Dr. Zellmer Time: 7 PM Sun.

Chemistry 1220 Spring Semester 2023 Quiz III

All Sections February 5, 2023

30 min Name _____ Rec. TA/time _____ Show ALL your work or EXPLAIN to receive full credit. R = 0.08206 L•atm/mol•K = 8.314 J/mol•K (6 pts) The rate law for the decomposition of $AB_2 (AB_2 \rightarrow AB + \frac{1}{2} B_2)$ is 1. $r = (0.630 \text{ M}^{-1} \bullet \text{s}^{-1}) [AB_2]^2.$ a) (4 pts) If the initial concentration of AB₂ is 3.00 M what will the **concentration** of AB₂ be (in M) after 1.00 minute? b) (2 pts) What is the rate after 1.00 minute? Not asked for on the Carmen quiz. (4 pts) The decomposition of AB (AB \rightarrow A + B) is zero order in AB with a rate constant of 1.10 x 10⁻³ 2. M•s⁻¹. If the initial concentration is 0.100 M at the very start of the reaction what is the second half-life (in minutes)?

3.	(8 pts) The rate law for the decomposition of N_2O_5 ($N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2} O_2$) at 70° C is
	$r = (6.82 \times 10^{-3} \text{ s}^{-1}) [\text{N}_2\text{O}_5]$
	a) (5 pts) If the initial concentration of N_2O_5 is 1.50 M, how <u>long</u> (in minutes) will it take for the reaction to reach 90% completion?
	b) (3 pts) What is the <u>half-life</u> (in min) for the reaction based on the initial concentration of 1.50 M?
	(if him) for the reaction cased on the initial concentration of 1.50 ivi.

4.	(3 pts) Explain the main way a catalyst <u>increases</u> rate by using the Arrhenius Equation . (Show this equation and use it in your explanation!)
5.	(5 pts) The rate constant for a reaction at 40.0° C is exactly three times that at 20.0° C. Calculate the Arrhenius energy of activation , E_a , (in kJ/mol) for the reaction.

- 6. (3 pts) Which of the following statements is (are) <u>TRUE</u>?
 - 1) reaction rates depend on temperature, reactant structure, concentration of reactants and the presence of catalysts
 - 2) catalysts shift reaction equilibria toward the side of the products
 - 3) enzymes are catalysts in living organisms and increase rate by lowering the activation energy, Ea.
 - 4) activation energy is required for both exothermic and endothermic reactions
 - 5) a catalyst never has its concentration appear in the rate law

7. (3 pts) Given the following mechanism, identify which species which may be classified as intermediate(s) and which as catalyst(s) in the formation of XO_2 from X and O_2 (X + $O_2 \rightarrow XO_2$)?

$$X + YO_2 \rightarrow XO + YO$$

 $XO + YO \rightarrow XO_2 + Y$
 $Y + O_2 + Z \rightarrow YO + ZO$
 $YO + ZO \rightarrow YO_2 + Z$

Q	(Q ntc)	The following	r mechanism h	ac heen r	aronosed for th	e ase nhace	reaction between	n H and CO
0.	() pis)	THE TOHOWINE	z meemamsm m	as occir p	noposeu for a	ic gas phase	reaction octwee	m m_2 and CO

$$H_2 \rightleftharpoons 2 H$$

(fast, equilibrium)

$$H + CO \rightarrow HCO$$

(slow)

$$H + HCO \rightarrow H_2CO$$

(fast)

- (a) What is the overall reaction?
- (b) What is (are) the **intermediate(s)** in the mechanism?
- (c) What is the **molecularity** of each of the following elementary steps?

Step 1 Step 2

- (d) What is the **rate-determining step** (explain why)?
- (e) What is the <u>rate law</u> predicted by this mechanism?

9.	(9 pts) Consider the following hypothetical reaction and the established rate law. Select an acceptabl
	mechanism.

$$A_2 + B_2 \rightarrow X + Y$$
 rate = k [A₂] [B₂]/[Y] (exp rate law)

a)
$$A_2 \rightleftharpoons 2 A \text{ (fast)}$$

$$B_2 + A \rightarrow C \text{ (slow)}$$

$$C + A \rightarrow X + Y$$
 (fast)

c)
$$A_2 \rightleftharpoons C + Y \text{ (fast)}$$

$$B_2 + C \rightarrow X \text{ (slow)}$$

e)
$$B_2 \rightleftharpoons 2 B$$
 (fast)

$$B \rightarrow C + Y \text{ (slow)}$$

$$A_2 + C + B \rightarrow X \text{ (fast)}$$

b)
$$A_2 + B_2 \rightleftharpoons C$$
 (fast)

$$C \rightarrow X + Y \text{ (slow)}$$

d)
$$B_2 \rightarrow 2 B \text{ (slow)}$$

$$B + A_2 \rightarrow C \text{ (fast)}$$

$$C + B \rightarrow X + Y \text{ (fast)}$$

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

$$[A]_{t} = -kt + [A]_{0} \qquad \frac{1}{[A]_{t}} = kt + \frac{1}{[A]_{0}} \qquad \ln[A]_{t} = -kt + \ln[A]_{0}$$

$$t_{1/2} = \frac{0.693}{k} \qquad t_{1/2} = \frac{1}{k[A]_{0}} \qquad t_{1/2} = \frac{[A]_{0}}{2k}$$

$$k = A e^{-Ea/RT} \qquad \ln(k) = -(\frac{Ea}{R}) (\frac{1}{T}) + \ln(A)$$

$$\ln(\frac{k_{2}}{k_{1}}) = \frac{Ea}{R} (\frac{1}{T_{1}} - \frac{1}{T_{2}}) \qquad \log(\frac{k_{2}}{k_{1}}) = \frac{Ea}{2.303R} (\frac{1}{T_{1}} - \frac{1}{T_{2}})$$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						<u>.</u>

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	Er	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on 12 C)