Dr. Zellmer Time: 7 PM Sun. 40 min Chemistry 1220 Spring Semester 2023 Quiz X All Sections April 10, 2023

Mama

_____ Rec. TA/time _____

Show ALL your work or EXPLAIN to receive full credit. R = 0.08206 L•atm/mol•K = 8.314 J/mol•K

1. (3 pts) Consider the ΔG_f^o and ΔH_f^o (kJ/mole) for the following oxides. Which oxide can be **most easily decomposed** to form the metal and oxygen gas.

	$\Delta {\rm G_f}^{\circ}$	$\Delta { m H_f}^{\circ}$
a) CdO	-228.4	-258.2
b) Cu ₂ O	-146.0	-168.8
c) HgO	-58.5	-90.8
d) Ag ₂ O	-11.2	-31.1
e) Au ₂ O ₃	+163.1	+80.7

NOT on Carmen Quiz - Just for understanding spontaneity

2. (5 pts) For the following reaction ΔH° is -720.5 kJ/mol, ΔS° is -263.7 J/K•mol and ΔG° is -642.9 kJ/mol.

$$P_2(g) + 3 Cl_2(g) \rightarrow 2 PCl_3(g)$$

What is the value of ΔG° (kJ/mol) at 141.0°C?

3. (5 pts) The $K_p = 0.113$ atm at 25.0°C and $\Delta H^\circ = +57.2$ kJ for the following reaction. Calculate K_p at 0.0 °C.

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

NOT on Carmen Quiz. I've seen it on our midterms.

4.	(13 pts) Given $\Delta H^{\circ} = -71.75$ kJ and $\Delta S^{\circ} = -71.75$ kJ and Δ	= -268.0 J/mol•K for the following reaction at 2	25°C,
	· ·	_	

$$3\;NO_{2}\left(g\right)\quad+\quad H_{2}O\left(\ell\right)\quad\rightarrow\quad 2\;HNO_{3}\left(\ell\right)\quad+\quad NO\left(g\right)$$

a) (2 pts) Calculate the ΔG° of the reaction at 25 °C. Is the reaction spontaneous or nonspontaneous at this temperature under standard state conditions? **Show all work and explain.**

b) (4 pts) If the reaction is nonspontaneous, at what temperature would it be spontaneous, assuming ΔH^o and ΔS^o don't change with temperature. If the reaction is spontaneous, at what temperature would it be nonspontaneous. If the reaction will always be spontaneous at all temperatures or never be spontaneous at any temperature state that.

c) (2 pts) What is the equilibrium constant at 25°C? Show all work and explain.

- d) (1 pt) This ΔG° and K corresponds to an equilibrium that is: (choose one from below & explain)
 - 1) closer to products
 - 2) closer to reactants
 - 3) midway between reactants and products (significant amounts of both at equilibrium)
- e) (4 pts) Is the reaction spontaneous or nonspontaneous at 25 $^{\circ}$ C when the pressures of NO₂ and NO are 2.50 atm and 0.50 atm, respectively? **Show all work and explain.**

(4 pts) For the redox reaction below, answer the questions. (Show all work and explain!)
$3 \text{ H}_2 \text{SO}_3 + 2 \text{ HNO}_3 \rightarrow 3 \text{ H}_2 \text{SO}_4 + \text{H}_2 \text{O} + 2 \text{ NO}$
What element is reduced?
What element is oxidized?
What is the reducing agent?
How many electrons are being transferred?

5.

6. Consider the following half-cell reactions and associated standard half-cell potentials and determine which species is the **best** <u>reducing</u> agent.

E°

$$S_2O_6^{2-}(aq) + 4 H^+(aq) + 2 e^- \rightarrow 2 H_2SO_3(aq)$$
 +0.60 V

$$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$$
 +0.771 V

$$VO_2^+(aq) + 2 H^+(aq) + e^- \longrightarrow VO^{2+}(aq) + H_2O(\ell)$$
 +1.00 V

$$N_2O(aq) + 2 H^+(aq) + 2 e^- \longrightarrow N_2(g) + H_2O(\ell)$$
 +1.77 V

7.	(11 pts) For the following unbalanced equation,
	$\mathrm{Mn}^{2+}(\mathrm{aq}) + \mathrm{Cr}_2\mathrm{O}_7^{2-}(\mathrm{aq}) \rightarrow \mathrm{MnO}_4^{-}(\mathrm{aq}) + \mathrm{Cr}^{3+}(\mathrm{aq})$ (<u>acidic</u> solution).
	a) (8 pts) Complete and balance the reaction in <u>acidic</u> solution using the <u>half-reaction</u> method. Show all work and explain.
NOT	on Carmen Quiz - Just for practice
	b) (2 pts) Identify the oxidizing and reducing agents . (label them clearly)
	c) (1 pt) How many electrons are transferred in the reaction?

8.	(12 pts) For the following unbalanced equation,
	$Cr(OH)_3(s) + ClO^-(aq) \rightarrow CrO_4^{2-}(aq) + Cl_2(g)$ (basic solution).
	a) (9 pts) Complete and balance the reaction in <u>basic</u> solution using the <u>half-reaction</u> method. Show all work and explain.
	b) (2 pts) Identify the oxidizing and reducing agents . (label them clearly)

c) (1 pt) How many electrons are transferred in the reaction?

(17 pts) A voltaic cell is made from the following half-cells. 9.

$$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$$
 $E^{\circ} = -0.74V$

$$E^{\circ} = -0.74V$$

$$\text{Co}^{2+} (\text{aq}) + 2 e^{-} \rightarrow \text{Co} (\text{s})$$
 $\text{E}^{\circ} = -0.277 \text{V}$

$$E^{\circ} = -0.277V$$

a) (2 pts) Write the half-reactions for the anode and cathode and label which is which. Show all work.

b) (3 pts) Write the overall balanced equation for the reaction and indicate the number of electrons transferred. Show all work.

- c) (1 pts) What is the E_{cell}° ? Show all work.
- d) (4 pts) Write the shorthand representation for this cell as done in lecture and homework exercise.

- 9. (Cont.)
 - e) (3 pts) What is the value of ΔG° for the reaction? Show all work.

f) (4 pts) What is the value of the equilibrium constant? Show all work.

10. (3 pts) Calculate the **equilibrium constant** for the following reaction using the standard electrode potentials.

$$2 \operatorname{Cr}(s) + 3 \operatorname{Zn}^{2+}(aq) \rightleftharpoons 2 \operatorname{Cr}^{3+}(aq) + 3 \operatorname{Zn}(s)$$

$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$$
 $E^{\circ} = -0.760 \text{ V}$

$$Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)$$
 $E^{\circ} = -0.740 \text{ V}$

USEFUL INFORMATION

$$R = 0.08206 \text{ L-atm/mol-K} = 8.3145 \text{ J/mol-K}$$

$$k = 1.38 \times 10^{-23} \text{ J/K}$$

$$1 \text{ J} = 1 \text{ C} \cdot \text{V}, 1 \text{ C} = 1 \text{ A} \cdot \text{s}, F = 96,485 \text{ C/mol e} -$$

$$\Delta G = \Delta H - T\Delta S \qquad \Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \cdot \ln Q \qquad \Delta G^{\circ} = -RT \cdot \ln K$$

$$S = k \cdot \ln W$$

$$\Delta G = -nFE \qquad \Delta G^{\circ} = -nFE^{\circ}$$

$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad E = E^{\circ} - \frac{0.0592 \text{ V}}{n} \log Q \quad (at 25 \circ C)$$

$$E^{\circ} = \frac{RT}{nF} \ln Q \qquad E^{\circ} = \frac{0.0592 \text{ V}}{n} \log K \quad (at 25 \circ C)$$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on 12 C)