Chapter 5 - Thermochemistry

Study of energy changes that accompany chemical rx's.
I) Nature of Energy

Energy \equiv Capacity to do work

Mechanical Work

$$
\mathrm{w}=\mathrm{Fxd}
$$

Heat energy

- energy used to cause the temperature of an object to inc.
A) Units of Energy

$$
\begin{aligned}
& \mathrm{w}=\mathrm{F} \times \mathrm{d} \\
&=(\mathrm{m} \times \mathrm{a}) \mathrm{xd} \\
&=\left(\mathrm{kg} \times \mathrm{m} / \mathrm{s}^{2}\right) \times \mathrm{m} \\
& \Downarrow \\
&=\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) / \mathrm{s}^{2}=\mathrm{N} \times \mathrm{m} \\
&=\text { joule, } \quad \mathrm{J} \quad \text { (SI unit) } \\
& \\
& \text { calorie (cal) }
\end{aligned}
$$

original def: amt. of energy reg. to raise temp. of 1 g of water by $1^{\circ} \mathrm{C}$, from $14.5{ }^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$

$$
1 \mathrm{cal}=4.184 \mathrm{~J}
$$

Cal - nutritional calorie 1 kcal

B) Kinetic \& Potential Energy

1) Kinetic Energy

$$
\mathrm{KE}=1 / 2 \mathrm{mv}^{2}
$$

Energy due to motion

SI units:

$$
\text { Energy }=\mathrm{kg}(\mathrm{~m} / \mathrm{s})^{2}=\mathrm{J}
$$

2) Potential Energy

Energy stored in an object by virtue of its position or composition

Chemical energy is due to composition of substances

Electrostatic P.E.

Interaction between charged particles

$$
\begin{aligned}
& \mathrm{E}_{e l}=\frac{\kappa \mathrm{Q}_{1} \mathrm{Q}_{2}}{\mathrm{~d}} \\
& \mathrm{Q}=\text { charge } \\
& \mathrm{d}=\text { distance between particles }
\end{aligned}
$$

© 2012 Pearson Education, Inc.

C) System and Surroundings

$$
\begin{aligned}
\underline{\text { System }}= & \text { portion we single } \\
& \text { out for study }
\end{aligned}
$$

- focus attention on changes which occur w/in definite boundaries

Surroundings $=$ everything else
System : Contents of rx. flask
Surround. : Flask \& everything outside it
Agueous soln. rx :

System : dissolved ions \& molecules Surround : $\mathrm{H}_{2} \mathrm{O}$ that forms the soln.

II) First Law of Thermodynamics

Law of Conservation of Energy :

Energy can be neither created nor destroyed but may be converted from one form to another.
Energy lost = Energy gained by system by surroundings
A) Internal Energy, E
$\mathrm{E}=$ total energy of the system
Actual value of E cannot be determined
ΔE, change in energy, can be determined
$\Delta=$ final state - initial state
$\Delta \mathrm{E} \equiv \mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{i}}$
Sign of ΔE is important

$$
\begin{array}{cc}
\mathrm{E}_{\mathrm{f}}>\mathrm{E}_{\mathrm{i}}, \Delta \mathrm{E}>0 & \begin{array}{c}
\text { system gained } \\
\text { energy }
\end{array} \\
\mathrm{E}_{\mathrm{f}}<\mathrm{E}_{\mathrm{i}}, \Delta \mathrm{E}<0 & \begin{array}{c}
\text { system lost } \\
\text { energy }
\end{array}
\end{array}
$$

Systems tend to go to lower energy state - more stable products
i.e. rx's in which $\Delta \mathrm{E}<0$

B) Thermodynamic State \& State Functions

Thermodynamic State of a System

defined by completely specifying ALL properites of the system

- P, V, T, composition, physical st.

1) State Function

prop. of a system determined by specifying its state.
depends only on its present conditions \& NOT how it got there

$$
\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}
$$

independent of path taken to carry out the change

- Also is an extensive prop.
C) Relating ΔE to Heat \& Work

2 types of energy exchanges occur between system \& surroundings

Heat \& Work

+q : heat absorbed, endothermic

- q : heat evolved, exothermic
+ w : work done on the system
- w : work done by the system

1) First Law

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}
$$

1) Exothermic Reactions

heat is released
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+$ heat

2) Endothermic Reactions

heat is absorbed

- reaction requires input of energy
$2 \mathrm{H}_{2} \mathrm{O}(\ell)+$ heat $\rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

III) Enthalpy

In ordinary chem. rx., work generally arises as a result of pressure-volume changes

Inc. vol. \& system does work against pressure of the atmosphere
$\mathrm{P} \cdot \mathrm{V}$ has dimensions of work :
$\mathrm{P} \cdot \mathrm{V}=(\mathrm{F} / \mathrm{A}) \mathrm{V}=\left(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2} \cdot \mathrm{~m}^{2}\right) \mathrm{m}^{3}=\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right) /\left(\mathrm{s}^{2}\right)=\mathrm{J}$

Constant Pressure

$$
\mathrm{w}=-\mathrm{P} \Delta \mathrm{~V}
$$

Negative because work done by system

$$
\Delta E=q-P \Delta V
$$

A) ΔE at Constant Volume

$$
\Delta \mathrm{E}=\mathrm{q}_{\mathrm{v}}
$$

B) $\Delta \mathrm{E}$ at Constant Pressure :

$$
\begin{aligned}
& \Delta E=q_{p}-P \Delta V \\
& q_{p}=\Delta E+P \Delta V
\end{aligned}
$$

C) Enthalpy, H

$$
H=E+P V
$$

Change in enthalpy at constant P is:

$$
\Delta H=\Delta E+P \Delta V
$$

\&

$$
\Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}
$$

Can think of as heat content
state fnc. \& is extensive

IV) Enthalpies of Reaction

$\Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
A) Exothermic Rx's
$\mathrm{H}_{\mathrm{p}}<\mathrm{H}_{\mathrm{r}}, \Delta \mathrm{H}_{\mathrm{rxn}}<\mathrm{O}$, exothermic

Heat is evolved

$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta \mathrm{H}=-572 \mathrm{~kJ}$
Thermochemical eqn.
Physical states are given and energy associated w. rx. written to right

- MUST give physical states

If product is $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=-484 \mathrm{~kJ}$
$\Delta \mathrm{H}$ corresponds to molar quantities given in eqn. as written
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta \mathrm{H}=-286 \mathrm{~kJ}$

B) Endothermic Rx's

$\mathrm{H}_{\mathrm{p}}>\mathrm{H}_{\mathrm{r}}, \Delta \mathrm{H}_{\mathrm{rxn}}>\mathrm{O}$, endothermic
Heat is absorbed
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=+572 \mathrm{~kJ}$

> Reverse of previous rx.

Enthalpy Diagram

C) Guidelines

1) Enthalpy is extensive

Multiply a rxn by some factor the $\Delta \mathrm{H}$ is multiplied by that factor
2) $\Delta \mathrm{H}_{\text {reverse }}=-\Delta \mathrm{H}_{\text {forward }}$
3) Enthalpy is a state function
$\Delta \mathrm{H}$ depends on the states of reactants and products.

D) Determining ΔH for a Rx .

Convenient sample sizes are reacted \& conv. factors are used to obtain the heat energy

1) Ex 1: When 36.0 g of Al reacts w . excess $\mathrm{Fe}_{2} \mathrm{O}_{3}$ how much heat is released?

$$
2 \mathrm{Al}(\mathrm{~s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Fe}(\mathrm{~s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-847 \mathrm{~kJ}
$$

$? \mathrm{~kJ}=36.0 \mathrm{~g} \mathrm{Al} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{Al}}{26.98 \mathrm{~g} \mathrm{Al}} \frac{847 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{Al}}=565.08 \mathrm{~kJ}=565 \mathrm{~kJ}$

VII) Calorimetry

Exp. method of obtaining $\Delta \mathrm{H} \& \Delta \mathrm{E}$
Heat evolved or absorbed by system will be reflected in the surroundings.

Need surr. Heat Capacity, C

$C=\frac{q}{\Delta T}$

Quantity of heat required to raise the temp. of an object by $1^{\circ} \mathrm{C}$

$$
\text { Unit: }\left(\mathrm{J} /{ }^{\circ} \mathrm{C}\right) \text { or }(\mathrm{J} / \mathrm{K})
$$

C_{m} - molar heat capacity

heat capacity per mole, $\mathrm{J} / \mathrm{mol} \cdot{ }^{\circ} \mathrm{C}$

$$
\mathrm{C}_{\mathrm{s}}-\text { specific heat }
$$

heat capacity per gram, $\mathrm{J} / \mathrm{g} \bullet{ }^{\circ} \mathrm{C}$

$$
\mathrm{C}_{\mathrm{s}} \text { of } \mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
$$

$$
\mathrm{q}=\mathrm{C} \times \Delta \mathrm{T}
$$

$$
\mathrm{q}=\mathrm{n} \times \mathrm{C}_{\mathrm{m}} \times \Delta \mathrm{T}
$$

$$
\mathrm{q}=\mathrm{m} \times \mathrm{C}_{\mathrm{s}} \times \Delta \mathrm{T}
$$

$$
q_{\text {gained }}=-q_{\text {lost }}
$$

Calorimeter
$\Delta H\left(q_{p}\right)$
Bomb Calorimeter
$\Delta E\left(q_{v}\right)$

A) Ex 1: What amt. of heat has been absorbed by 1.000 kg of water if its temp. inc. from $18.22^{\circ} \mathrm{C}$ to $22.73{ }^{\circ} \mathrm{C}$?

$$
\mathrm{q}=\mathrm{m} \times \mathrm{C}_{\mathrm{s}} \times \Delta \mathrm{T}
$$

$$
\left.\begin{array}{l}
=\left(1.000 \times 10^{3} \mathrm{~g}\right)\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)(22.73-18.22) \\
\downarrow \\
4.51^{\circ} \mathrm{C}
\end{array}\right)
$$

B) Ex 2: A 0.562 g sample of graphite is placed in a bomb calorimeter \& ignited in the presence of excess O_{2} at $25.00^{\circ} \mathrm{C}$ $\& 1 \mathrm{~atm}$. The temp. of the calorimeter rises to $25.89^{\circ} \mathrm{C}$. The heat capacity of the calorimeter \& contents is $20.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. What is $\Delta \mathrm{H}$ at $25.00^{\circ} \mathrm{C}$ and 1 atm ?
$\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{q}_{\text {(lost by rxn) }}=-\mathrm{q}_{(\text {gained by calor. } \& \text { contents) }}$

$$
\mathrm{q}_{\mathrm{rxn}}=-\mathrm{C}_{\mathrm{cal}} \Delta \mathrm{~T}
$$

$$
\begin{aligned}
& =-\left(20.7 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)\left(25.89{ }^{\circ} \mathrm{C}-25.00{ }^{\circ} \mathrm{C}\right) \\
& =-18.4 \mathrm{~kJ}\left(\mathrm{q}_{\mathrm{v}} \text { or } \Delta \mathrm{E} \text { for } 0.562 \mathrm{~g}\right)
\end{aligned}
$$

Want kJ/mol,

$$
\begin{aligned}
& \text { kJ } \quad-18.4 \mathrm{~kJ} \quad 12.0 \mathrm{~g} \mathrm{C} \\
& \underset{\text { mol }}{?-----}=\frac{-----------\quad x}{0.562 \mathrm{~g} \mathrm{C}} \quad 1 \mathrm{~mol} \text { C } \\
& =-3.93 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$\Delta \mathrm{E}=-3.9 \times 10^{2} \mathrm{~kJ} / \mathrm{mol}$
since no change in moles of gas

$$
\Delta H=\Delta E
$$

VI) Hess's Law

$\Delta \mathrm{H}$ is a state fnc.
Same whether the process occurs as a single step or as a series of steps

The $\Delta \mathrm{H}_{\mathrm{rxn}}$ is the sum of the $\Delta \mathrm{H}$'s for the individual steps.

$$
\Delta \mathrm{H}_{\mathrm{rx}}=\sum_{\text {steps }} \Delta \mathrm{H}_{\text {steps }}
$$

* Add chem. eqn's for steps to get overall rxn.
* Add $\Delta \mathrm{H}_{\text {steps }} \Rightarrow \Delta \mathrm{H}_{\mathrm{rxn}}$
A) Ex 1 : What is ΔH for
$\mathbf{C a}(\mathbf{O H})_{2}(\mathbf{s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{H}_{2} \mathbf{O}(\mathrm{~g})$

We know the following:

$$
\begin{array}{ll}
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}_{1}=+109 \mathrm{~kJ} \\
\mathrm{CaO}(\mathrm{~s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CaSO}_{4}(\mathrm{~s}) & \Delta \mathrm{H}_{2}=-401 \mathrm{~kJ}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \Delta \mathrm{H}_{\mathrm{rxn}}=-292 \mathrm{~kJ} \\
& \mathrm{CaSO}_{4}(\mathrm{~s})+\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{aligned}
$$

$\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$
B) Ex 2 :Want ΔH for rxn.
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+5 \mathrm{~N}_{2}(\mathrm{~g})$
Have:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{1 \mathrm{a}}=-2512 \mathrm{~kJ}$
$\mathrm{N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}_{2 \mathrm{a}}=+81.6 \mathrm{~kJ}$

Adjust eqn's so they are in proper amt's and the correct directions so they add up to the desired eqn.

ALL substances NOT appearing in desired eqn. MUST cancel.

Divide eqn. 1a by $2 \quad($ also $\Delta H)$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta H_{1 b}=-1256 \mathrm{~kJ}
$$

Reverse eqn. 2a and multiply by 5
$5 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 5 \mathrm{~N}_{2}(\mathrm{~g})+5 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}_{2 \mathrm{~b}}=-408 \mathrm{~kJ}$

Add \& Cancel

$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+5 \mathrm{~N}_{2}(\mathrm{~g})$

$$
\begin{aligned}
\Delta H_{\mathrm{rxn}} & =\Delta \mathrm{H}_{1 \mathrm{~b}}+\Delta \mathrm{H}_{2 \mathrm{~b}} \\
& =-1256 \mathrm{~kJ}+-408 \mathrm{~kJ} \\
& =-1664 \mathrm{~kJ}
\end{aligned}
$$

In using Hess's Law:

1) If an eqn. is multiplied by a factor, $\Delta \mathrm{H}$ is multiplied by the same factor.
2) If an eqn. is reversed, sign of $\Delta \mathrm{H}$ changes

3) All substances NOT appearing in desired eqn. MUST cancel

VII) Enthalpy of Formation

Enthalpy change for the formation of a compound from its elements
ΔH_{f}
A) Standard enthalpy change

Enthalpy change when all reactants and and products are in their standard states
ΔH°

1) Standard State

Most stable state of a substance in its pure form under standard pressure (1 atm) \& some specified temp. of interest (usually $25^{\circ} \mathrm{C}$)

2) Thermochemical Standard States

A) solid or liquid

Pure substance at 1 atm
b) gas
pressure of 1 atm
c) species in solution

Conc. of 1 M

B) Standard Enthalpy of Formation

$\Delta \mathrm{H}$ for the rxn in which 1 mole of a cmpd. is formed from its elements with ALL substances in their standard states (in kJ/mol)
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$
Note: $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=\mathbf{0}$ for an element in its standard state
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})-46.2$
$\mathrm{Na}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{s}) \quad-411.0$
$\mathrm{C}($ graphite $) \rightarrow \mathrm{C}$ (diamond) +1.897

Thermodynamic Quantities at 298.15 K

Substance	$\Delta \boldsymbol{H}_{i}^{\circ}$ $(\mathrm{kj} / \mathrm{mol})$	$\Delta \boldsymbol{G}_{i}^{\circ}$ $(\mathrm{kj} / \mathrm{mol})$	\mathbf{S}° $(\mathrm{j} / \mathrm{mol}-\mathrm{K})$
Aluminum			
$\mathrm{Al}(\mathrm{s})$	0	0	28.32
$\mathrm{AlCl}_{3}(s)$	-705.6	-630.0	109.3
$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1669.8	-1576.5	51.00

Barium

$\mathrm{Ba}(s)$	0	0	63.2
$\mathrm{BaCO}_{3}(s)$	-1216.3	-1137.6	112.1
$\mathrm{BaO}(s)$	-553.5	-525.1	70.42

Beryllium

$\operatorname{Be}(s)$	0	0	9.44
$\mathrm{BeO}(\mathrm{s})$	-608.4	-579.1	13.77
$\mathrm{Be}(\mathrm{OH})_{2}(s)$	-905.8	-817.9	50.21

Bromine

$\operatorname{Br}(g)$	111.8	82.38	174.9
$\operatorname{Br}^{-}(a q)$	-120.9	-102.8	80.71
$\operatorname{Br}_{2}(g)$	30.71	3.14	245.3
$\operatorname{Br}_{2}(l)$	0	0	152.3
$\operatorname{HBr}(g)$	-36.23	-53.22	198.49

C) Determine $\Delta \mathrm{H}_{\mathrm{rx}}^{\circ}$ from $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\sum_{\text {prod. }} \mathrm{m} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}-\sum_{\text {react. }} \mathrm{m} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}
$$

$\mathrm{n}=$ coef. in bal. eqn. for each product
$\mathrm{m}=$ coef. in bal. eqn. for each reactant

1) Ext : Find $\Delta H_{\mathrm{rxn}}^{\circ}$ for the following rx. using Hess's Law and $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$.

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{H}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
(a) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ - 20.2
(b) $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad-285.8$
(c) $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \quad-296.9$

Need to:
Rev. eqn. (a) and $\times 2$
Add eqn. (b) $\times 2$
Add eqn. (c) $\times 2$

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{~S}(\mathrm{~s})
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=-2 \cdot(-20.2)=+40.4 \mathrm{~kJ}
$$

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=2(-285.8)=-571.6 \mathrm{~kJ}
$$

$$
2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=2(-296.9)=-593.8 \mathrm{~kJ}
$$

$2 \mathrm{H}_{2} \mathrm{~S}+2 \mathrm{H}_{2}+2 \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow$

$$
2 \mathrm{H}_{2}+2 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}
$$

$2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{rx}} & =(+40.4)+(-571.6)+(-593.8) \\
& =-1125 \mathrm{~kJ}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}= & {\left[2 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)+2 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{SO}_{2}\right)\right] } \\
& -\left[2 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{~S}\right)+3 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)\right] \\
= & {[2(-285.8)+2(-296.9)] } \\
= & -1125 \mathrm{~kJ}
\end{aligned}
$$

2) Ex 2: Useful when considering organic cmpds. for which $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ can not be determined directly.

What is $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for benzene?

$$
6 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\ell) \quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=?
$$

This rx. does not happen.

Use of exp. heat of combustion

$$
\begin{array}{r}
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \\
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=-3271 \mathrm{~kJ}
\end{array}
$$

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}= & {\left[6 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2}\right)+3 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] } \\
- & {\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)+15 / 2 \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{O}_{2}\right)\right] } \\
-3271 \mathrm{~kJ}= & {[6(-393.5)+3(-285.8)] } \\
& -\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)+15 / 2(0)\right] \\
-3271 \mathrm{~kJ}= & {[-3218.4]-\left[\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] } \\
& \\
\Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)= & {[-3218.4]-(-3271) } \\
= & +52.6 \mathrm{~kJ}
\end{aligned}
$$

