## Isomers

## Isomers: same molecular formula (composition) but different arrangement of atoms.



## Draw and Manipulate Octahedron



## Draw

## Draw and Manipulate Octahedron

Rotation

## Structural Isomers

## 1) Linkage Isomers E.g. $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}{ }^{2+}$



Pentaamminenitrocobalt(III) ion


Pentaamminenitritocobalt(III) ion

Occurs with $\mathrm{NO}_{2}^{-}$and $\mathrm{SCN}^{-}$groups.

## Structural Isomers

2) Coordination Sphere Isomers

Differ in which species are ligands \& which are outside coord. sphere

$$
\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3} \quad \text { vs. } \quad\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}
$$




## Stereoisomers

1) Geometrical Isomers

Same bonds - different spatial arrangement
Geometrical isomers have completely different properties

## Stereoisomers

1) Geometrical Isomers
a) cis vs. trans


Cis-diamminedichloroplatinum
Trans-diamminedichloroplatinum

## Stereoisomers

## 1) Geometrical Isomers

b) fac vs. mer


## Stereoisomers

## 2) Optical Isomers (enantiomers)

non-superimposable mirror images of one another

Mirror

(a)

(b)

## Stereoisomers

2) Optical Isomers (enantiomers)

Enantiomers are said to be chiral

Prop. differ ONLY in a chiral environment (such as in biological systems)

Distinquished from one another by interaction with plane-polarized light

## Stereoisomers

## 2) Optical Isomers (enantiomers)

If polarized light passed through a solution of an optical isomer the plane of polarization is rotated right (clockwise) or left (counterclockwise)


## Stereoisomers

2) Optical Isomers (enantiomers)

Dextrorotatory (right) - "d" isomer
Levorotatory (left) - " l" isomer
Enantiomers rotate pp-light in diff. directions
Chiral molecules are optically active

## Determining optical isomers

Tetrahedron

## Determining optical isomers

Ex: Octahedron - $\mathrm{MA}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \quad$ (C- trans)

## Determining optical isomers

Ex: Draw the structure for $M A_{2} B_{2} C_{2}$ in which like ligands are cis to each other. Is it optically active?

## Determining optical isomers

Ex: Draw all the stereoisomers of $\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}{ }^{4+}$. Which are optical \& geometrical isomers?

## Potential stereoisomers

| Shape | Geometric Isomer | Optical <br> Isomer |
| :---: | :---: | :---: |
| Tetrahedron <br> $M A_{4}, \mathrm{MA}_{3} A_{3}$, <br> $M A_{2} B C$ |  |  |
| Tetrahedron <br> MABCD |  |  |
| Square Planar <br> $M A_{4}, M A_{3} B$ |  |  |

## Potential stereoisomers

| Shape | Geometric Isomer | Optical <br> Isomer |
| :---: | :---: | :---: |
| Square Planar <br> $\mathrm{MA}_{2} \mathrm{~B}_{2}$ |  |  |
| Square Planar <br> MABCD |  |  |
| Octahedron |  |  |

## Ex: How many stereoisomers are there for an octahedral complex with a formula $\left[\mathrm{MA}_{4} \mathrm{~B}_{2}\right]$ ?

## Ex: How many stereoisomers are there for an

 octahedral complex with a formula $\left[\mathrm{MA}_{3} \mathrm{~B}_{3}\right]$ ?
## Ex: How many stereoisomers are there for an octahedral complex with a formula $\left[\mathrm{M}(\mathrm{en})_{3}\right]$ ?

## Ex: How are $\left[\mathrm{Ag}(\mathrm{SCN})_{2}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{NCS})_{2}\right]^{-}$ related to each other:

## Color \& Magnetism

- What is the origin of colors and magnetism in inorganic complexes?

- $\mathrm{CoF}_{6}{ }^{3-}=4$ unpaired $\mathrm{e}^{-}=$paramagnetic (attracted to a magnetic field)
- $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}=$ no unpaired $\mathrm{e}^{-}=$diamagnetic (repels electric field)

Both properties can be explained by understanding the electronic configuration. We have two theories;

1) Crystal Field Theory 2 2) Molecular Orbital Theory

## Colored Compounds

- compounds must absorb visible light ( $\lambda \sim 400$ to $\sim 750 \mathrm{~nm}$ ) if they are colored
- particular energy of radiation absorbed dictates the color of the compound - see complementary colors


$$
\mathrm{E}=\frac{h \mathrm{c}}{\lambda}=h v
$$



## Wavelength Absorbed vs. Color Observed

- colors of solids we see = sum of remaining colors in spectra that are reflected or transmitted
- all visible light absorbed = black
- no visible light absorbed = white
- what about something that looks red-violet?
- Transmitted Light =

Absorbed Light =




