Chapter 23

Transition Metals and Coordination Chemistry

The Transition Metals: Exact Definition

Transition metal: An element whose atom has an *incomplete d* subshell or which can give rise to *cations* with an *incomplete d* subshell. (official IUPAC definition)

1 1A																	18 8A
1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 M,	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 21	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 C	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	3 Z 1	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	33 S	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	4 Cl	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	50 Bi	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	8 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	Rg	112	(113)	114	(115)	116	(117)	(118)

The Transition Metals: Exact Definition

• What about Zn, Cd, and Hg?

1

- Officially, they are **NOT** transition metals (often called "noble" metals)
- Unofficially, they usually grouped with transition metals because of similarities in chemistry and because they are completing the *d*-orbital filling.

18

1A																	8A
1 H	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
11 Na	12 Mg	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Te	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	(113)	114	(115)	116	(117)	(118)

Electronic Configuration of *d*-block metals

d-block										
3	4	5	6	7	8	9	10	11	12	
Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
21	22	23	24	25	26	27	28	29	30	
-4s ²	-4s ²	-4s ²	-4s ¹	-4s ²	-4s ²	-4s ²	-4s ²	-4s ¹	-4s ²	
3d ¹	3d ²	3d ³	3d ⁵	3d ⁵	3d ⁶	3d ⁷	3d ⁸	3d ¹⁰	3d ¹⁰	
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	
39	40	41	42	43	44	45	46	47	48	
-5s ²	-5s ²	-5s ¹	-5s ¹	-5s ²	-5s ¹	-5s ¹	-5s ⁰	-5s ¹	-5s ²	
4d ¹	4d ²	4d ⁴	4d ⁵	4d ⁵	4d ⁷	4d ⁸	4d ¹⁰	4d ¹⁰	4d ¹⁰	
Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	
71	72	73	74	75	76	77	78	79	80	
-6s ²	-6s ¹	-6s ¹	-6s ²							
5d ¹	5d ²	5d ³	5d ⁴	5d ⁵	5d ⁶	5d ⁷	5d ⁹	5d ¹⁰	5d ¹⁰	

Where Found? - Minerals

- Most metals, including transition metals, are found in solid inorganic compounds known as minerals.
- Minerals are named by common, not chemical, names.

TABLE 23.1 •	Principal Mineral Sou	rces of Some Transition Metals
Metal	Mineral	Mineral Composition
Chromium	Chromite	FeCr ₂ O ₄
Copper	Chalcocite	Cu ₂ S
	Chalcopyrite	CuFeS ₂
	Malachite	$Cu_2CO_3(OH)_2$
Iron	Hematite	Fe ₂ O ₃
	Magnetite	Fe ₃ O ₄
Manganese	Pyrolusite	MnO ₂
Mercury	Cinnabar	HgS
Molybdenum	Molybdenite	MoS ₂
Titanium	Rutile	TiO ₂
	Ilmenite	FeTiO ₃
Zinc	Sphalerite	ZnS

© 2012 Pearson Education, Inc.

Properties of Transition Metals

- What's so special about transition metals
 - atoms and ions have partially filled *d* subshells
 - low energy, unoccupied *d* orbitals
- Results
 - ions of variable oxidation state (i.e. Fe^{2+} and Fe^{3+})
 - magnetic properties
 - Form complex ions (act as Lewis acids)
 - many make good catalysts (i.e. Pt, Pd, Rh in catalytic converter)
 - ion orbital energy differences = visible photon energy (colored)

 Ti^{3+} Cr^{3+} Mn^{2+} Fe^{3+} Co^{2+} Ni^{2+} Cu^{2+}

Properties of "First-Row" TM

TABLE 23.2 • Properties of the Period 4 Transition Metals										
Group	3B	4 B	5B	6B	7B	-	8B		1B	2B
Element:	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn
Ground state electron configuration	$3d^{1}4s^{2}$	$3d^{2}4s^{2}$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^1$	$3d^{10}4s^2$
First ionization energy (kJ/mol)	631	658	650	653	717	759	758	737	745	906
Radius in metallic substances (Å)	1.64	1.47	1.35	1.29	1.37	1.26	1.25	1.25	1.28	1.37
Density (g/cm ³)	3.0	4.5	6.1	7.9	7.2	7.9	8.7	8.9	8.9	7.1
Melting point (°C)	1541	1660	1917	1857	1244	1537	1494	1455	1084	420

© 2012 Pearson Education, Inc.

Atomic Radii

- Left to right across a row, the radius of TM decrease then increase.
- Increasing effective nuclear charge tends to make atoms smaller.
- However, the strongest (and shortest) metallic bonds are found in the center of TM.
 Move further to right filling anti-bonding orbitals so bonds weaken.

Atomic Radii

- Mn: radius inc. likely due to electron going into ½-filled 4s subshell and Mn still fairly small – more repulsion
- Periods 5 and 6 size about same.

period 6 – lanthanide contraction

adding protons to nucleus & filling 4*f* orbitals which don't shield well

- inc. effective nuclear chg.
- offsets expected inc. in size due to adding electrons as go down group
- similar chemical prop.

Electron Config. & Oxidation States

For a given TM the (n-1)*d* orbitals smaller than ns and np orbitals (wave fncs drop off more rapidly than ns and np)

- *d*-electrons can behave like valence electrons or like core electrons

- depends on location in PT and atom's environment

TM charges and oxidation states

- TM lose outer s-electrons before d-electrons
 - Fe: $[Ar]3d^{6}4s^{2}$ Cu: $[Ar]3d^{10}4s^{1}$
 - Fe²⁺: [Ar]3*d*⁶
- Cu⁺: [Ar]3*d*¹⁰

Fe³⁺: [Ar]3*d*⁵

Cu²⁺: [Ar]3d⁹

Ex: What are the electron config. for Co²⁺ and Co³⁺?

Ex: What is the electron config. for Cr³⁺?

Because most TM have partially occupied *d* subshells, the metals and/or their cmpds often:

- Have more than one oxidation state

- colored
- exhibit magnetic properties

Oxidation States

- Most frequently seen
- Less common

Most common: +2

- due to loss of 4s e⁻

Next most common: +3

- Sc (grp 3B) always +3

- noble gas config. (Sc³⁺ is [Ar])

Max. ox. st. inc from +3 to +7 from Sc to Mn then dec. beyond Mn

- d electrons become more core like
- Zn always +2 (can't remove de⁻)

Higher ox. st.

- No isolated ions > +4 (e.g. in soln.)
- inc. covalent character

most common oxidation state for Ti is +4, but the Ti⁴⁺ ion not found as an isolated ion

- bonding is highly covalent

 $Ti \Rightarrow [Ar]4s^2 3d^2$ $TiO_2 \quad Ti \text{ ox. } \# = +4$

Mn highest oxidation state is +7, - only found in MnO₄⁻

Periods 5 & 6 : ox. st. as high as +8 - larger 4*d* & 5*d* orb

Max. ox. st. – only when metal combined w. most electroneg. elements

O, F, sometimes Cl

	VO ³⁺	VO ²⁺	V ³⁺	V ²⁺
Ox. St.	+5	+4	+3	+2
Color	yellow	blue	blue-grn	violet

Magnetism

Electron possesses spin

 has magnetic moment (behaves like a tiny magnet)

Diamagnetic – all e⁻ paired

- magnetic moments cancel
- "non" magnetic
 - actually very weakly repelled by magnet

Paramagnetic

- Results from an atom having unpaired electrons.
- Not influenced by e⁻ on adjacent atoms or ions
- Magnetic moments
 randomly oriented
- In magnetic field mag. mom. align parallel to each other
- Net attraction to mag. field

(a) Paramagnetic; spins random; spins do align if in magnetic field

Ferromagnetic

- Unpaired e⁻ influence each other to align in the same direction
- Exhibit strong attractions to an external mag. field
- Permanent magnets.
- Fe, Co, Ni, alloys (CrO₃, Fe₂O₄)

(b) Ferromagnetic; spins aligned; spins become random at high temperature

@ 2012 Pearson Education Inc

Antiferromagnetism

- Unpaired e⁻ on adjacent atoms align in opposing directions.
- These magnetic fields tend to cancel each other.
- Cr, FeMn alloys, Fe₂O₃, LaFeO₃, MnO

(c) Antiferromagnetic; spins opposed and cancel; spins become random at high temperature

© 2012 Pearson Education, Inc

Ferrimagnetic

- Spins align opposite each other, but the spins are not equal
- NET magnetic field
- Prop. similar to ferromag. materials
- Examples are NiMnO₃, $Y_3Fe_5O_{12}$, and Fe_3O_4 .

(d) Ferrimagnetic; unequal spins opposed but do not cancel; spins become random at high temperature

© 2012 Pearson Education, Inc.

Ferromag, Ferrimag & Antiferromag become paramag. at temp. above a critical temp.

- spins become random
- Curie Temp., T_C, ferromag & ferrimag
- Néel Temp., T_N, antiferromag