Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1220 Spring Semester 2023 Chemistry 1220 Quiz VII

All Sections March 5, 2023

Name ______ Rec. TA/time _____

Show **ALL** your work or **EXPLAIN** to receive full credit. R = 0.08206 L•atm/mol•K = 8.314 J/mol•K

- 1. (3 pts) Which of the following is the **weakest** acid? **Explain!**
 - a) H_2TeO_3 b) H_2TeO_4 c) H_2SeO_3 d) H_2SeO_4

- (2 pts) Based on their structure and composition, select the member of the following pair of acids that is 2. the **stronger acid**. Briefly **explain** (but more than just any periodic trends).

 - a) H₂S b) H₂Se c) PH₃ d) SiH₄

- (2 pts) Identify the Lewis acid and Lewis base in the following reactions. Explain! 3.
 - a) $CN^{-}(aq) + H_{2}O(1) \longrightarrow HCN(aq) + OH^{-}(aq)$

b) $SO_2(g) + H_2O(1) \longrightarrow H_2SO_3(aq)$

- 4. (2 pts) Which of the following solutions would be a common-ion system?
- a) HCN and NaCl
- b) HF and NaF
- c) NH₃ and NaF
- d) HCl and NaBr
- e) HNO₂ and KCl
- 5. (3 pts) What change will occur for the following reaction if NaCH3CO2 is added to a solution of CH₃CO₂H? **Explain!**

$$CH_3CO_2H + H_2O \rightleftharpoons CH_3CO_2^- + H_3O^+$$

- a) a decrease in the fraction of acid dissociated
- b) an increase in the fraction of acid dissociated
- c) no change in the fraction of acid dissociated
- 6. (2 pts) Which of the following would be the best choice to make a buffer system around a pH of 4.3?
 - a) HClO₂/NaClO₂

$$K_a$$
 for $HClO_2 = 1.1 \times 10^{-2}$

b) HF/NaF

$$K_a$$
 for HF = 6.8 x 10^{-4}

c) $HC_2H_3O_2/NaC_2H_3O_2$

$$K_a$$
 for $HC_2H_3O_2 = 1.8 \times 10^{-5}$

d) HNO₂/NaNO₂

$$K_a$$
 for HNO₂ = 4.5 x 10⁻⁴

e) H₂CO₃/NaHCO₃

$$K_a$$
 for $H_2CO_3 = 4.3 \times 10^{-7}$

7.	(8 pts) You have a 0.20 M solution of acetic acid, $HC_2H_3O_2$. You add enough sodium acetate, $NaC_2H_3O_2$, to make the solution 0.010 M in $NaC_2H_3O_2$. What is the pH of the solution? ($HC_2H_3O_2$: $K_a = 1.8 \times 10^{-5}$) (Show all work , including ICE tables, assumptions & check for % error.)

11 pts) A buffer solution is 0.15 M in HNO ₂ and 0.10 M in NaNO ₂ . (HNO ₂ : $K_a = 4.5 \times 10^{-4}$) Explain	n
or show work!	

a) (3 pts) What is the **pH** of this buffer solution?

b) (8 pts) You have 100.0 mL of this buffer solution. What is the **pH** of the buffer solution after adding 15.0 mL of 0.30 M of NaOH? (**Show all work, including ICE tables, assumptions & check for % error.**)

9.	(11 pts) A buffer solution is 0.10 M in HCN and 0.15 M in NaCN. (HCN: $K_a = 4.9 \times 10^{-10}$)
	a) (3 pts) What is the pH of this buffer solution?
	b) (8 pts) You have 100.0 mL of this buffer solution. What is the pH of the buffer solution after adding 15.0 mL of 0.200 M of HCl? (Show all work , including ICE tables, assumptions & check for % error.)

10.	added to prepare the NH ₄ Cl sale 1.80×10^{-5}).	ave 0.101 L of a are a buffer solution t is added. (Molar	on with a pH = 1 r Mass of NH3 =	0.05? Neglect the 17.03 g/mol and	any grams of an Ne small volume ch NH ₄ Cl = 53.49 g/	ange that occurs when mol; K_b for $NH_3 =$

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)