Dr. Zellmer Time: 7 PM Sun. 30 min

Chemistry 1220 Spring Semester 2023 Quiz V

All sections February 19, 2023

Name	Rec. TA/time
Show	ALL your work or EXPLAIN to receive full credit. R = 0.08206 L•atm/mol•K = 8.314 J/mol•K
1.	(9 pts) For the following reaction K_C equals 7.10 x 10^{-4} , at 25 °C.
	$CaCrO_4(s) \rightleftharpoons Ca^{2^+}(aq) + CrO_4^{2^-}(aq)$
	a) (4 pts) What are the <u>equilibrium</u> concentrations of Ca ²⁺ and CrO ₄ ²⁻ if solid CaCrO ₄ is placed in water to form a saturated solution at 25 °C? (Show the ICE table. State any assumptions made and check your percent error.) This part was on quiz 4.
	b) (1 pts) For the system at equilibrium, what happens when CaCl ₂ (s), a soluble compound, is added?? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
	c) (1 pts) For the system at equilibrium, what happens when water is added to the system? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
	d) (1 pts) For the system at equilibrium, what happens when part of the CaCrO ₄ is removed ? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!

**** continued on next page *****

1.	(Cont.)
	(00116.	,

e) (2 pts) Assuming the above reaction is endothermic, what happens when the temperature increases? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) Also, what happens to the value of K? **EXPLAIN!**

2. (9 pts) For the following reaction K_C equals 5.35 x 10^2 at 80 °C.

$$PH_3(g) + BCl_3(g) \rightleftharpoons PH_3BCl_3(s)$$

a) (4pts) What are the <u>equilibrium</u> concentrations of PH₃ and BCl₃ if 1.000 mole of each is placed in a 0.500-L vessel and allowed to react until equilibrium is reached? (Show the ICE table. When appropriate, state any assumptions made and check your percent error.) This part was on quiz 4.

b) (1 pt) For the system at equilibrium, what happens to the reaction when the **pressure** is **increased** by adding Ne (an inert gas) at **constant temperature** and **volume**? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) **EXPLAIN!**

c) (1 pt) For the system at equilibrium, what happens to the reaction when PH₃ is **added**? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) **EXPLAIN!**

d) (1 pt) For the system at equilibrium, what happens to the reaction when **all** the PH₃BCl₃ is **removed**? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) **EXPLAIN!**

**** continued on next page *****

2. (Cont.)

e) (2 pts) Assuming the above reaction is exothermic, what happens when the temperature decreases? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) Also, what happens to the value of K? **EXPLAIN!**

3. (2 pts) What is(are) the difference(s) between the **Arrhenius** and **Bronsted-Lowry** definitions of a base? Not on quiz.

4. (3 pts) What is the **conjugate** acid of $H_2P_2O_7^{2-}$?

5. (4 pts) Predict the products of the following acid-base reaction and whether the equilibrium lies to the left (more reactants at equilibrium) or the right (more products at equilibrium). **EXPLAIN!**

6.	(2 pts)	Which of the f	following are st	rong acids or <u>s</u>	trong bases?	(Circle all that apply.)
		HNO_3	HClO ₂	HClO ₄	RbOH	NH ₃
		HBrO_2	N ³⁻	HSO ₄	HF	C ₆ H ₅ OH
7.	(5 pts) weight	A saturated so ts: Ca = 40.08,	lution of Ca(OI O = 16.00, H =	H) ₂ has a [Ca ²⁺] = 1.008)] of 0.15 M. W	That is the pH of the solution? (atomic
8.	(5 pts)	Calculate the p	oH of an aqueou	us solution that	is 0.0030 M in	n HCl(aq) and 0.0060 M in HBr(aq).
9.	follow	$D_2O(\ell)$ is deuto iation constant, ring using this inculate $[D^+]$ and	nformation.			r". $D_2O(\ell)$ has an equilibrium $\times 10^{-16}$ at $20.0^{\circ}C$. Answer the
	b) Wh	at is the pD of	this liquid? (Hi	nt: pD is a pX t	function, like p	H)?
	c) Wh	at is the pK_D of	`D ₂ O?			

10.	(5 pts) The K_w for water is 9.6 x 10^{-14} at 60° C. Answer the following <u>TWO</u> questions.
	a) What is the pH of a neutral solution at 60°C? Show all work or explain!
	b) If a solution at 60° C has pH = 7.00 is it acidic, basic, or neutral? Explain!

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C}$)