Chapter 10

Gases \& Kinetic Molecular Theory

I) Gases, Liquids, Solids
Gases
Liquids
Solids

Particles
far apart
very
Particles
Particles
touching closely packed
slightly
Incomp.
compressible
comp.

$<D_{\text {s }}$

No definite vol.
def.
vol.
def.
vol.
No def. shape

No def.
shape
def.
shape

II) Properties of Gases

A) Amount (mass or moles)

low molar masses

Independent of vol. (V), pressure (P), temp. (T)
B) Volume

Gas takes shape of its container \& completely fills it.

$$
\text { vol. gas }=\text { vol. container }
$$

Dependent on P \& T

C) Temperature

Both P \& V depend on T

- MUST use Kelvin
D) All gases are miscible
- mix completely
homogeneous mixture
E) Pressure

Gas particles exert pressure by colliding w . walls of container
more
collisions/area
higher
pressure

Depends on V \& T
SI unit: Pascal, $\quad 1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$

1) Pressure Measurement

Barometer: measures pressure of atmosphere

Manometer: measures press. of gas or gas above a liquid in a vessel
a) Units

Standard Atmospheric Pressure
Avg. atmospheric pressure at $0^{\circ} \mathrm{C}$ at sea level that supports a column of Hg 760 mm high. (1 atm)

$$
1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }
$$

$$
=101.325 \mathrm{k} \mathrm{~Pa}=14.7 \mathrm{lbs} / \mathrm{in}^{2}
$$

Copyright (c) 2009 Pearson Prentice Hall, Inc.

III) Gas Laws

A) Boyle's Law

Volume is inversely
proportional to Pressure
(constant T \& fixed amt. gas)
$\mathrm{V}=\mathrm{k}_{1} \frac{1}{\mathrm{P}}$
or
$P V=k_{1}$

B) Charles's Law

Volume is directly proportional to Absolute Temp. (constant P \& fixed amt. gas)

$$
\mathrm{V}=\mathrm{k}_{2} \mathrm{~T} \quad \text { or } \quad \frac{\mathrm{V}}{\mathrm{~T}}=\mathrm{k}_{2}
$$

$$
\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}
$$

1) Ex: A gas occupies a vol. of 12.3 L at $177^{\circ} \mathrm{C}$. What is its vol. when the temp. is $27^{\circ} \mathrm{C}$?
C) Avogadro's Law

Avogadro's Hypothesis:

Equal volumes of gases, at same $\mathrm{T} \& \mathrm{P}$, contain equal numbers of particles.

Avogadro's Law
Volume of a gas is directly proportional to the number of moles of gas

1) Determination of Mol. Wt.

If 2 gases have equal vol. then there are equal numbers of particles \&
$\frac{\text { mass } 1 \text { molecule } \mathrm{B}(\mathrm{amu})}{\operatorname{mass} 1 \text { molecule A (amu) }}=\frac{\operatorname{mass} \mathrm{B}(\mathrm{g})}{\operatorname{mass} \mathrm{A}(\mathrm{g})}$
Proof
2) Ex: There are 2 balloons at same P \& T. One balloon contains H_{2} \& the other contains an unknown gas, B , each w. a vol. of 1 L and masses as shown below. What is the MW of B?

IV) Ideal Gas Law

$$
V \propto \frac{1}{P} \underbrace{V \propto T}_{V \propto \frac{n T}{P}} \quad V \propto n
$$

Replace proportionality \& rearrange

$$
\mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Universal Gas Constant

Ideal Gas

Hypothetical gas that behaves according to the Ideal Gas Law under all conditions

Real
Gas
low P, high T Ideal
A) Standard Temp. \& Pressure Temp. \& Pressure affect Volume Need a "standard" T \& P as a reference point

$\mathrm{T}=0^{\circ} \mathrm{C} \quad$ (273.15 K)
$\mathrm{P}=1 \mathrm{~atm}$

B) Molar Volume

Volume of 1 mole of an ideal gas, V_{m}, at a given T \& P At STP:

Standard Molar Volume

 1 mole$$
=22.41 \mathrm{~L}
$$ gas

1) Ex: What volume does 3.0 mol of gas occupy at STP?

C) Super Combined Gas Law

Alternate writing of IGL:

D) Calc. Using Ideal Gas Law

Given any three of $P, V, n \& T$ calc. the unknown quantity

1) Ex: What is the pressure in a container that holds 0.452 g of NH_{3}, in a vol. of 400.0 mL \& a temp. of $25^{\circ} \mathrm{C}$?
2) Ex: A sample of gas occupies a vol. of 5.0 L at a pressure of 650.0 torr \& a temp. of $24^{\circ} \mathrm{C}$. We want to put the gas in a 100.0 mL container which can only withstand a pressure of 3.0 atm . What temp. must be maintained so that the container doesn't explode.

V) Further Applications of IGL

A) Determine MW \& Molecular Formula

$\mathrm{MF}=(\mathrm{EF})_{n}$
 $$
n=\frac{\mathrm{MF}}{\mathrm{EFW}}
$$

Determine EF \& EFW from \% composition data

Determine MW

$$
\begin{gathered}
\mathrm{PV}=\mathrm{nRT} \quad m=\mathrm{m} / \mathrm{n} \quad \mathrm{D}=\mathrm{m} / \mathrm{V} \\
\mathrm{D}=\frac{\mathrm{P} m}{\mathrm{R} \mathrm{~T}}
\end{gathered}
$$

1) Ex: An unknown gas has a mass of 0.50 g . It occupies 1.1 L at a pressure of 252 torr \& a temp. of $243^{\circ} \mathrm{C}$. Its emp. formula is $\mathrm{C}_{2} \mathrm{H}_{5}$. What is its molecular formula?

B) Stoichiometry Problems Involving Gases

Moles of reactants \& products are related by balanced eqn.

Moles of gases related to P, V \& T
Use Avogadro's Law to express quantities of gas in volumes

1) Ex 1: What volume of oxygen gas would be required to produce $0.50 \mathrm{~L}^{\text {of } \mathrm{SO}_{2}}$ by the following rx.?
$2 \mathrm{ZnS}+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}(\mathrm{~g})$
2) Ex 2: When the following rxn. was carried to completion at $27^{\circ} \mathrm{C}$ \& 0.987 atm 3.20 L of CO was produced. How many moles of $\mathrm{Sb}_{4} \mathrm{O}_{6}$ were initially present?
$\mathrm{Sb}_{4} \mathrm{O}_{6}+6 \mathrm{C} \rightarrow 4 \mathrm{Sb}+6 \mathrm{CO}(\mathrm{g})$
3) Ex 3: What vol. of $\mathrm{N}_{2}(\mathrm{~g})$ at STP would be produced by the rxn. of 0.86 g of $\mathrm{NO}(\mathrm{g})$?
$2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{N}_{2}(\mathrm{~g})$
Remember: 1 mol gas $=22.41 \mathrm{~L}$ at STP

VI) Gas Mixtures \& Partial Pressures

Each gas acts independently.
Total pressure depends only on the total \# particles \& not kind.
A) Partial Pressures

Pressure each gas would exert if it were the only gas present at same $\mathrm{T} \& \mathrm{~V}$ as for mixture.

Dalton's Law of Partial Pressures

$$
P_{\text {tot }}=P_{1}+P_{2}+P_{3}+\bullet
$$

$$
P_{t o t}=\sum_{j=1}^{N} P_{j}
$$

Assume each gas behaves ideally

$$
P_{j}=n_{j}\left(\frac{R T}{V}\right)
$$

$$
P_{\text {tot }}=\sum_{j=1}^{\mathbf{N}} P_{j}=(R T / V) \sum_{j=1}^{\mathbf{N}} n_{j}=(R T / V) n_{\text {tot }}
$$

1) Mole Fraction

n_{j}
 $\chi_{j}=$
 n_{T}

Related to partial pressures

$$
\frac{P_{j}}{P_{T}}=\frac{n_{j}(R T / V)}{n_{T}(R T / V)}=\chi_{j}
$$

$$
P_{j}=\chi_{j} P_{T}
$$

2) Ex: A mixture of 40.0 g of O_{2} \& 40.0 g of He has a total pressure of 0.900 atm . What is the partial pressure of O_{2} ?

VII) Kinetic-Molecular Theory

Explains behavior of ideal gases
A gas consists of molecules in constant random motion

$$
\text { K.E. }=1 / 2 \mathrm{~m}\left(\mathrm{u}_{\mathrm{rms}}\right)^{2}
$$

$\mathrm{u}_{\mathrm{rms}}=$ root-mean-square (rms) speed

$$
\mathrm{u}_{\mathrm{rms}}=\left(\frac{1}{\mathrm{~N}} \sum_{i}^{\mathrm{N}} \mathrm{~s}_{i}^{2}\right)^{1 / 2}
$$

Whitten/Davis/Peck
Saunders College Publishing

5 Postulates of Kinetic Theory

(1) Molecules move continuously and randomly in straight lines in all directions and various speeds.
-- Properties of a gas that depend on motion of molecules, such as pressure, will be the same in all directions.
(2) Gases are composed of molecules whose size is negligible compared to the average distance between them.
-- Most of the volume occupied by a gas is empty space.
-- Ignore the volume occupied by the molecules.
(3) Intermolecular forces (attractive and repulsive forces between molecules) are negligible, except when the molecules collide with each other.
-- A molecule continues moving in a straight line with undiminished speed until it collides with another gas molecule or with the walls of the container.
(4) Molecular collisions are elastic.
-- Energy can be transferred between molecules but the total average kinetic energy remains constant.
(5) The average kinetic energy of the molecules is proportional to the absolute temperature, K (kelvin).
-- At any given temperature, the molecules of ALL gases have the SAME average kinetic energy.

- The higher the temperature, the greater the average kinetic energy.
A) Ideal Gas

Hypothetical gas which conforms to all the assumptions of the K.M.T.

B) Real Gases

Obey K.M.T. (behave ideally) at high temp. \& low pressure

High Temp: K.E. great enough to overcome I.A.F.

Low Pressure: few particles in a large volume

C) Molecular Speeds

Distribution of KE \& u is dependent on Temperature

Total KE of 1 mole of gas

$$
=3 / 2(\mathrm{RT})
$$

Avg. KE of
$=\quad 1 / 2 \mathrm{mu}^{2}$ 1 molecule

3
$1 / 2 \mathrm{mu}^{2}=\underset{\mathrm{N}_{\mathrm{A}}}{-\cdots---\mathrm{RT}, ~}$

$$
\mathrm{u}^{2}=\frac{3 \mathrm{RT}}{\mathrm{~N}_{\mathrm{A}} \mathrm{~m}}=\frac{3 \mathrm{RT}}{-----}
$$

$$
\mathrm{u}=\left(\begin{array}{c}
3 \mathrm{RT} \\
m
\end{array}\right.
$$

1) Ex: Calc. the speed of a molecule of O_{2} that has the avg. KE at room temp, $20^{\circ} \mathrm{C}$.

$$
\mathrm{u}=\left(\frac{3 \mathrm{RT}}{--\cdots}\right)^{1 / 2}
$$

D) Qualitative Interpretation of Gas Laws

Pressure caused by collisions of molecules w. container's walls

- frequency of collisions/unit area
- force/collision

Molecular conc. \& avg. speed determines the freq. of coll.

Avg. molecular speed determines avg. force/coll.

1) Boyle's Law

T constant $\Rightarrow \mathrm{KE}$ constant $\Rightarrow \mathrm{u}$ constant
\therefore avg. molecular force/coll.
remains constant
Inc. Volume
Molecular conc. dec.

- freq. of coll./unit area dec.
$\therefore \mathrm{P}$ dec.

2) Charles's Law

Tinc. \Rightarrow KE inc. \Rightarrow u inc.
 - inc. force/coll.
 - inc. freq. of coll.

Keep P constant

Volume must inc. so the \# molecules/unit vol. \& freq. of coll. will dec.

$$
\therefore \quad \mathrm{T} \text { inc., } \mathrm{V} \text { inc. }
$$

VIII) Diffusion \& Effusion

A) Diffusion

Dispersion of a gas throughout a vessel
Why does it take so long for a gas to diffuse?

- have molecular collisions

Avg. distance traveled between collisions is called the mean free path

Higher density of gas

Smaller m.f.p.
B) Effusion

Gas escapes through a small hole in a container rate of effusion αu

$$
\begin{aligned}
& r \propto U \\
\therefore & r \propto\left(\frac{3 R T}{m}\right)^{1 / 2}
\end{aligned}
$$

Graham's Law of Effusion

$$
r \propto \frac{1}{m^{1 / 2}}
$$

(at constant TrIP)

Figure 10.14 Effusion of gases

(a)

(b)
© by Prentice Hall
A Division of Simon \& Schuster
Englewood Cliffs, New Jersey 07632

1) Compare rates of effusion of 2 diff. gases

$$
\begin{aligned}
& \frac{r_{1}}{r_{2}}=\frac{u_{1}}{u_{2}}=\frac{\left(\frac{3 R T_{1}}{M_{1}}\right)^{1 / 2}}{\left(\frac{3 R T_{2}}{M_{2}}\right)^{1 / 2}} \\
& \therefore \quad \frac{r_{1}}{r_{2}}=\sqrt{\frac{T_{1} m_{2}}{T_{2} m_{1}}}
\end{aligned}
$$

At constant T,

$$
\frac{r_{1}}{r_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}
$$

2) Ex: The rate of effusion of an unknown gas is 2.91 times faster than that of NH_{3}. What is the molecular wt. of the gas?
XIV) Real Gases

Real gases deviate from ideality at, High P, Low T

Some assumptions made in KMT are FALSE

- Molecular volumes are negligible
- Molecules do not interact

Remember, for an ideal gas

$$
\frac{P V}{n R T}=1 \text {, at all } P
$$

A) van der Hals Equation

$$
\begin{gathered}
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T \\
\begin{array}{c}
\text { ideal gas } \\
\text { Law }
\end{array} \quad P_{i}=\frac{n R T}{V} \\
P_{m}=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \\
\pi \\
P_{m}>P_{i} \quad P_{m}<P_{i}
\end{gathered}
$$

1) $n b$ term
correction for finite molecular volume

$$
V_{\text {available }}=V_{m}-n b
$$

units for $b: \frac{L}{m o l}$
b inc. w. MW or complexity of structure

Can be estimated from liquid density o MW
2) $\frac{n^{2} a}{V^{2}}$ term
corrects for inter moles. attractions
ii. other molec. "pull back"
$\mid \substack{i=0 \\ i} 0$ moles. about to strike wall

- reduces force of impact

$$
P_{m}=P_{i}-\frac{n^{2} a}{V^{2}}
$$

$\frac{n}{V}$: concentration term units for $a: \frac{L^{2} \mathrm{~atm}}{\mathrm{~mol}^{2}}$
a reflects strength of attractions

- inc. w. mw or complexity of structure
$P_{i d e a l}+P_{v w}$ as a function of Container for $1.0 \mathrm{mdN} / \mathrm{N}(\mathrm{g})$ at $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$. (in atm)

$V(L)$	$P_{\text {ideal }}$	$\frac{n R T}{V-n b}$	$\left(\frac{n}{V}\right)^{2} a$	$P_{v \omega}$
10	2.446	2.456	0.0139	2.442
1.0	24.5	25.5	1.39	24.1
0.50	48.9	53.08	5.56	47.5
0.10	245	402	139	263
0.050	489	2245	556	1689

$$
a=1.39 \frac{L^{2} \cdot a t m}{m o l^{2}} \quad b=0.03914 / \mathrm{md}
$$

B) Calculations

1) Ex: The pressure of 2.50 mol of Xe in a 2.000 L flask is 31.6 atm at $75^{\circ} \mathrm{C}$. Is the gas behaving ideally?
