Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1220 Spring Semester 2023 Quiz VIII

All Sections March 26, 2023

Name	Rec. TA/time
	<u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit. R = 0.08206 L•atm/mol•K = 8.314 J/mol•K
1.	A 25.0 mL of 0.020 M HCl is titrated with 0.010 M NaOH. What is the pH of the solution when 25.0 mL of NaOH has been added?
2. NOT	A 25.00 mL sample of 0.100 M HCl is titrated with 0.100 M NaOH. What is the pH of the solution at the points where 24.9 and 25.1 mL of NaOH have been added. on quiz, just for practice.

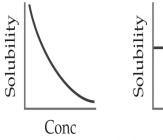
3.	You have a solution of KOH of unknown concentration. A 15.00 mL sample of the KOH solution was titrated with 0.1050M HNO ₃ . It took 21.35mL of HNO ₃ to reach the equivalence point. What was the concentration of the original KOH solution?
4.	A 1.40 g sample of Vitamin C is dissolved in 100.0 mL of water and titrated with 0.250 M NaOH to the methyl orange equivalence point. The volume of the base used is 34.1 mL. What is the molecular weight of Vitamin C assuming one dissociable proton per molecule?
NOT	on quiz, just for practice.

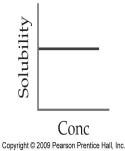
5.	(12 pts) Answer the following questions for the titration of 40.0 mL of 0.100 M HCN with 0.0400 M NaOH. (HCN: $K_a = 4.9 \times 10^{-10}$) (Show all work or explain , including ICE tables, assumptions & check for % error when necessary.)
	a) (2 pts) How many mL of NaOH are required to reach the equivalence point ?
	b) (2 pts) What is the pH when 50.0 mL of NaOH has been added to the HCN solution?
	c) (4 pts) What is the pH at the equivalence point ?
	d) (4 pts) What is the pH at the point where 25.0 mL of NaOH has been added?

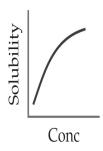
(8 pts) 15.0 mL of 0.100 M CH ₃ NH ₂ is titrated with 0.035 M HCl. ($K_b = 4.4 \times 10^{-4}$) Show work or explain!
a) (2 pts) How many mL of HCl are required to reach the equivalence point?
b) (2 pts) Sketch the titration curve and clearly mark the pH at the equivalence point . (less than 7 equal to 7 or greater than 7).
c) (4 pts) What is the pH at the equivalence point ?

- 7. Which of the following equations is the "Bruce" equation as named during lecture?

 - a) $M_aV_a = M_bV_b$ b) $M_1V_1 = M_2V_2$ c) $M_1V_2 = M_2V_1$ d) $M_aV_b = M_bV_a$
- 8. (3 pts) You have a saturated solution of Mg₃(PO₄)₂. It follows that

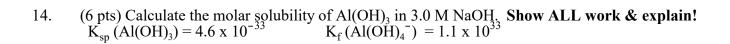

 - a) $[Mg^{2+}] < [PO_4^{3-}]$ b) $[Mg^{2+}] = (K_{sp})^{1/5}$ c) $[Mg^{2+}] = 3/2 (K_{sp})^{1/5}$ d) $[Mg^{2+}] = 3 (K_{sp}/108)^{1/5}$ e) $[Mg^{2+}] = 2/3 [PO_4^{3-}]$


(3 pts) Which compound is more soluble in water, $Mn(OH)_2$ ($K_{sp} = 1.6 \times 10^{-13}$) or $SrCO_3$ ($K_{sp} = 9.3 \times 10^{-10}$)? Show all work and explain! 9.


NOT on quiz, just for practice.

- 10. (3 pts) Which of the following salts will be substantially more soluble in acidic solution than in pure water?
 - 1) $Ca_3(PO_4)_2$
- 2) AgCl
- 3) CuBr
- 4) BaSO₄
- 5) PbF₂

11. (3 pts) Solutions of strontium carbonate, $SrCO_3$, were prepared. The graphs below represent the effects on the solubility of strontium carbonate in the presence of various additives: hydrochloric acid, strontium nitrate and potassium chloride (conc. of additive on x-axis). Match the additives to the graphs to account for the solubility behavior: K_{sp} for $SrCO_3$ is 9.3×10^{-10} .



- a) hydrochloric acid
- b) potassium chloride
- c) hydrochloric acid
- d) strontium nitrate
- e) strontium nitrate
- strontium nitrate hydrochloric acid potassium chloride hydrochloric acid potassium chloride
- potassium chloride strontium nitrate strontium nitrate potassium chloride hydrochloric acid

12.	(15 pts) For CaF ₂ , $K_{sp} = 3.9 \times 10^{-11}$ and for HF, $K_a = 6.8 \times 10^{-4}$. (Show ICE or stoichiometry tables state any assumptions made and check the percent error.)
	a) (3 pts) Calculate the molar solubility of CaF ₂ in pure water.
	b) (5 pts) Calculate the molar solubility of CaF ₂ in the presence of 0.010 M NaF.
	c) (7 pts) Calculate the molar solubility of CaF ₂ in the presence of 2.0 M HCl.

13. (6 pts) Calculate the concentration of free Cd^{2+} ions in a solution made by adding 0.010 moles of $Cd(NO_3)_2$ to 1.0 L of a 2.0 M NaBr solution. $K_f = 5 \times 10^3$ for $CdBr_4^{2-}$ (Show ICE or stoichiometry tables, state any assumptions made and check the percent error.)

NOT on quiz, just for practice.

(5 pts) The K_f for the complex ion $Ag(S_2O_3)_2^{3-}$ is 2.9×10^{13} . The K_{sp} for AgI is 8.5×10^{-17} . What is the molar solubility of AgI in a solution that is made by adding $Na_2S_2O_3$ to make the solution 2.0 M in $Na_2S_2O_3$? (Show ICE or stoichiometry tables, state any assumptions made and check the percent error.) 15.

NOT on quiz, just for practice.

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C}$)