Chapter 2

Atoms, Molecules and Ions

I) Atoms
A) Dalton's Atomic Theory

1) Elements composed of minute, indivisible particles called,

Atoms

2) Atoms of an element are identical \& different from atoms of any other elements

- have different properties
\& different masses

3) Atoms combine in whole numbers to form compounds (molecules)

Law of Multiple Proportions

4) Compounds are composed of atoms of diff. elements chemically combined.

- relative number of each type of atom is constant

Law of Constant Composition

5) In chemical rxn's, atoms are rearranged, but the number \& kind of atoms is unchanged Law of Conservation of Mass

II) Sizes of Atoms

A) Mass
mass of $H=1.67 \times 10^{-24} \mathrm{~g}$
Define atomic mass unit

$$
1 \mathrm{amu}=1.6603 \times 10^{-24} \mathrm{~g}
$$

Masses of atoms: 1-260 amu

B) Radius (Volume)

Atoms pictured as spherical

Radii

$0.5 \times 10^{-8} \mathrm{~cm} \rightarrow 2.4 \times 10^{-8} \mathrm{~cm}$
Use nm,

$$
0.05 \mathrm{~nm} \rightarrow 0.24 \mathrm{~nm}
$$

Also use angstrom, \AA

$$
\begin{aligned}
& 1 \AA=10^{-10} \mathrm{~m}=10^{-8} \mathrm{~cm} \\
& \therefore 0.5 \AA \rightarrow 2.4 \AA
\end{aligned}
$$

III) Subatomic Particles

Atom is composed of smaller subatomic particles

Atom: smallest particle of an element that retains properties of that element
A) Electron, e^{-}

$$
\text { charge }=-1.6022 \times 10^{-19} \mathrm{C}
$$

(coulomb)

$$
\begin{aligned}
\mathrm{m}_{\mathrm{e}-} & =9.1094 \times 10^{-28} \mathrm{~g} \\
& =5.486 \times 10^{-4} \mathrm{amu}
\end{aligned}
$$

B) Proton, p

Matter is neutral:
removal of e^{-}leaves a $(+$) charged particle
remove e^{-}from H

$$
\Rightarrow \mathrm{H}^{+} \text {, a proton }(\mathrm{p})
$$

- fundamental particle

$$
\begin{aligned}
& \text { charge }=+1.6022 \times 10^{-19} \mathrm{C} \\
& \begin{aligned}
\mathrm{m}_{\mathrm{p}} & =1.6726 \times 10^{-24} \mathrm{~g} \\
& =1.0073 \mathrm{amu} \\
\mathrm{~m}_{\mathrm{p}} & \approx 1836 \mathrm{~m}_{\mathrm{e}-}
\end{aligned}
\end{aligned}
$$

Other atoms contain > 1 p
Number of protons in atom characteristic of element

Atoms are neutral,

$$
\# p=\# e^{-}
$$

C) Neutron, n

Only about $1 / 2$ of mass of atoms accounted for by protons
charge $=0$
$\mathrm{m}_{\mathrm{n}}=1.6749 \times 10^{-24} \mathrm{~g}$
$=1.0088 \mathrm{amu}$
$\mathrm{m}_{\mathrm{n}} \approx \mathrm{m}_{\mathrm{p}}$

D) Summary of Subatomic Particles

mass
 particle symbol (amu)
 relative
 charge

e^{-}
0.0005486
-1
proton
p
1.0073
$+1$
n
1.0088

0
$\mathrm{m}_{\mathrm{n}} \approx \mathrm{m}_{\mathrm{p}} \gg \mathrm{m}_{\mathrm{e}-}$

E) Nuclear Model of the Atom

Atom composed of dense nucleus, containing protons \& neutrons \& most of atom's mass surrounded by e^{-}in motion in mostly empty space

diameter of
atoms very
small

IV) Composition of Atoms

A) Atomic Number, Z
$\mathrm{Z}=\#$ of protons
Distinguishes atoms of one element from those of another

Whole number in block w. chemical symbol in P.T.

Elements in P.T. ordered by inc. atomic no.

In neutral atom, $\# \mathrm{p}=\# \mathrm{e}^{-}$
B) Mass Number, A

$$
A=\# p+\# n
$$

C) Elemental Symbol

Describes composition of nucleus mass \# $\longrightarrow \mathrm{A}$

elemental symbol

1) Ex 1: What does the following symbol represent?
${ }_{47}^{107} \mathrm{Ag}$
Sometimes only show mass \#

$$
{ }^{107} \mathrm{Ag} \quad \text { silver }-107
$$

2) Ex 2 :
${ }_{79}^{197} \mathrm{Au}$

D) Isotopes

Atoms of same element which have different numbers of neutrons
$\therefore \quad$ same atomic \#, Z
different mass \#, A

"A" distinguishes between isotopes of the same element

Note: Isotopes of the same element have the same chemical properties

1) Ex: Naturally occurring boron consists of 2 isotopes

$$
\begin{aligned}
& { }_{5}^{10} \mathrm{~B} \\
& { }_{5}^{" \mathrm{E}} \mathrm{~B}
\end{aligned}
$$

B) Atomic Weight

> A.W. scale based on assignment of exactly 12 amu to ${ }_{6}^{12} \mathrm{C}$
A.W. is weighted average of naturally occurring isotopes expressed in amu

1) Ex: The two isotopes of silver are ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$, having natural abundances of 51.35% and 48.65%, respectively. Their isotopic masses are 106.916 \& 108.914 amu, respectively. Determine the A.W. of Ag.

V) Periodic Table

A) Periodic Law

Mendeleev: table based on idea that properties of elements are periodic functions of their A.W.

- exceptions: I \& Te ; Ar \& K

Moseley: proper correlation is with atomic number

1) Modern Periodic Law

Properties of the elements are periodic functions of their

Atomic Number

B) Modern Periodic Table

Arrangement of elements in order of inc. atomic no., placing those with similar chem. and phys. prop. in columns.

1) Groups

Vertical columns called groups or families

- elements within a group have similar prop.

Labeled at top of column by
Roman numerals (I - VIII) or Arabic numerals (1-8) and letter, A or B
Transparency 13 Figure 2．16 Periodic table divided into metals，

マコ	¢ ${ }_{\sim}^{\text {a }}$
웃	－0．
8®	훌풀
®崮	8\％
¢¢ํㅜㄴ	ஃぃ
®๐ ${ }^{\text {a }}$	®ัช
®\％	お兹
むす す	¢\％
®\％	に西
¢ั：	むき
で镸	の年
$8: 5$	ぶロ
辰を	ず』
\sim	8）

CHEMISTRY：THE CENTRAL SCIENCE
by Brown／Le May／Bursten
a) Representative Elements
(main-group elements)

$$
1 \mathrm{~A}-8 \mathrm{~A}
$$

1) Specific Group Names

1 A alkali metals
2 A alkaline earth metals
7 A halogens
8 A noble or rare gases
b) Transition Metal Elements

1B-8B

- metals

2) Periods

Horizontal rows called periods

Two long rows below main body of table are:

Inner transition elements - lanthanides \& actinides

$1^{\text {st }}$ period	$\mathrm{H}-\mathrm{He}$	2 elements
$2^{\text {nd }}$ period	$\mathrm{Li}-\mathrm{Ne}$	8 elements
$3^{\text {rd }}$ period	$\mathrm{Na}-\mathrm{Ar}$	8 elements
$4^{\text {th }}$ period	$\mathrm{K}-\mathrm{Kr}$	18 elements
$5^{\text {th }}$ period	$\mathrm{Rb}-\mathrm{Xe}$	18 elements
$6^{\text {th }}$ period	$\mathrm{Cs}-\mathrm{Rn}$	32 elements

Metals
solids
(except Hg)
metallic
luster
malleable \& ductile
good conductors of
heat \& electricity
oxides:
nonvolatile
high melting
$\mathrm{MgO}, \mathrm{Na}_{2} \mathrm{O}$

Nonmetals
gases or solids
(except Br)
variety of color
\& appearance
solids are brittle
poor conductors (insulators)
oxides:
volatile
low melting
$\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{SO}_{2}$

VI) Molecular Elements \& Compounds

A) Molecular Substances

Group of chemically bonded atoms which has the characteristic properties of the substance

1) Molecular Elements

a) Diatomics

Contain 2 atoms

H_{2}
2 H atoms bonded together

$$
\mathrm{H}-\mathrm{H}
$$

other diatomic elements

$$
\mathrm{N}_{2}, \quad \mathrm{O}_{2}, \quad \mathrm{~F}_{2}, \quad \mathrm{Cl}_{2}, \quad \mathrm{Br}_{2}, \quad \mathrm{I}_{2}
$$

b) Polyatomics

$$
\begin{aligned}
\mathrm{P}_{4} & \& \quad \mathrm{~S}_{8} \\
\mathrm{O}_{3} & - \text { allotrope of } \mathrm{O}_{2}
\end{aligned}
$$

2) Molecular Compounds

Molecules of compounds contain 2 or more diff. elements
$\mathrm{H}_{2} \mathrm{O}$

2 H atoms \& 1 O atom

CO_{2}
carbon dioxide
1 C atom \& 2 O atoms
3) Molecular Formula

Actual number of each kind of atom in a molecule

$\mathrm{C}_{6} \mathrm{H}_{6} \quad$ Benzene
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ Ethanol

4) Empirical Formula

Relative number of atoms of each kind in a molecule

- smallest whole-number ratio of atoms

$\mathrm{C}_{1} \mathrm{H}_{1} \quad$ Benzene or acetylene

Subscripts in a molecular formula are always some integer multiple of subscripts in empirical formula
5) Structural Formula Gives an idea about the structure of the molecule

Ethanol

$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

VII) Ionic Substances

A) Ions
particle that contains more or fewer e^{-}than protons
\therefore Has NET electrical charge

$$
\text { Total charge }=\# \mathrm{p}-\# \mathrm{e}^{-}
$$

1) Anion

Negative ion resulting from gain of 1 or more e by neutral atom
a) Ex:
${ }_{35} \mathrm{Br}+\mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}$
Br^{-}has 1 extra e^{-}than Br
(\# p does NOT change)
b) Ex:
${ }_{16} \mathrm{~S}+2 \mathrm{e}^{-} \rightarrow \mathrm{S}^{2-}$

* Formation of anions is a property of nonmetals

2) Cation

Positive ion resulting from loss of 1 or more e^{-}by neutral atom
a) Ex:
${ }_{19} \mathrm{~K} \rightarrow \mathrm{~K}^{+}+\mathrm{e}^{-}$
${ }_{30} \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$

* Formation of cations is a property of metals

3) Predicting Charge Using P.T.

Representative Elements
I A - VIII A
gain or lose e^{-}to achieve same \# e^{-}as nearest noble gas
$\mathrm{Br}^{-} \quad 36 \mathrm{e}^{-} \Rightarrow \mathrm{Kr}$
$\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}, \mathrm{Ca}^{2+} \quad 18 \mathrm{e}^{-} \Rightarrow \mathrm{Ar}$
isoelectronic series
(same \# e-)
a) Cation Groups
charge $=$ group\#
IA $=+1 \quad \mathrm{Li}^{+}$
II A $=+2 \mathrm{Mg}^{2+}$
a) Special Cations

2) Anion Groups

$$
\begin{array}{rlll}
\text { charge } & =\text { group \# }-8 \\
\text { V A } & =-3 & \mathrm{~N}^{3-} \\
\text { VI A } & =-2 & \mathrm{O}^{2-} \\
\text { VII A } & =-1 & \mathrm{~F}^{-}
\end{array}
$$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{gathered} 1.008 \\ \mathbf{H}^{2} \end{gathered}$																	$\begin{aligned} & 4.003 \\ & 2^{4 e} \end{aligned}$
2	${ }_{3}^{6.941}$	${ }_{4}{ }_{4}^{9.012}$ Be											${ }_{5}^{10.81}{ }_{5}^{\mathbf{B}}$	${ }_{6}^{12.011}$	$\begin{aligned} & 14.007 \\ & \mathbf{N}^{14} \end{aligned}$	$\begin{aligned} & 15.999 \\ & { }_{8}^{15} \end{aligned}$	$\begin{aligned} & 18.998 \\ & 9 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 20.179 \\ \mathrm{Ne} \end{array} \\ & 10 \end{aligned}$
3	${ }_{11}^{22.990} \mathrm{Na}$	$\begin{aligned} & 24.305 \\ & { }_{12} \mathbf{M g} \end{aligned}$											${ }_{13}{ }_{13}^{26.98}$	${ }_{14}^{28.09}$	$\begin{array}{\|l\|l\|} \hline 30.974 \\ { }_{15} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \frac{32.06}{S} \\ 16 \end{array}$	${ }_{17}^{35.453}$	$\begin{aligned} & 39.948 \\ & 18{ }^{\mathbf{A r}}{ }^{2948} \end{aligned}$
4	$\begin{array}{\|l} \hline 39.098 \\ { }_{19} \mathbf{K} \end{array}$	$\begin{array}{\|c} { }_{20}^{40.08} \\ \mathbf{C a} \end{array}$	$\begin{gathered} 44.96 \\ { }_{21}^{4 c} \end{gathered}$	${ }_{22}{ }^{47.88}$	${ }_{23} \mathbf{V}^{50.94}$	${ }_{24}^{\mathrm{Cr}}$		$\underbrace{}_{26}{ }^{55.85}$	${ }_{27}^{58.93}$	$c_{28}^{58.69} \mathbf{N i}^{2}$	${ }_{29}^{63.546}{ }^{6}$	${ }_{30}{ }^{65.38} \mathbf{Z n}$	$\underset{31}{\mathbf{G 9 . 7 2}}$	${ }_{32}{ }_{32}^{72.59}$	$\underbrace{}_{33}{ }_{34.92}^{\mathbf{A s}^{74.92}}$	${ }_{34}{ }^{78.96}{ }^{\text {Se }}$	$\begin{gathered} 79.904 \\ { }_{35} \mathbf{B r}^{204} \end{gathered}$	${ }_{36}^{83.80} \mathbf{K r}$
5	${ }_{37}{ }^{85.47} \mathbf{R b}$	${ }_{38}{ }^{87.62}$	${ }_{39}{ }_{\mathbf{8 8} .91}^{\mathbf{Y}}$	${ }_{40}{ }^{81.22}$	$\mathrm{Cl}_{41}^{92.91}$		$\begin{array}{r} 98 \\ \mathbf{T c} \end{array}$	${ }_{44}^{101.07} \mathbf{R u}$	${ }_{45}^{102.91}{ }^{\mathbf{R h}}$	${ }_{46}^{106.42} \mathbf{P d}$	$\begin{aligned} & 107.87 \\ & { }_{47} \mathbf{A g} \end{aligned}$	${ }_{48}^{112.41} \mathbf{C d}$	$\begin{aligned} & 114.82 \\ & { }_{49} \text { In } \end{aligned}$	$\begin{array}{\|l} \hline 118.69 \\ { }_{50} \mathrm{Sn} \end{array}$	${ }_{51}^{121.75}{ }_{5 b}$	$\begin{aligned} & \hline 127.60 \\ & \mathrm{Te} \end{aligned}$	$\begin{array}{\|l} \hline 126.90 \\ \text { I } \end{array}$	${ }_{54}^{131.39} \mathbf{}$
6	${ }_{55}^{132.91} \mathrm{Cs}$	$\begin{gathered} 137.33 \\ { }_{56} \mathbf{B a} \end{gathered}$	$\begin{array}{\|c} 138.91 \\ { }_{57}^{\mathbf{L a}} \end{array}$	${ }_{72}{ }^{178.39} \mathbf{H f}$	${ }_{73}^{180.95}$	${ }_{74}{ }^{183.85}$ W	${ }_{75}^{186.21}{ }^{\mathbf{R e}}$	${ }_{76}^{190.23} \mathbf{O s}$	${ }_{77}^{192.22}{ }^{\mathbf{I r}}$	${\underset{78}{195.08}}^{\mathbf{P t}}$	$\begin{array}{\|l} \hline 196.97 \\ \mathbf{A u} \\ 79 \end{array}$	$\underbrace{200.59}_{80} \mathbf{H g}$	$\begin{aligned} & \hline 204.38 \\ & \text { Tl } \\ & 81 \end{aligned}$	$\left.\right\|_{82} ^{207.2}{ }^{\mathbf{P b}}$	$\begin{array}{\|l} \hline 208.98 \\ { }_{83} \mathbf{B i}^{2} \end{array}$	$\begin{gathered} 209 \\ \text { Po } \\ 84 \end{gathered}$	$\begin{array}{\|c} 210 \\ \mathbf{A t} \\ 85 \end{array}$	$\underbrace{222}_{86} \mathbf{R n}$
7	$\underbrace{223}_{87}$	$\begin{array}{\|l} 226.03 \\ \mathbf{R a}_{8} \end{array}$	$\underbrace{227.03}_{89}{ }^{\mathbf{A c}}$	$\begin{array}{\|c} \hline 261 \\ \mathbf{R f} \\ 104 \\ \hline \end{array}$	262 $\mathbf{H a}$ 105		262 $\mathbf{N s}$ 107	265 $\mathbf{H s}$ 108	266 $\mathbf{M t}$ 109	$\begin{array}{\|c\|} \hline 269 \\ 110 \\ \hline \end{array}$	272 111	$\begin{array}{\|c} \hline 277 \\ 112 \\ \hline \end{array}$						

Lanthanid Series	${ }_{58}^{140.12}{ }^{142}$	${ }_{59}^{140.91}$	$\begin{array}{\|l} 144.24 \\ \mathrm{Nd} \\ 60 \end{array}$	$\begin{gathered} 145 \\ \mathbf{P m} \\ 61 \end{gathered}$	${ }_{62}^{150.36} \mathbf{S m}$	$\underbrace{151.96}_{63}{ }^{\mathbf{E u}}$	$\underbrace{157.25}_{64}$	${ }^{158.93}{ }_{65}^{\mathbf{T b}}$	${ }_{66}^{162.50}{ }^{\text {Dy }}$	$\begin{gathered} 164.93 \\ { }_{67}{ }^{\mathbf{H o}} \end{gathered}$	${ }_{68}^{167.26}{ }^{\mathbf{E r}}$	$\begin{aligned} & 168.93 \\ & \mathbf{T m} \\ & 69 \end{aligned}$	${ }_{70}{ }^{173.04} \mathbf{Y b}$	$\begin{array}{\|l} \hline 173.04 \\ \mathbf{L u} \\ 71 \end{array}$
Actinid Series	$\begin{aligned} & 232.04 \\ & { }_{90}^{232} \end{aligned}$	$\begin{aligned} & \hline 231.04 \\ & { }_{91} \mathbf{P a} \end{aligned}$	${ }_{92}^{238.03} \mathbf{U}$	${ }_{93}^{237.05} \mathbf{N p}^{2}$	$\mathbf{P u}$	${ }_{95}{ }^{\text {Am }}$	${ }_{96}{ }^{\mathbf{C m}}$	${ }_{97}{ }^{\text {Bk }}$	${ }_{98}{ }^{\mathbf{C f}}$	${ }_{99}{ }^{\text {Es }}$	${\underset{100}{\mathbf{F m}}}^{(2)}$	$\left.\right\|_{101} ^{\text {Md }}$	$\left.\right\|_{102} ^{\text {No }}$	$\begin{array}{\|c} \mathbf{L r} \\ 103 \end{array}$

A PERIODIC CHART OF THE ELEMENTS
(Based on ${ }^{12} \mathrm{C}$)

B) Ionic Compounds

Oppositely charged ions held together by electrostatic attractions

Combinations of metals \& nonmetals
Crystalline solids (salts)

1) Formula Units

Compounds are electrically neutral
total $(+) \operatorname{chg}=$ total $(-) \operatorname{chg}$
NaCl neutral
(cation)(anion)

Formula shows simplest ratio of ions - empirical formula

NOT a molecule 3-D arrangement of ions
a) Ex: Cmpd. formed from $\mathrm{Ca}^{2+} \& \mathrm{CO}_{3}{ }^{2-}$ $\mathrm{Ca} \mathrm{CO}_{3}$ cation anion

VIII) Naming Ions

A) Monatomic Jons

1) Cations

Use name of element followed by "ion"
$\mathrm{K}^{+} \quad$ potassium ion
$\mathrm{Zn}^{2+} \quad$ zinc ion
2) Anions

Add "ide" to root of element's name
Br^{-}bromide ion
S^{2-}
sulfide
ion

B) Stock System \& Older System

Many metals have more than one possible charge

- transition metals
- representative metals

	Stock	$\underline{\underline{\text { Older }}}$
Fe^{2+}	iron (II)	ferrous
Fe^{3+}	iron (III)	ferric
Cu^{+}	copper (I)	cuprous
Cu^{2+}	copper (II)	cupric
Sn^{2+}	$\operatorname{tin}(\mathrm{II})$	stannous
Sn^{4+}	$\operatorname{tin}(\mathrm{IV})$	stannic

C) Polyatomic Ions

Group of chemically bonded atoms with an overall charge

$$
\begin{gathered}
2-<\begin{array}{c}
\text { charge on } \\
\text { whole group } \\
\text { of atoms }
\end{array} \\
\text { number of } \\
\text { oxygen atoms }
\end{gathered}
$$

1) Polyatomic Anions ending in -ide
OH^{-}hydroxide ion
CN^{-}cyanide ion

2) Polyatomic Cations

$$
\begin{array}{lll}
\mathrm{NH}_{4}^{+} & \text {ammonium ion } \\
\mathrm{H}_{3} \mathrm{O}^{+} & \text {hydronium ion } \\
\mathrm{Hg}_{2}{ }^{2+} & \text { mercury (I) } & \text { ion }
\end{array}
$$ 3) Misc. Polyatomic Anions

MnO_{4}^{-}permanganate ion
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$acetate ion
$\mathrm{CrO}_{4}{ }^{2-}$
chromate ion
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
dichromate ion

4) Polyatomic Anions - Oxyanions

Carbonate

Chlorate

$\mathrm{ClO}_{3}{ }^{-}$

Nitrate

$\mathrm{NO}_{3}{ }^{-}$

Phosphate
 $\mathrm{PO}_{4}{ }^{3-}$

Sulfate

$\mathrm{SO}_{4}{ }^{2-}$
a) Vary Number of Oxygens

Prefixes \& suffixes indicate changes made to base anion.

1) Suffixes

-ate base anion

$$
\begin{aligned}
& \text {-ite } \quad \begin{array}{l}
1 \text { less O-atom } \\
\text { than -ate }
\end{array}
\end{aligned}
$$

Nitrite
 $\mathrm{NO}_{2}{ }^{-}$

2) Prefixes

per- (over)
1 more O -atom than -ate

$$
\begin{gathered}
\text { hypo- (under) } \begin{array}{c}
1 \text { less } \mathrm{O} \text {-atom } \\
\text { than -ite }
\end{array}
\end{gathered}
$$

3) Ex 1 :

$\mathrm{ClO}_{4}{ }^{-}$ $\mathrm{ClO}_{3}{ }^{-}$ $\mathrm{ClO}_{2}{ }^{-}$ ClO^{-} Cl^{-}

perchlorate chlorate chlorite hypochlorite chloride
4) Ex 2: What is bromate, perbromate, hypoiodite?
5) Ex 3: What is $\mathrm{SO}_{3}{ }^{2-}$?

Note: Overall charge on the "family" of anions remains same

> b) Addition of H^{+}to -2 or -3 Oxyanion

Resulting species still charged - anions

$$
\begin{array}{r}
\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{HCO}_{3}^{-} \quad \\
\text { bicarbonate } \\
\text { or } \\
\text { hydrogen carbonate }
\end{array}
$$

$$
\mathrm{PO}_{4}^{3-}+\mathrm{H}^{+} \rightarrow \mathrm{HPO}_{4}^{2-}
$$

hydrogen phosphate
$\mathrm{HPO}_{4}{ }^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
dihydrogen phosphate
c) Acids

H^{+}combines with anion to produce a neutral compound \Rightarrow

Acid

Not ionic but ionize in $\mathrm{H}_{2} \mathrm{O}$ to produce $\mathrm{H}^{+}\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$

$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{HCl}(\mathrm{g}) \xrightarrow{\rightarrow} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$

1) Binary Acids

Hydrogen + nonmetal
-ide \Rightarrow-ic acid
Precede name with hydro-
HF(aq) hydrofluoric acid

Summary of Acid/Anion Naming

Anion

Acid

IX) Formulas \& Names of Ionic Compounds

1) Ex 1: What compound is formed from Ca^{2+} and $\mathrm{CO}_{3}{ }^{2-}$?

2) Ex 2: NH_{4}^{+}and S^{2-}
3) $\mathrm{Ex} 3: \mathrm{Al}^{3+}$ and $\mathrm{SO}_{4}{ }^{2-}$
4) Ex 4: Sn^{4+} and O^{2-}
5) Ex 5: Write the formula for manganese (IV) oxide.
6) Ex 6: Write the formula for iron(II) sulfite.

X) Binary Molecular Compounds

2 diff. elements

nonmetals

or

nonmetals \& semimetals

Usually, element further to left \& lower in column in PT (less electronegative) given first

B Si,C As,P,N H Se,S I,Br,Cl O F
$3 \mathrm{~A} \quad 4 \mathrm{~A}$
SA
*
bA
7A

* 7A

SiC silicon carbide
NO nitrogen monoxide
$\mathrm{H}_{2} \mathrm{~S}$ hydrogen sulfide

A) Same Element; Multiple Compounds

Greek prefix indicates number of atoms of each element

$\mathrm{N}_{2} \mathrm{O}_{4}$
SO_{2}
SO_{3}

