Dr. Zellmer Time: 7 PM Sun. 30 min

Chemistry 1220 Spring Semester 2023 Quiz IV

All Sections February 12, 2023

Name ______ Rec. TA/time _____

Show <u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit. $R = 0.08206 \text{ L} \cdot \text{atm/mol} \cdot \text{K} = 8.314 \text{ J/mol} \cdot \text{K}$

1. The equilibrium constant for the following reaction is 70 at 350°C. A system at equilibrium has $[N_2] = 0.200 \text{ M}$ and $[NH_3] = 0.118 \text{ M}$. What is the $[H_2]$?

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

2. The properly written heterogeneous K_c expression for the following reaction as written is:

$$NiCO_3(s) + 2 H^+(aq) \rightleftharpoons Ni^{2+}(aq) + CO_2(g) + H_2O(l)$$

- 3. (3 pts) At equilibrium, which of the following is(are) <u>TRUE</u>?
 - a) All chemical processes have ceased.
 - b) The rate constant for the forward reaction equals that of the reverse.
 - c) The rate of the forward reaction equals that of the reverse.
 - d) <u>Both</u> the rate of the forward reaction equals that of the reverse <u>and</u> the rate constant for the forward reaction equals that of the reverse.
 - e) The concentrations of reactants and products are constant.

4. (3 pts) For the following reaction $K_P = 3.14 \times 10^{-10}$ at 727.0 °C.

$$5 \text{ NO } (g) + 5/2 \text{ Br}_2(g) \rightleftharpoons 5 \text{ NOBr } (g)$$
 Rxn 1

What is the value of K_P for the following reaction, Rxn 2? Show all work or explain.

$$2 \text{ NOBr } (g) \quad \rightleftarrows \quad 2 \text{ NO } (g) + \text{Br}_2 (g)$$

Rxn 2

5. Given the following two equilibrium reactions,

(1)
$$2 \text{ NO (g)} + \text{Br}_2(g) \neq 2 \text{ NOBr (g)} \quad K_1 = 2.00$$

(2) NO (g)
$$\rightleftharpoons \frac{1}{2} N_2$$
 (g) + $\frac{1}{2} O_2$ (g) $K_2 = 1.45 \times 10^{15}$

What is the equilibrium constant, K_3 , for the reaction below?

$$N_2(g) + O_2(g) + Br_2(g) \rightleftharpoons 2 NOBr(g)$$
 K_3

o. The equilibrium combant is not the following reaction at 1100 C is 0.00 A 10 . What is is	6.	The equilibrium	constant K _a for the	e following reaction	at 1100°C is 6.80 x	10^{51} . What is K.
--	----	-----------------	---------------------------------	----------------------	---------------------	------------------------

$$B(s) + 3/2 F_2(g) \rightleftharpoons BF_3(g)$$

7. (3 pts) For the following reaction $K_C = 25.8$. The reaction is started with 1.000 mole of AB_3 , 2.000 moles of AB_2 and 1.000 mole of B_2 in a 2.000-L container. Determine if the reaction is at equilibrium or not? If not, which direction will it proceed to reach equilibrium? **Show work and explain!**

$$2 AB_2(g) + B_2(g) \rightleftharpoons 2 AB_3(g)$$

8. (5 pts) The following reaction is started with 2.000 moles of SO_3 in a 2.000-L container. When equilibrium is reached there are 1.645 moles of SO_3 in the container. What is the value of the equilibrium constant, K_C ? (Show the ICE table. You can use numbers or variables in your ICE table.)

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

9. (4 pts) For the following reaction K_C equals 7.10 x 10^{-4} , at 25 °C.

$$CaCrO_4(s) \rightleftharpoons Ca^{2^+}(aq) + CrO_4^{2^-}(aq)$$

What are the <u>equilibrium</u> concentrations of Ca^{2+} and CrO_4^{2-} if solid $CaCrO_4$ is placed in water to form a saturated solution at 25°C? (Show the ICE table.)

10. (3 pts) A plot of ln(r) vs. ln[A] has a slope of -2.5 and an intercept of -10.55. Determine the **rate constant** and **order** of the reaction for the rate law, $r = k[A]^n$.

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C}$)