Chemistry 1220 Practice Problems for Final - Ch 20, 21, 23 Material Only

This practice exam covers only the new material from chapters 20 (20.6-20.9), 21 (21.1-21.4) and 23 (23.1-23.4, only isomerism from 23.4). The actual final is cumulative and covers material from the entire semester.

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K
k = 1.38 x 10⁻²³ J/K
1 J = 1 C•V, 1 C = 1 A•s, F = 96,485 C/mol e-

$$\Delta G = -nFE$$
 $\Delta G^{\circ} = -nFE^{\circ}$

$$E^{\circ} = \frac{RT}{nF} \ln Q \qquad E^{\circ} = \frac{0.0592 V}{n} \log K \quad (at 25 {\circ} C)$$

1. A concentration cell is made from two Cr electrodes, one with $0.040~\mathrm{M~Cr^{3^+}}$ and one with $1.0~\mathrm{M~Cr^{3^+}}$. Calculate the voltage (in volts) generated by this concentration cell at $25^{\circ}\mathrm{C}$.

$$Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s) \quad E^{\circ} = -0.74 \text{ V}$$

- A. 0.083 V
- B. 0.028 V
- C. 0.055 V
- D. 0.125 V
- E. 0.24 V

2. Given the following balanced reaction equation and standard electrode potentials, what is the concentration (M) of Ag⁺ if the emf of the cell is 0.350 V when the concentration of Cu²⁺ is 3.50 M?

$$Cu(s) \ + \ 2 \ Ag^+(aq) \quad \longrightarrow \quad Cu^{2+}(aq) \ + \ 2 \ Ag(s)$$

$$Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$$
 $E^{\circ} = +0.337 \text{ V}$

$$Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)$$
 $E^{\circ} = +0.799 \text{ V}$

- A. 0.012 M
- B. 0.0045 M
- C. 0.20 M
- D. 0.00058
- E. 0.024 M

3. Consider an electrochemical cell in which the following reaction occurs and predict which changes will increase the cell voltage.

$$2 \; Cr^{2+}(aq) \;\; + \;\; HClO(aq) \;\; + \;\; H^{+}(aq) \;\; \longrightarrow \;\; 2 \; Cr^{3+}(aq) \;\; + \;\; Cl^{-}(aq) \;\; + \;\; H_{2}O(l)$$

- I increase in [HClO]
- II increase in size of inert electrodes
- III decrease in pH of cell solution
- A. I
- B. II
- C. III
- D. I & II
- E. I & III
- F. II & III

4. Calculate the standard voltage that can be obtained from an ethane-oxygen $(C_2H_6(g)-O_2(g))$ fuel cell at $25^{\circ}C$.

$$C_2H_6(g) + 7/2 O_2(g) \rightleftharpoons 2 CO_2(g) + 3 H_2O(\ell)$$
 $\Delta G^{\circ} = -1467 \text{ kJ}$

- A. +1.09 V
- B. +0.91 V
- C. +0.72 V
- D. +0.54 V
- E. +0.35 V

- 5. Which of the following is characteristic of the **anode** in an **electrolysis** cell?
 - A. It is where reduction occurs.
 - B. It may attract positive ions.
 - C. It receives electrons from the wire.
 - D. It may lose weight during electrolysis.
 - E. It has a negative sign.
- 6. Using standard electrode potentials, calculate the ΔG° (kJ) for the following electrochemical cell.

Anode
$$Hf^{4+}(aq) + 4e^{-} \longrightarrow Hf(s)$$

$$E^{\circ} = -1.7000 \text{ V}$$

Cathode
$$V^{3+}(aq) + 3 e^{-} \rightarrow V(s)$$

$$E^{\circ} = -1.7980 \text{ V}$$

- Calculate the mass (kg) of Li formed by electrolysis of molten LiCl by a current of 6.60 x 10⁴ A flowing 7. for a period of 12.0 h. Assume the cell is 85.0 percent efficient. (atomic weight: Li = 6.941)
 - A. 126
 - B. 155
 - C. 174
 - D. 205
 - E. 242

- 8. By what process does thorium-230 decay to radium-226?
 - A. gamma emission
 - B. alpha emission
 - C. beta emission
 - D. electron capture
 - E. positron emission

9. What is the missing product from the following reaction?

$${}^{32}_{15}P \rightarrow {}^{32}_{16}S + \underline{\hspace{1cm}}$$

- A. ${}_{2}^{4}\text{He}$
- $B_{-1}^{0}e$
- $C._{0}^{0}\gamma$
- D. $_{1}^{0}$ e
- $E._{1}^{0}p$

- Radium undergoes alpha decay. The product of this reaction also undergoes alpha decay. What is the 10. product of this second decay reaction?
 - A. Po
 - B. Rn

 - C. U D. Th
 - E. Hg

11.	In the nuclear transmutation represented by, $_{13}^{27}$ Al (n, ?) $_{11}^{24}$ Na, what is the emitted particle?			
	A. an alpha particle B. a beta particle C. a gamma photon D. a proton E. a neutron			
10	73751			
12.	Bombardment of ²³⁸ U with a deuteron (² ₁ H) generates ²³⁷ Np and neutrons.			
	A. 1 B. 2 C. 3 D. 4 E. 5			
13.	A freshly prepared sample of curium-243 undergoes 3312 disintegrations per second. After 6.00 yr, the activity of the sample declines to 2755 disintegrations per second. What is the half-life (in yr) of curium-243?			
	A. 4.99 yr B. 32.6 yr C. 7.2 yr D. 0.765 yr E. 22.6 yr			

- $^{210}\mbox{Pb}$ has a half-life of 22.3 years and decays to produce $^{206}\mbox{Hg}.$ If you start with a 7.50 g of $^{210}\mbox{Pb},$ how many grams of $^{206}\mbox{Hg}$ will you have after 17.5 years? 14.
 - A. 4.35 g

 - B. 3.15 g C. 3.09 g D. 0.0600 g
 - E. 1.71 g

- In which of the following complexes does the transition metal have a d⁵ configuration? 15.
 - A. PtCl₄²⁻
 - B. Cu(H₂O)₆²⁺
 - C. Ni(CO)₄
 - D. Zn(NH₃)₄²⁺ E. Fe(CN)₆³⁻

- 16. Which of the following coordination compounds will form a precipitate when treated with an aqueous solution of AgNO₃?
 - A. $[Cr(NH_3)_3Cl_3]$
 - B. [Cr(NH₃)₆]Cl₃
 - C. [Cr(NH₃)Cl](NO₃)₂
 - D. Na₃[Cr(CN)₆]
 - E. Na₃[CrCl₆]

17.	From the following pairs of coordination compounds which pair are linkage isomers? A. $K_2[NiBr_2Cl_2]$ and $Na_2[NiBr_2Cl_2]$ B. $K_4[Pt(Cl)_2(NCS)_4]$ and $Na_4[Pt(Cl)_4(NCS)_2]$ C. $[Ni(NH_3)_3(H_2O)]Br_2$ and $[Ni(NH_3)_2(H_2O)_2]Cl_2$ D. $K_4[Pt(Cl)_2(SCN)_4]$ and $K_4[Pt(Cl)_2(NCS)_4]$ E. $[Ni(NH_3)_3Br]Cl$ and $[Ni(NH_3)_3Cl]Br$
18.	From the following pairs of coordination compounds which pair are coordination-sphere isomers? A. $K_2[NiBr_2Cl_2]$ and $Na_2[NiBr_2Cl_2]$ B. $K_4[Pt(Cl)_2(NCS)_4]$ and $Na_4[Pt(Cl)_4(NCS)_2]$ C. $[Ni(NH_3)_3(H_2O)]Br_2$ and $[Ni(NH_3)_2(H_2O)_2]Cl_2$ D. $K_4[Pt(Cl)_2(SCN)_4]$ and $K_4[Pt(Cl)_2(NCS)_4]$ E. $[Ni(NH_3)_3Br]Cl$ and $[Ni(NH_3)_3Cl]Br$
19.	How many geometric isomers are possible for the complex ion $[Co(NH_3)_3(H_2O)_3]^{3+}$? A. 4 B. 1 C. 0 D. 2 E. 3

- 20. Which of the following transition metal complexes can exhibit the phenomenon of optical isomerism?

 - A. [Co(NH₃)₄Cl₂] B. [CoCl₆]⁴⁻ C. [Fe(H₂O)₆]³⁺ D. [Ni(SCN)₃Br₃]⁴⁻ E. [Mn(C₂O₄)₂Br₂]⁴⁻

- Which of the following complexes are chiral? 21.
 - 1) [Cr(en)₂Cl₂]⁺ cis Cl

- 2) $[Cr(en)_2(NH_3)_2]^{3+}$ 3) $[Cr(en)_3]^{3+}$ 4) $[Cr(en)Cl_2(NH_3)_2]^{+}$ cis Cl cis NH₃

- A. 1, 2, 3 B. 1, 3, 4 C. 2, 3, 4 D. 1, 3 E. 2, 4

Chemistry 1220

Answers to Practice Problems for New Material Ch 20, 21, 23

-		_
1	1	1)
	1	ĸ
1	,	$\boldsymbol{\mathcal{L}}$

9) B

17) D

10) A

18) E

11) A

19) D

12) C

20) E

13) E

21) B

14) C

15) E

16) B