Central Tenants of Crystal Field Theory

- The metals (Lewis acids) have d orbitals that are partially filled with electrons.
- Ligands, that are Lewis bases with lone pairs, come in and form a covalent bond.

- Electrostatic repulsion between the ligand lone pairs with the d-orbital subshell leads to higher energies
- Each metal orbital will either be stabilized or destabilized depending on the amount of orbital overlap with the ligand.

CFT (Octahedron)

$$(d_{z2}, d_{x2-y2})$$

Orbitals point directly at ligands

stronger repulsion higher energy

$$(\mathbf{d}_{xy}, \mathbf{d}_{yz}, \mathbf{d}_{xz})$$

Orbitals point between ligands

weaker repulsion lower energy

Energy Levels of *d*-Orbitals in an Octahedron

- crystal field splitting energy = Δ
- The size of Δ is determined by;
 - *metal* (oxidation state; row of metal, Δ for 5d > 4d >> 3d)
 - ligand (spectrochemical series)

Figure 15.22 Molecular-orbital energy-level diagram for the octahedral complex FeF₆³⁻. The σ_d^* molecular orbitals are essen tially pure $d_{x'-y'}$ and $d_{z'}$ orbitals of the central metal ion. In this complex, the crystal field splitting (Δ) between the three non bonding orbitals (d_{xy} , d_{yz} , and d_{xz}) and the two σ_d^* orbitals is small (F^- is a weak-field ligand) so Hund's rule applies, and these five orbitals each contain one electron with all the spins parallel.

Spectrochemical Series

$I^- < Br^- < CI^- < F^- < OH^- < H_2O < NH_3 < en < NO_2^- < CN^- < CO$

Small ΔLarge ΔWeak FieldStrong FieldWeak M-L interactionsStrong M-L interactions

How Do the Electrons Go In?

• Hund's rule: one electron each in lowest energy orbitals first

• what happens from d⁴ to d⁷?

Crystal Field Splitting Spin Pairing ∧ VS. P

High Spin vs. Low Spin Configurations

High Spin vs. Low Spin Configurations

What About Other Geometries?

square planar (CN = 4)

how do the electrons on the d orbitals interact with the ligands in these cases?

Consequently, tetrahedral complexes are always high spin.

Square Planar d-level Splitting

High Spin or Low Spin?

Orbital Splitting vs. Geometry

Electron Configurations of Complexes

coord. # geom.

d-e⁻ config.

 $[Rh(CN)_2(en)_2]^+$

 $[MnCl_6]^{4-}$

Electron Configurations of Complexes

coord. # geom.

d-e⁻ config.

 $[NiCl_4]^{2-}$

 $[Pt(NH_3)_4]^{2+}$

[FeCl₄]^{2–} is tetrahedral. How many unpaired electrons will [FeCl₄]^{2–} have?

Magnetism

paramagnetism

- compounds with one or more unpaired electrons are attracted by a magnetic field
- The more unpaired electrons the greater the attractive force

- diamagnetism
 - compounds with no unpaired electrons repel a magnetic field
 - much weaker effect

Color of Transition Metal Complexes

MnSO₄ FeSO₄ CoSO₄ NiSO₄ CuSO₄ ZnSO₄

The color of these compounds comes from the absorption of light that causes an excitation of an electron from one d-orbital to a different d-orbital on the same metal cation.

Color of Transition Metal Complexes

- Spectrochemical series
 - relative strength of metal ion/ligand interactions
 - independent of metal

octahedral cobalt(III) complex ions

a. CN^- b. NO_2^- c. phen d. en e. NH_3 f. gly g. H_2O h. ox i. CO_3^{2-}

1,10-phenanthroline

ЮH

 NH_2

glycine

Absorption Of Light

 compounds absorb light *if* the light has the *correct energy* to cause an electron to move from a lower energy state to a higher energy state

The size of Δ_{oct} dictates the wavelength of light needed, and therefore, the color of the compound.

Absorption Dependence on *d*-electrons

Different numbers of transitions will occur for different d-electron configurations

d¹-d⁹ = various **visible** transitions