Chapter 14 - Kinetics
 Additional Practice Problems

1) A hypothetical reaction A ----> products is second order in A. The half-life of a reaction that was initially 1.66 M in A is 310 min . What is the value of the rate constant, k ?
2) A reaction shows the same half-life regardless of the starting concentration of the reactant. Is it a zero-order, first-order or second-order reaction?
3) In three different experiments the following results were obtained for the reaction A ----> products: $[\mathrm{A}]_{0}=1.00 \mathrm{M}, t_{1 / 2}=50 \mathrm{~min} ;[\mathrm{A}]_{0}=2.00 \mathrm{M}, t_{1 / 2}=25 \mathrm{~min}$; $[\mathrm{A}]_{0}=0.50 \mathrm{M}, t_{1 / 2}=100 \mathrm{~min}$. Write the rate equation for this reaction and indicate the value of k.
4) Ammonia decomposes on the surface of a hot tungsten wire. Following are the half-lives that were obtained at $1100{ }^{\circ} \mathrm{C}$ for different initial concentrations of NH_{3} :
$\left[\mathrm{NH}_{3}\right]_{0}=0.0031 \mathrm{M}, t_{1 / 2}=7.6 \mathrm{~min} ; 0.0015 \mathrm{M}, 3.7 \mathrm{~min} ; 0.00068 \mathrm{M}, 1.7 \mathrm{~min}$. For this decomposition reaction, what is (a) the order of the reaction; (b) the rate constant k ?
5) The gas-phase reaction of chlorine with carbon monoxide to form phosgene, $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})--->\mathrm{COCl}_{2}(\mathrm{~g})$, obeys the following rate law:

$$
\text { Rate }=\frac{\Delta\left[\mathrm{COCl}_{2}\right]}{\Delta t}=\boldsymbol{k}\left[\mathrm{Cl}_{2}\right]^{3 / 2}[\mathrm{CO}] \quad \text { (exp. rate law) }
$$

A mechanism involving the following series of steps is consistent with the rate law:

$$
\begin{aligned}
\mathrm{Cl}_{2} & \rightleftharpoons 2 \mathrm{Cl} \\
\mathrm{Cl}+\mathrm{CO} & \rightleftharpoons \mathrm{COCl} \\
\mathrm{COCl}+\mathrm{Cl}_{2} & \rightleftharpoons \mathrm{COCl}_{2}+\mathrm{Cl}
\end{aligned}
$$

Assuming that this mechanism is correct, which of the steps above is the slow, or rate-determining, step? Explain.

Hint: try making each step the slowest step (rate-det. step) and see what rate law you get and if it agrees with the experimental rate law given.

Ch14-Alaltival Practice Problems-Solutions $14.26) \quad A \longrightarrow$ product is 2 corder $A n A$
$r=k[A]^{2}$ rate law for a order $r x$.
The $\frac{1}{2}$-life for a $2^{\text {nd }}$ order $r x$ is,

$$
\begin{aligned}
t_{t} & =\frac{1}{k}[A]_{0} \\
k & =\frac{1}{t_{2}[A]_{0}} \\
k & =\frac{1}{(310 \mathrm{~min})(1.66 \mathrm{~m})} \\
k & =1910 \mathrm{men} \quad[A]_{0}=1.66 \mathrm{~m} \\
& =1.94 \times 10^{-3} \mathrm{~m}^{-1} \mathrm{~min}^{-1}
\end{aligned}
$$

$t_{1 / 2}=310$ ane to the pe hatf-life

$$
\underline{q}[A]_{1, t_{1 / 2}}=\frac{1}{2}[A]=\frac{11+e}{2}(166 \mathrm{~m})-083 \mathrm{~m}
$$

What in the $2^{\text {nd }}$ half-life?
be the case $[A]_{0}=[A]_{t, 1 / 2}=\frac{1}{2}[A]_{\text {start }}=0.83 \mathrm{M}$

$$
\begin{gathered}
t_{2, \frac{1}{2}}=\frac{1}{x[A]}=\frac{1}{\left(1.943 \times 10^{-3} \mathrm{~m}^{-1} \mathrm{~min}^{-1}\right)(0.83 \mathrm{~m})} \\
t_{2, \frac{1}{2}}=620 \mathrm{~min}
\end{gathered}
$$

The half-life for a $2^{\text {nd }}$ order $r x$. pucuasb get longer) as the reectompurceedo
(as er sc. of reactant dec. 1).
14.27) 1 ot order $\frac{1}{2}$-life $\quad 2^{n d}$ order $\frac{1}{2}-11 f$

$$
t_{1 / 2}=\frac{0.693}{k} \quad t_{1 / 2}=\frac{1}{k[1 /]}
$$

t/2 io constant
independent of
$t_{1 / 2}$ depeninfo on the the initial conc.)
initial conc.
(inc. as $1 x$
proceeds)
Since the problem states that the $r x$ show the same t-life regardless of [A]0, the $r x$ must be first order
50) $\frac{[A]_{0}(n)}{1.00} \cdot \frac{t_{1 / 2}(m i n)}{50}$
$t_{1 / 2}$ varies $w .[A]_{0}$ do cant be a 1 ot order x. could be zero order or $2^{\text {nd }}$ aider $\left(t_{1 / 2}=\frac{0.693}{k}\right)$

$$
t_{1 / 2}=\frac{5 A]_{0}}{2 k} \quad t_{1 / 2}=\frac{L}{k}[A]_{0}
$$

from these eqxi. can see that for a
i) zero sonde $r x$; $t_{1 / 2}$ dec as $r x$ proceeds $\left(t_{1 / 2}, \downarrow,[A]_{0},\right)$
2) Ix order $r x$; $t_{1 / x}$ constant
3) $2^{n d}$ order $r x$; $t_{1 / x}$ inc as $r x$ puredas $\left(t_{1 / 2} T,[A] \downarrow\right)$ from above data you un see as $[A]_{0} \downarrow, t_{1 / 2} T$ po per a $2^{\text {nd }}$ orates $r x$. -asa matter of fact, as [ADo to at in $\frac{1}{2}$ the $t / 2$ doubles
50) $\left(\cos { }^{\prime} t\right)$

$$
\begin{aligned}
& \therefore=r=k[A]^{2} \quad t_{/ 2}=\frac{1}{K[A]} \\
& k=\frac{1}{t_{/ 2}[A]_{0}}=\frac{1}{(50 \text { min })(1,00 \mathrm{~m})}=0.02 \mathrm{~m}^{-1} \text { men }-1 \\
&-4 \text { getata }
\end{aligned}
$$

5) Semilar to puersisun questern

	$\frac{\left[N H_{3}\right]_{0}(m)}{}$	$\frac{t_{1 / 2}(\text { min })}{}$
$\exp _{1}$	0.0031	7.6
ltp_{2}	0.0015	3.7
$\exp ^{3}$	0.00068	1.7

a) Ender of $r x$
can see $t_{1 / 2}$ dec. as WHato dec. as far a bera onder $r x$. as a matler af fact as $[A]_{0}$ ia ut in half $\rightarrow t_{1 / 2}$ in cut in half

$$
\begin{aligned}
& {[A]_{0, \exp }=\frac{1}{z}[A]_{0, \exp }} \\
& t_{/ 2, \text { enp }}=\frac{[A]_{0, e t g e}}{k} \\
& t_{y_{2}-\operatorname{etp}}=\frac{[A]_{0,1 p}}{K}=\frac{\frac{1}{2}[A]_{0, e p p}}{K}=\frac{1}{2} t_{/ 2,} \text { exp }
\end{aligned}
$$ Zero oucter $, x, \quad r=k$

b)

$$
\begin{aligned}
& t_{1 / 2}=\frac{\left[N_{3}\right]_{0}}{2 K} \\
& K=\frac{\left[N H_{3}\right]_{0}}{2 t_{1 / 2}}=\frac{0.103+\mathrm{m}}{2 \cdot(7.6 \mathrm{~mm})}=2.039 \times 10^{-4}=2.0 \times 10^{-4} \mathrm{mmin}-1
\end{aligned}
$$

14.64) For the cx :

$$
2 \text { the } r x:\left(\mathrm{COCl}_{2}(g) \quad r=k\left[\mathrm{Cl}_{2}\right]^{3 / 2}(\mathrm{CO}]\right.
$$

(i) $\quad \mathrm{Cl}_{2} \stackrel{k_{1}}{k_{1}} 2 C l$
(fast) intiation step
(2) $\mathrm{Cl}+\mathrm{CO} \underset{x_{-2}}{k_{x}}$ col
(fast) Z chain

$\underset{\text { just }}{ } \mathrm{Cl}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{COCl}_{2}$
add
these this a efrain $r x$ in which $s t e p(1)$ is an initiation step bet e i cadicabs only need a tow of U! radecibe form this step to get the $r x$. started. Once started O_{0}. is generated in step (3) fermion C_{2}. Steno (2) 中 (3) are the chain propagation stops and essiultally happen an infinite umbel of times compandal tb step (1). This in often true of chain Ms. Thus, the orenell $1 x$ result from calling step n $(2)+(3)$.
Base rate on $3^{\text {ref step lrate-determining }}$
(4)

$$
r=k_{3}[C O \mathbb{Q}]\left[d_{2}\right]
$$

if you assume step 2 is slow step you dod get proper rate law)
[COU] is intermediate - use (a) to obtain

$$
\begin{align*}
& r_{2}=r_{2} \Rightarrow K_{2}[(e)][C O]=K_{2}[C O C l] . \\
& \therefore[C O C l]=\frac{k_{2}}{k_{-2}}[C l][C O] \text { plug in } \tag{4}
\end{align*}
$$

$(5) \quad r=k_{3}\left(k_{k_{-2}}\right)\left[l_{2}\right][\operatorname{co}][c e]$ plug int

