}) \\
& \mathrm{C} / \mathrm{H}_{2}(\mathrm{~g}) / \mathrm{OH}^{-}(\mathrm{ag}) / \mathrm{O}_{2}(\mathrm{~g}) / \mathrm{C}
\end{aligned}
$$

anode: $\left(\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}\right)_{2}$
cathode: $\frac{\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightarrow 4 \mathrm{OH}^{-}}{2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}}$
$60-70 \%$ efficient

IX) Electrolytic Cells

Energy from external source is used to bring about a non spent. chem. $r x$.

Cell is driven by a battery

- Acts as an e^{-}pump - pushes e - onto one electrode $\&$ pulls them from another
A) Electrolysis of Molten NaCl

$$
\begin{array}{lc}
& E^{0}(\mathrm{~V}) \\
\mathrm{Cl}_{2}+2 e^{-} \rightarrow 2 \mathrm{Cl}^{-} & +1.36 \\
\mathrm{Na}^{+}+e^{-} \rightarrow \mathrm{Na} & -2.71
\end{array}
$$

anode: $2 \mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}+2 e^{-}$

$$
(o x)
$$

Cathode: $2\left(\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na}\right)$
(red.)

$$
2 \mathrm{NaCl}(\mathrm{l}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

1) $E_{\text {cell }}^{0}$

$$
\begin{aligned}
E_{c e l l}^{0} & =E_{c a t}^{0}-E_{a n}^{0} \\
& =E_{N a}^{0}-E_{C_{2}}^{0} \\
& =(-2.71)-(11.36) \\
& =-4.07 \mathrm{~V}
\end{aligned}
$$

Non spout.
Note: sign convention for eletrodes is Opposite that for voltaic cells

Transparency 144 Figure 20.16 Electrolysis of molten sodium chloride

X) Stoichiometry of Electrolysis

How much product is formed? How long will it take?

$$
\begin{aligned}
& 1 C=1 \mathrm{~A} \cdot \mathrm{~A} \\
& 1 F=96,500 \mathrm{C} / \text { mole } e^{-}
\end{aligned}
$$

A current of 0.50 A flowing for 84 seconds gives a charge of,

$$
0.50 A \times 84 A=42 C
$$

A) Time and Amount

1) Ex: Chrome-plate an object. How long would it take to deposit 35.5 g Cr from a soln. of CrCl_{3} at a current of 6.00 A ?
$\mathrm{Cr}^{3+}+3 e^{-} \rightarrow \mathrm{Cr}$ (cathode)
3 mole e^{-}reg. for each mole Cr
a) How fast does this occur?

$$
6.00 \mathrm{~A}=6.00 \mathrm{c} / \mathrm{A}
$$

b) How many grams of Cl_{2} are produced?
B) Electrical Work

1) Voltaic Cell

$$
\begin{aligned}
w_{\text {max }} & =-n F E_{c e l l} \\
-w_{\text {max }} & \left(w_{\text {max }}<0\right) \\
& \Rightarrow \text { spont. }
\end{aligned}
$$

(max work obtainable)
2) Electrolytic Cell

Non spout. $(\Delta G>0, E<0)$

- supply external potential

$$
w=n F E_{\text {ext }}
$$

surf. doing work on system
3) Units

Electrical work usually expressed in energuunits of watts x time

$$
1 W=1 \mathrm{~J} / \mathrm{s}
$$

electric utilities use kW -hour

$$
\begin{aligned}
1 k W h & =(1000 \mathrm{~W})(1 \mathrm{hr})\left(\frac{3600 \mathrm{~s}}{1 \mathrm{hr}}\right)\left(\frac{1 \mathrm{~J} / \mathrm{l}}{1 \mathrm{~W}}\right) \\
& =3.6 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

4) Ex: What applied emf is required to produce $2.0 \times 10^{3} \mathrm{~kg}$ of Al by electrolysis of Al^{3+} if $1.0 \times 10^{4} \mathrm{k}$ Th of electricity is used?
