Dr. Zellmer Time: 7 PM Sun. 30 min

Chemistry 1220 Spring Semester 2023 Quiz II

All Sections January 29, 2023

<i>5</i> 0 mm	Quiz II
Name	Rec. TA/time
	ALL your work or EXPLAIN to receive full credit. R = 0.08206 L•atm/mol•K = 8.314 J/mol•K
	(6 pts) At 63.5 °C the vapor pressure of water is 175.0 torr and that of ethanol (C_2H_6O) is 400.0 torr. Assume that water and ethanol form an ideal solution. A solution is made by mixing 0.555 moles of H_2O and 0.217 moles of C_2H_6O . (Mol. Wts. $H_2O=18.02$, $C_2H_6O=46.07$)
	a) What is the total vapor pressure above the solution?
	b) What is the <u>mole fraction</u> of ethanol (C_2H_6O) in the <u>vapor</u> above the solution? (Not asked on quiz.)

2.	(5 pts) You have a 0.0020 M aqueous Fe(NO ₃) ₃ solution? Assuming an "ideal" ionic solution (i.e. no ion-pairing), what would be the <u>osmotic pressure</u> at 30.0°C? Show work or explain your answers.
3.	(2 pts) Which of the following statements is FALSE ?
	a) The vapor pressure of a solution with a nonvolatile solute is due just to the solvent.
	b) A 0.10 <i>m</i> solution of MgSO ₄ would be expected to exhibit more ion pairing than a 0.10 <i>m</i> solution of NaCl.
	c) Hydrophilic colloid particles tend to stay dispersed in water.
	d) The vapor pressure of a solution increases with increasing temperature.
	e) The vapor pressure of a solution of a nonvolatile solute is higher than that of the pure solvent.
4.	(2 pts) Solution A is hypotonic with respect to solution B. What does this mean about the relative osmotic pressures of the two solutions and the relative concentrations of solute in the solutions? Explain .
5.	(4 pts) The freezing point of p-dichlorobenzene is 53.1° C. A solution of 1.26 g of a sulfa drug in 10.0 g of p-dichlorobenzene freezes at 47.9° C. What is the molecular weight of the sulfa drug? ($K_f = 7.10^{\circ}$ C/m)

6. (3 pts) For the reaction below, the rate of disappearance of reactant A $(-\Delta[A]/\Delta t)$ is 0.55 M/s. What is the rate of appearance of product C $(\Delta[C]/\Delta t)$ in M/s? **Show work or explain your answer.**

$$5 A + 3 B \rightarrow 2 C + 3 D$$

7. (3 pts) A reaction is 3/2 order in A, second order in B and 1/2 order in C. The initial rate of the reaction is 1.0×10^{-6} M/sec when the initial concentrations are, $[A]_o = 0.0100$ M, $[B]_o = 0.0200$ M and $[C]_o = 0.0100$ M. What is the <u>rate constant</u> (in $M^{-3}s^{-1}$)?

8. (3 pts) For the reaction and rate law given below, which of the statements is **CORRECT**?

$$A + 3B + C \rightarrow D + E$$
 rate = k [A]³ [C]

- 1) the reaction is fourth order overall
- 2) tripling [A] will increase the rate by a factor of 9
- 3) doubling [C] will increase the rate by a factor of 4
- 4) assuming the units for rate are M/s, the units for k would be $M^{-3} \bullet s^{-1}$
- 5) tripling the rate constant, k, will increase the rate by a factor of 9

9. (12 pts) The following data were measure for the reaction

$$4 A + 2 B \rightarrow 3 C + 2 D$$

Experiment	[A](M)	[C] (M)	Initial rate (M/s)
1	$0.\bar{2}00$	0.200	0.2000
2	0.600	0.200	5.4000
3	0.600	0.400	1.3500
4	0.200	0.400	0.0500
5	0.400	0.600	0.1778

a) What is the <u>rate law</u> for the reaction?

b) What is the reaction **order** with respect to each **compound** AND what is the **overall** reaction **order**?

order with respect to A =

order with respect to C =

overall order of the reaction =

c) What is the value of the <u>rate</u> <u>constant</u> (based on data from experiment 1)?

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C})$