Chapter 2

Atoms, Molecules and Ions

- I) Atoms
 - A) Dalton's Atomic Theory
 - 1) Elements composed of minute, indivisible particles called,

Atoms

- 2) Atoms of an element are identical & different from atoms of any other elements
 - have different properties
 & different masses

3) Atoms combine in whole numbers to form compounds (molecules)

Law of Multiple Proportions

- 4) Compounds are composed of atoms of diff. elements chemically combined.
 - relative number of each type of atom is constant

Law of Constant Composition

5) In chemical rxn's, atoms are rearranged, but the number & kind of atoms is unchanged

Law of Conservation of Mass

II) Sizes of Atoms

A) Mass

mass of
$$H = 1.67 \times 10^{-24} g$$

Define atomic mass unit

$$1 \text{ amu} = 1.6603 \times 10^{-24} \text{ g}$$

Masses of atoms: 1 - 260 amu

B) Radius (Volume)

Atoms pictured as spherical

Radii

$$0.5 \times 10^{-8} \text{ cm} \rightarrow 2.4 \times 10^{-8} \text{ cm}$$

Use nm,

$$0.05 \text{ nm} \rightarrow 0.24 \text{ nm}$$

Also use angstrom, Å

$$1 \text{ Å} = 10^{-10} \text{ m} = 10^{-8} \text{ cm}$$

$$\therefore 0.5 \text{ Å} \rightarrow 2.4 \text{ Å}$$

III) Subatomic Particles

Atom is composed of smaller subatomic particles

Atom: smallest particle of an element that retains properties of that element

A) Electron, e

charge =
$$-1.6022 \times 10^{-19} \text{ C}$$
 (coulomb)

$$m_{e-} = 9.1094 \times 10^{-28} g$$

= 5.486 x 10⁻⁴ amu

B) Proton, p

Matter is neutral:

removal of e⁻ leaves a (+) charged particle

remove
$$e^-$$
 from H
 \Rightarrow H⁺, a proton (p)

- fundamental particle

charge =
$$+ 1.6022 \times 10^{-19} \text{ C}$$

$$m_p = 1.6726 \times 10^{-24} g$$

= 1.0073 amu

$$m_p \approx 1836 m_{e-}$$

Other atoms contain > 1 p

Number of protons in atom characteristic of element

Atoms are neutral,

$$\# p = \# e^{-}$$

C) Neutron, n

Only about ½ of mass of atoms accounted for by protons

charge
$$= 0$$

$$m_n = 1.6749 \times 10^{-24} g$$

$$= 1.0088 \text{ amu}$$

$$m_n \approx m_p$$

D) Summary of Subatomic Particles

particle	symbol	mass (amu)	relative charge
electron	e ⁻	0.0005486	-1
proton	p	1.0073	+1
neutron	n	1.0088	0

$$m_{n} \approx m_{p} >> m_{e-}$$

E) Nuclear Model of the Atom

Atom composed of dense nucleus, containing protons & neutrons & most of atom's mass surrounded by e⁻ in motion in mostly empty space

diameter of atoms very small

IV) Composition of Atoms

A) Atomic Number, Z

$$Z = #$$
 of protons

Distinguishes atoms of one element from those of another

Whole number in block w. chemical symbol in P.T.

Elements in P.T. ordered by inc. atomic no.

In neutral atom, $\# p = \# e^-$

B) Mass Number, A

$$A = \#p + \#n$$

C) Elemental Symbol

Describes composition of nucleus

1) Ex 1: What does the following symbol represent?

$$^{107}_{47}$$
Ag

Sometimes only show mass #

2) <u>Ex 2</u>:

$$_{79}^{197}$$
Au

D) <u>Isotopes</u>

Atoms of same element which have different numbers of neutrons

- ∴ same atomic #, Z different mass #, A
- "A" distinguishes between isotopes of the same element
- Note: Isotopes of the same element have the same chemical properties
- 1) Ex: Naturally occurring boron consists of 2 isotopes

$$^{10}_{5}B$$

B) Atomic Weight

A.W. scale based on assignment of exactly 12 amu to ${}^{12}_{6}\text{C}$

A.W. is weighted average of naturally occurring isotopes expressed in amu

1) Ex: The two isotopes of silver are ¹⁰⁷Ag and ¹⁰⁹Ag, having natural abundances of 51.35% and 48.65%, respectively. Their isotopic masses are 106.916 & 108.914 amu, respectively. Determine the A.W. of Ag.

V) Periodic Table

A) Periodic Law

Mendeleev: table based on idea that properties of elements are periodic functions of their A.W.

- exceptions: I & Te; Ar & K

Moseley: proper correlation is with atomic number

1) Modern Periodic Law

Properties of the elements are periodic functions of their

Atomic Number

B) Modern Periodic Table

Arrangement of elements in order of inc. atomic no., placing those with similar chem. and phys. prop. in columns.

1) Groups

Vertical columns called groups or families

- elements within a group have similar prop.

Labeled at top of column by Roman numerals (I - VIII) or Arabic numerals (1 - 8) and letter, A or B

Transparency 13 Figure 2.16 Periodic table divided into metals, nonmetals, and semimetals

8A	2 He	Ne 10	18 Ar	36 Kr	54 Xe	86 Rn	
	7A	F 9	17 CI	35 Br	53 I	85 At	100
	6A	80	16 S	34 Se	52 Te	84 Po	
	5A	~ Z	15 P	33 As	51 Sb	83 Bi	
	44	9	14 Si	32 Ge	50 Sn	82 Pb	
	3A	ZC E	13 Al	31 Ga	49 In	81 TI	
			2B	30 Zn	48 Cd	80 Hg	
			118	29 Cu	47 Ag	79 Au	
		÷		28 Ni	46 Pd	78 Pt	
			—8B—	27	45 Rh	77 Ir	[109]
				26 Fe	44 Ru	76 Os	[108]
			7.8	25 Mn	43 Tc	75 Re	[107]
			6B	24 Cr	42 Mo	74 W	[106]
			5B	23 V	41 Nb	73 Ta	· 105
			48	22 Ti	40 Zr	72 Hf	104 Rf
			3B	21 Sc	39 Y	57 La	89 Ac
	2A	4 Be	12 Mg	20 Ca	38 Sr	56 Ba	88 Ra
14	- н	3 Li	11 Na	19 K	37 Rb	55 Cs	87 Fr

Lw XB No Tm Md Fm Fr Ho Es Dy Ct Tb Bk Gd Cm Eu Am Sm Pu Pm Np 09 U Pr Pa S 28 T

Semimetals

Metals

Nonmetals

CHEMISTRY: THE CENTRAL SCIENCE by Brown/Le May/Bursten

• 1991 by Prentice Hall A Division of Simon & Schuster Englewood Cliffs, New Jersey 07632

a) Representative Elements

(main-group elements)

1 A - 8 A

1) Specific Group Names

1 A alkali metals

2 A alkaline earth metals

7 A halogens

8 A noble or rare gases

b) Transition Metal Elements

1B - 8B

- metals

2) Periods

Horizontal rows called periods

Two long rows below main body of table are:

Inner transition elements
- lanthanides & actinides

1 st period	H - He	2 elements
2 nd period	Li - Ne	8 elements
3 rd period	Na - Ar	8 elements
4 th period	K - Kr	18 elements
5 th period	Rb - Xe	18 elements
6 th period	Cs - Rn	32 elements

Metals
solids
(except Hg)

metallic luster

malleable & ductile

good conductors of heat & electricity

oxides:

nonvolatile high melting MgO, Na₂O

Nonmetals
gases or solids
(except Br)

variety of color & appearance

solids are brittle

poor conductors (insulators)

oxides:

volatile low melting

 CO, CO_2, SO_2

VI) Molecular Elements & Compounds

A) Molecular Substances

Group of chemically bonded atoms which has the characteristic properties of the substance

- 1) Molecular Elements
 - a) Diatomics

Contain 2 atoms

H₂ 2 H atoms bonded together

H—H

other diatomic elements

 N_2 , O_2 , F_2 , Cl_2 , Br_2 , I_2

b) Polyatomics

$$P_4$$
 & S_8

$$O_3$$
 - allotrope of O_2

2) Molecular Compounds

Molecules of compounds contain 2 or more diff. elements

CO₂ carbon dioxide

$$O = C = O$$
 $\begin{pmatrix} 1 & C & atom & & \\ 2 & O & atoms & & \end{pmatrix}$

3) Molecular Formula

Actual number of each kind of atom in a molecule

C₆H₆ Benzene C₂H₅OH Ethanol

4) Empirical Formula

Relative number of atoms of each kind in a molecule

smallest whole-number ratio of atoms

C₁H₁ Benzene or acetylene

Subscripts in a molecular formula are always some integer multiple of subscripts in empirical formula

5) Structural Formula

Gives an idea about the structure of the molecule

Ethanol

$$C_2H_6O$$
 or C_2H_5OH

VII) <u>Ionic Substances</u>

A) Ions

particle that contains more or fewer e⁻ than protons

: Has NET electrical charge

Total charge
$$= #p - #e^-$$

1) Anion

Negative ion resulting from gain of 1 or more e⁻ by neutral atom

a) <u>Ex</u>:

$$_{35}\mathrm{Br} + \mathrm{e}^{-} \rightarrow \mathrm{Br}^{-}$$

Br has 1 extra e than Br

(#p does NOT change)

b) <u>Ex</u>:

$$_{16}S + 2e^{-} \rightarrow S^{2-}$$

* Formation of anions is a property of nonmetals

2) Cation

Positive ion resulting from loss of 1 or more e by neutral atom

a) <u>Ex</u>:

$$_{19}K \rightarrow K^+ + e^-$$

$$_{30}$$
Zn \rightarrow Zn²⁺ + 2 e⁻

* Formation of cations is a property of metals

3) Predicting Charge Using P.T.

Representative Elements

gain or lose e to achieve same # e as nearest noble gas

$$Br^{-}$$
 36 $e^{-} \Rightarrow Kr$

$$S^{2-}$$
, Cl^{-} , K^{+} , Ca^{2+} 18 $e^{-} \Rightarrow Ar$

isoelectronic series

(same # e⁻)

a) Cation Groups

charge = group #

I A =
$$+1$$
 Li⁺

II A = $+2$ Mg²⁺

a) Special Cations

2) Anion Groups

charge = group # - 8

$$VA = -3 N^{3-}$$

 $VIA = -2 O^{2-}$
 $VIIA = -1 F^{-}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1			•	•	•	•	•			•	•		•	•			4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.81 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	81.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86

6	Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
7	Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C})$

B) Ionic Compounds

Oppositely charged ions held together by electrostatic attractions

Combinations of metals & nonmetals

Crystalline solids (salts)

1) Formula Units

Compounds are electrically neutral

$$total(+) chg = total(-) chg$$

Formula shows simplest ratio of ions

- empirical formula

NOT a molecule

3-D arrangement of ions

a) Ex: Cmpd. formed from Ca^{2+} & CO_3^{2-}

Ca CO₃ cation anion

VIII) Naming Ions

A) Monatomic Ions

1) <u>Cations</u>
Use name of element followed by "ion"

K⁺ potassium ion

Zn²⁺ zinc ion

2) Anions

Add "ide" to root of element's name

Br bromide ion

 S^{2-} sulfide ion

B) Stock System & Older System

Many metals have more than one possible charge

- transition metals
- representative metals

	Stock	<u>Older</u>
Fe 2+	iron (II)	ferrous
Fe^{3+}	iron (III)	ferric
Cu^+	copper (I)	cuprous
Cu^{2+}	copper (II)	cupric
\mathbf{Sn}^{2+}	tin (II)	stannous
Sn^{4+}	tin (IV)	stannic

C) Polyatomic Ions

Group of chemically bonded atoms with an overall charge

$$\begin{array}{c} & \text{charge on whole group} \\ & 4 & \text{whole group of atoms} \\ & & \text{number of oxygen atoms} \end{array}$$

1) Polyatomic Anions ending in -ide

OH⁻ hydroxide ion

CN⁻ cyanide ion

2) Polyatomic Cations

3) Misc. Polyatomic Anions

$$C_2H_3O_2^-$$
 acetate ion

4) Polyatomic Anions - Oxyanions

Carbonate

 CO_3^{2-}

Chlorate

 ClO_3

Nitrate

 NO_3

Phosphate

PO₄³⁻

Sulfate

SO₄²⁻

a) Vary Number of Oxygens

Prefixes & suffixes indicate changes made to base anion.

1) Suffixes

-ate base anion

-ite 1 less O-atom than -ate

Nitrite NO₂

2) Prefixes

per- (over) 1 more O-atom than -ate

hypo- (under) 1 less O-atom than -ite

3) <u>Ex 1</u>:

 ClO_4^- perchlorate ClO_3^- chlorate ClO_2^- chlorite ClO^- hypochlorite ClO^- chloride

4) Ex 2: What is bromate, perbromate, hypoiodite?

5) Ex 3: What is SO_3^{2-} ?

Note: Overall charge on the "family" of anions remains same

b) Addition of H⁺ to
-2 or -3 Oxyanion

Resulting species still charged - anions

$$CO_3^{2-} + H^+ \rightarrow HCO_3^-$$
 bicarbonate or hydrogen carbonate

$$PO_4^{3-} + H^+ \rightarrow HPO_4^{2-}$$

hydrogen phosphate

$$HPO_4^{2-} + H^+ \rightarrow H_2PO_4^-$$

dihydrogen phosphate

c) Acids

H⁺ combines with anion to produce a neutral compound ⇒

Acid

Not ionic but ionize in H₂O to produce H⁺ (H₃O⁺)

$$HCl(g) \xrightarrow{H_2O} H^+(aq) + Cl^-(aq)$$

1) Binary Acids

Hydrogen + nonmetal

-ide ⇒ -ic acid

Precede name with hydro-

HF(aq) hydrofluoric acid

Summary of Acid/Anion Naming

IX) Formulas & Names of Ionic Compounds

1) Ex 1: What compound is formed from Ca²⁺ and CO₃²⁻?

2) Ex 2: NH_4^+ and S^{2-}

3) Ex 3: Al^{3+} and SO_4^{2-}

4) Ex 4: Sn⁴⁺ and O²⁻

5) Ex 5: Write the formula for manganese (IV) oxide.

6) Ex 6: Write the formula for iron(II) sulfite.

X) Binary Molecular Compounds

2 diff. elements

nonmetals

or

nonmetals & semimetals

Usually, element further to left & lower in column in PT (less electronegative) given first

B Si,C As,P,N H Se,S I,Br,Cl O F 3A 4A 5A * 6A 7A * 7A

SiC silicon carbide

NO nitrogen monoxide

H₂S hydrogen sulfide

A) Same Element; Multiple Compounds

Greek prefix indicates number of atoms of each element

 N_2O

 N_2O_4

 SO_2

 SO_3