Isomers

Isomers: same molecular formula (composition) but different arrangement of atoms.

© 2012 Pearson Education, Inc.

Draw and Manipulate Octahedron

Draw and Manipulate Octahedron

Rotation

Structural Isomers

1) Linkage Isomers E.g. $Co(NH_3)_5NO_2^{2+}$

Occurs with NO_2^- and SCN^- groups.

Structural Isomers

2) Coordination Sphere Isomers

Differ in which species are ligands & which are outside coord. sphere

VS.

 $[Cr(H_2O)_5CI] Cl_2 \cdot H_2O$

1) Geometrical Isomers

Same bonds - different spatial arrangement

Geometrical isomers have completely different properties

1) Geometrical Isomers

a) cis vs. trans

Cis-diamminedichloroplatinum

Adjacent

Trans-diamminedichloroplatinum

Opposite

1) Geometrical Isomers

b) fac vs. mer

2) Optical Isomers (enantiomers)

non-superimposable mirror images of one another

2) Optical Isomers (enantiomers)

Enantiomers are said to be chiral

Prop. differ ONLY in a chiral environment (such as in biological systems)

Distinguished from one another by interaction with plane-polarized light

2) Optical Isomers (enantiomers)

If polarized light passed through a solution of an optical isomer the plane of polarization is rotated right (clockwise) or left (counterclockwise)

2) Optical Isomers (enantiomers)

Dextrorotatory (right) – "d" isomer

Levorotatory (left) – "*l*" isomer

Enantiomers rotate pp-light in diff. directions

Chiral molecules are optically active

Tetrahedron

Ex: Octahedron – $MA_2B_2C_2$ (C- trans)

Ex: Draw the structure for MA₂B₂C₂ in which like ligands are cis to each other. Is it optically active?

Ex: Draw all the stereoisomers of Co(en)₂Cl₂⁴⁺. Which are optical & geometrical isomers?

Potential stereoisomers

Shape	Geometric Isomer	Optical Isomer
Tetrahedron MA ₄ , MA ₃ B, MA ₂ BC		
Tetrahedron MABCD		
Square Planar MA ₄ , MA ₃ B		

Potential stereoisomers

Shape	Geometric Isomer	Optical Isomer
Square Planar MA ₂ B ₂		
Square Planar MABCD		
Octahedron		

Ex: How many stereoisomers are there for an octahedral complex with a formula $[MA_4B_2]$?

Ex: How many stereoisomers are there for an octahedral complex with a formula $[MA_3B_3]$?

Ex: How many stereoisomers are there for an octahedral complex with a formula $[M(en)_3]$?

Ex: How are $[Ag(SCN)_2]^-$ and $[Ag(NCS)_2]^$ related to each other:

Color & Magnetism

• What is the origin of colors and magnetism in inorganic complexes?

- CoF_6^{3-} = 4 unpaired e^- = paramagnetic (attracted to a magnetic field)
- $Co(CN)_6^{3-}$ = no unpaired e⁻ = diamagnetic (repels electric field)

Both properties can be explained by understanding the electronic configuration. We have two theories;

1) Crystal Field Theory 2) Molecular Orbital Theory

Colored Compounds

- compounds must absorb visible light ($\lambda \sim 400$ to ~ 750 nm) if they are colored
 - particular energy of radiation absorbed dictates the color of the compound see complementary colors

Wavelength Absorbed vs. Color Observed

- colors of solids we see = sum of remaining colors in spectra that are reflected or transmitted
 - -all visible light absorbed = black
 - **no** visible light absorbed = white
- what about something that looks red-violet?
 - Transmitted Light =

Absorbed Light =

