Chapter 6

Electronic Structure of Atoms

The number & arrangement of ¢ 1n an atom
1s responsible for 1ts chemical behavior

I) The Wave Nature of Light

A) Electromagnetic Radiation

Radiant

light, X-rays, UV, microwaves, etc.

All move at the speed of light,
¢ =2.99792 x 10° m/s

have wavelike characteristics
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v, frequency = number of complete
wavelengths or cycles
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per second

amplitude height of peak - related
to intensity of radiation
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IT) Quantized Energy and Photons

A) Plank’s Theory

Energy changes are quantized

- discrete energy changes

AE = nhv n=1,22734,..

Planck’s constant

h = 6.63x 107" Jes,

Smallest increment of energy, at a
given frequency, 1s termed a
quantum of energy



B) Photoelectric Effect

A minimum freq. of light shining
on a metal surface causes it to emit e

Einstein: energy 1s a stream of particle
like energy packets called
photons

- radiant energy 1s quantized

he
E = hv = ——

photon )\'

highv (lowli) = highE

lowv (highX) = lowE

Note : duality of light - behaves both as a
wave and particle
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1) Ex: A laser emits a signal with a
wavelength of 351 nm. Calculate
the energy of a photon of this
radiation.

C
E = V = ——————-
A
(6.63 x 1073 Js)(3.00 x 10° m/s)
- 351 x 107 m

5.67x10°"7]J



[IT) Line Spectra and the Bohr Model

A) Line Spectra

1) White light passing through a
prism results in band called a

continuous spectrum (rainbow)




2) monochromatic light

Light with a single wavelength

- lasers

3) Line Spectra

discharge tube - atom absorbs energy
& 1t can later emit 1t as light

Passed through a prism see a
series of narrow colored lines
(specific A’s)

LLine Spectrum

Each line associated with a
particular energy and color
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Different elements give different &
distinctive spectra

- characteristic of a particular
element

- use to 1dentify elements

400 450 500 550 600 650 700 nm

400 450 500 550 600 650 700 nm
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B) Rydberg Equation

Wavelengths of lines in hydrogen

spectrum given by,

A n,’

n, > n,

Rydberg Constant

Ry = 1.097 x 10’ m

-1
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B) Bohr Model

1) Energy Levels & Orbits

e 18 restricted to certain energy
levels corresponding to spherical
orbits, w. certain radii, about the

nucleus
r = n’a,
E. = —hceRy )

n2

n = principle quantum number

n=1 2,3, ..

Bohr radius:
9, = 5.292x 10" m = 0.5292 A

heeRy = 2.180x 1078



a) Ground State

e 1n n=1 orbit
closest to nucleus

largest value of 1/n’

most negative E

* Lowest energy level

Note: most neg. E represents
most stable state
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Radii and energies of Bohr orbits
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b) Excited States

n> 1

higher energy
less neg. E,  less stable

inc. distance from nucleus

r < n’

c) Zero-Point of Energy

n = o

e” completely separated
from nucleus

1
Eoo = _hc.RH(T) = ()
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2) Energy Transitions

a) Absor

vtion of Energy

e  absorbs energy

- jumps to higher energy
levels, farther from nucleus

- Excited State
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b) Emission of Energy - light

e” “falls” to lower level

- emits the energy diff. as
a quantum of light,

a photon

E = - AE

photon

:hV:

emission

hce
A
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¢) Energy Changes

Energy diff. between orbits

—hceRy; —-hceRy

AE = E, - E, = -
n,’ n’
AE = —hceRy( Lo )
n,’ n’

18 1 1
AE = - 2.180x 1078 J ( - )

n,’ n’

1) n; > n

AE > 0, E 1nc.

Absorption
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2) n; < n

AE < 0, E dec.

Emission

3) n =

complete removal of e

Ionization

H(g) —— H' (g) + ¢
n = 1 nf:oo

AE = hc-RH(l—z) = 2.180x 107 ]
1
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d) Energy of a Photon

Energy of a photon emitted
when e” “drops” to a lower
energy level 1s related to freq.
(wavelength) of radiation

he
Ephoton - = A]Eem — h V = )\'
V= eeR, (—— - ——)
n/ n.’
or
1 1 1
— = Ry ( 5 - 5 )
A n, n,

21



e) Ex : Calc. the wavelength of a
line 1n the visible spectrum for
which n, = 3.

1 1 1
— = Ry ( ; S
A n, n.

Balmer Series (visible):

n, = 2
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IV) Wave Behavior of Matter

A) de Broglie

Matter should have wave prop.

For photons:

hc
=hV=

hoton
P A

E

From Einstein:

E = mc?
h

o
m ¢

wavelength for photon traveling at c
with an effective mass, m



B) de Broglie Wavelength for Particles

h

myv

A =

v = velocity of the particle

h (6.63 x 107" Jes) is extremely
small so A 1s too small for
macroscopic particles.

A can only be detected for
particles w. very small mass,

ie. e (m=9.11x10"g)
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1) Ex 1: Calculate the de Broglie

wavelength for a 907.2 kg car
moving at a speed of 96.6 km/hr.

( X 1077 Jes)

A=
(907.2 ke) (26.83 m/s)

= 272x10°° m

2) Ex 2: Calculate the de Broglie
wavelength for an electron
moving at a speed of 3 x 10° m/s.

( x 1077 Jes)

A=
(9.11 x 10 kg) (3 x 10° m/s)

= 243x10° m  (0.243 nm)

X-rays
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C) Heisenberg Uncertainty Principle

The wave-particle duality of matter
makes 1t impossible to precisely
measure both the position and
momentum of an object.

AX

uncertainty 1n position
Ap = uncertainty in momentum (Imv)

h
47t

AxeAp 2

Limit on simultaneously measuring
position and momentum (speed).
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V) Quantum Mechanics

Impose wave properties on e

A) Schrodinger’s Wave Equation

Total energy of H-atom 1s
sum of K.E. and

Time-Independent Sch. Eqn.:
(in one dimension)

e + VX)) y(x) = Ey(x)

K.E. Total E
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1) Wave Functions

Get a series of solutions
to the wave eqn.

wave functions, U}
Each v corresponds to a specific
energy & describes a region about

the nucleus, an orbital, in which an
e~ w. that energy may be found

v has no direct physical meaning
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The general equation for v for H

in polar coordinates 1s:
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Can only determine the probability
of finding e 1n a certain region of
space at a given instant,

\|/2 probability density

Electron density

Greater where ¢ spends
more of 1ts time.

Probability of finding an e” 1s
high 1n regions of high e~ density
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B) Orbitals & Quantum Numbers

\ represents an orbital and has
characteristic quantum numbers
associated with 1t,

n 0 m,
energy shape orientation
and of an
distance orbital

from nucleus

The first 3 arise from
the solution of the Sch. Eqn.

There is a 4™ quantum no.

m, : spin
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1) Principal quantum number, n

Determines:

- energy level
- average distance from nucleus

- Identifies the shell

Larger n = farther shell 1s from
nucleus & higher energy

Max. no. of e in shell = 2n?

n=1 2(1) = 2e
n=2  20Q) = 8¢
n=3  23) = 18¢
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2) Azimuthal q. n. , {

(Angular Momentum ¢.n.)

identifies subshell (energy sublevels)

defines shape of orbital

# subshells in a shell = n
0 =0,1,2,...(n-1)
Subshell designated by letters:

0 =0 1 2 3 4 ...
S P d f g
#e 1n
subshell 2 6 10 14 18
2020+ 1)

If n=4 (=0, 1, 2, 3
4s 4p 4d 41

33



n® no. of max total # e~

shell subshells # ¢ by in
(n) (=n)  designation subshell  shell (2n?)
1 1 Is 2
2 2 2s, 2p 2+6 3
3 3 3s, 3p, 3d 24+6+10 18
4 4 4s, 4p, 4d, 41 | 246+10+14 32
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3) Magnetic g.n., m,

Describes orientation of
orbital 1n space

m, = +0,...,0, ..., -{
integer values from +{ to -{

# possible values = # orbitals in
for m, a subshell

(20 + 1) orbitals in a subshell
Total # orbitals in shelln = n’

orbital contains a max. of 2 e

max. # e in subshell =2 (20 +1)
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a) Ex:

0=0 m, = 0;

0 subshell # orbitals

0 S

= o o

LN = W D
oQ

s subshell has
1 orbital

max # e~
in subshell
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TABLE 6.2 ¢ Relationship among Values of n, /, and m, throughn = 4

Number of Total Number
Possible Subshell Possible Orbitals in of Orbitals
n Values of / Designation Values of m; Subshell in Shell
| 0 ls 0 1 1
) 0 2s 0 1
1 2p L) =1 3 4
3 0 3s 0 1
1 3p Ly ==l 3
2 3d 2:1; 8; =1;=2 5 9
4 0 4s 0 1
1 4p 1,0, —1 3
2 4d 25 1s Hy =1 =2 5
3 4f ik Vsllo—ly— 20— 7 16

© 2012 Pearson Education, Inc.
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Energy Levels in the H atom

n=c
0
n=3 B
3s 3p 3d \
n=2
_ Each cluster of boxes
25 2p \ represents one subshell
Each row represents
one shell
M
o0
—
)
S
X
Fach box represents
one orbital
1s

n = 1 shell has one orbital
n = 2 shell has two subshells composed of four orbitals
n = 3 shell has three subshells composed of nine orbitals

© 2012 Pearson Education, Inc.



VI) Representations of Orbitals

v has no direct physical meaning

2

y°  probability density
(electron density)

probability of finding €™ at
a given point 1n space

(4nr®) y* radial probability density
probability of finding e at a

specific distance, r, from the
nucleus
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A) s orbitals

0=0 Alls orb. are spherical

47r?[w(r)]? is radial probability
function = sum of all [(r)]?
having any given value of r

[w(r)]? is probability
density at any given
point

40
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1) 3 trends from radial prop. dist.

a) Number of peaks inc. w. 1nc. n
# peaks = n

most probable distance further
out & peaks get larger as move
further from nucleus

b) Number of nodes inc. w. inc. n

points where the prob. 1s zero
#nodes = n- 1

# spherical nodes = n- 0 - 1
# angular nodes = /{

c) e density spreads out w. 1Inc. n

42



2) Contour Representation

represent a volume of space in
which there 1s a high probability
of finding the e~

usually 90%

o O

Is 28 3s

e 1n orb. of higher n will be greater
avg. distance from nucleus

43



B) p orbitals

All p orbitals have 2 lobes pointing
in opposite directions

dumbbell or teardrop

The 3 p orbs 1n a subshell differ 1n
their orientation 1n space

- at right angles to each other

Z Z Z zZ

y 55 Y xo ly J 6]/
Px Py

Pz
(a) (b)
©® 2012 Pearson Education, Inc.
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VII)

-Electron Atoms

H atom has only 1 e~

E.,, depends on n and 1s

determined by attraction between
proton and negative e

and average distance between them

-¢ atoms:

Add e” - e repulsions to E &
diff. e"-nucleus attractions

Causes subshells to have diff. E

E . now depends on n and /{

orb

E of orbitals w/in subshell
still

45



Energy —>

~

3d— B
Iy e I
3p- —
Orbitals in a subshell are
35— [ degenerate (have same
energy)
2p- —
O\
i Energies of subshells )
follow order
—1sq ns < np <nd<nf

b 7
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A) Electron Spin

e~ “spins’ about 1ts own axis

- spinning charge generates
a magnetic field

e~ only spin 1n either of 2 directions
quantized

electron spin q.n., m

S

+1/2 -1/2
up down

1 |

47



B) Pauli Exclusion Principle

No 2 € 1n an atom can have
same set of 4 quantum no.’s

n, {, m, m

S

LLook at 1s orbital

n=1, (=0, m=0

can have only 2e” w. diff.
values of m, +1/2 or —1/2

LLimits max .# e  1n orbital to 2

- MUST have opposite spins

48



C) Summary of Quantum Numbers

1) Shell number, n

energy level & avg. distance
Period no. = highest n

Max #e in shell = 2n?

2) Subshell, { (shape of orbital)

# subshells in shell = n

0 =0,1,2,... (n-1)

s, p, d, 1, g, h....

# ¢ in subshell = 2(20 + 1)

49



3) Orbitals, m, (orientation)

m, = +0, ..., 0, ..., -{

# orb. in shell = n’

(20 + 1) orbitals in a subshell

max. # e in subshell =2 (20 +1)

4) Spin, m,

L12(1)  =1/2(})

50



Subshell letters, # orbitals &
max # e in subshell

subshell letters s p d f g h-

# orbitals in 1 3 5 7 9 11-
subshell

max # e in 2 6 10 14 18 22--

subshell
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VIII) Electron Configurations

Orbitals filled 1n order of inc. energy until
all e” have been used

X < # e 1n subshell

n(
shell subshell
H Is'
JHe 1s”

C Is 2s 2p

52



A) Ex: Consider sulfur, ,,S: 16 ¢

S 1s°2s°2p°3s 3p

v

valence shell
(outer shell)

Sisin3“period; n_. =3

«S1s1n group VI A, 6 ¢ 1n outer
or valence shell

valence e = e 1n outer or

valence shell

core ¢ = ¢ 1n inner shells
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Note: For representative elements

Period no. = n value of valence shell

Group no. = # of valence e”
Elements 1n a group have similar
chemical and physical properties

- same valence shell e~ configuration

e” 1n outer shell are ones involved 1n
chemical reactions
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B) Shorthand Electron Configuration

Focus attention on valence shell e

oS 1s* 28 2p° 3s* 3p*

\ J
Y

completed subshells = [Ne]
noble gas from
previous period

[Ne] 3s° 3p°

1) Ex: ,C

128" 2p° = [ ]
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C) Orbital Diagrams

A dash  1ndicates an orbital

Use arrows, 1or | to indicate e~
with up or down spin

H 1s' 1 , He 1s° 11
ls S
sB:5e”
Is 2s 2p
[
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single e 1n an orbital, 1, unpaired

paramagnetic substance

- unpaired e’s

- attracted by magnetic field

2 e 1n same orbital, 11, paired

Diamagnetic substance

- all e paired

- not attracted by magnetic field

57



D) Hund’s Rule

C : 6¢
1s* 28" 2p° = [He] 2s° 2p°

3 possible orbital diagrams:

[He] 1 1 paired
2s 2p

|[He] 11 unpaired
2s 2p diff. spin

|[He] 11 unpaired
2s 2p same spin

Hunds Rule: ™ occupy diff. orbitals of a
subshell until all are singly occupied
before e pairing occurs.
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E) Electron-Dot Symbols

Represent e 1n the s & p orb. of the
valence shell as dots arranged around
the symbol of the element.

There are 4 s & p orb. & 4 positions
about the symbol

- treat like orb. diagrams

plEp

P

Note: only real useful for
representative elements
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A) EX’s: Draw e dot symbols

1) .C

[He] 2s° 2p° C

2) Mg
[Ne] 3s” Mg

3) 169
[Ne] 3s° 3p° S

[Ne]

3s 3p
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IX) Electron Conf & Periodic Table

Look at ,,Ge
1s* 28 2p° 3s” 3p° 4s° 3d'Y 4p°

n=4 5s
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What was happening?

left, filling s orb right, filling p orb.
2e”, 2 columns 6e”, 6 columns

center, filling d orb
10e”, 10 columns

Period no. = nvalue of s & p
subshells of valence shell

Group no. = # of valence e
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- 4:f >
< 5f >
[ Representative s-block [ Representative p-block
elements elements
Transition metals f-Block metals
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A) EX’s:

1) 169

Period no.

3

2) 345€

Group no.
VI A
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A A | 1B | VB | VB | VIB | VIIB | VIIIB | B | 1B | A | IVA | VA | VIA | VIIA | viIA
1,008 7.003
H He
1 2
6941 | 9.012 1081 | 12.011 [14.007 ] 15.999 [ 18.998 | 20.179
Li Be B C N 0 F Ne
3 4 5 6 7 8 9 10
22.990 | 24305 2698 | 28.00 | 30974 | 32.06 | 35453 | 39.948
Na Mg Al Si p S a Ar
11 12 13 14 15 16 17 18
39.008 | 40.08 | 44.96 | 47.88 | 5094 | 52.00 | 5494 | 5585 | 58.93 | 58.69 | 63546 | 6538 | 69.72 | 72.59 | 7492 | 7896 | 79.904 | 83.80
K Ca Sc Ti \% Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
19 20 21 2 23 24 25 26 27 28 29 30 31 32 33 34 35 36
8547 | 8762 | 88901 | 8122 | 9291 | 9594 | 98 |101.07 | 102.91 | 106.42 | 107.87 | 11241 | 114.82 [ 11860 | 121.75 | 127.60 | 126.90 | 131.39
Rb Sr Y Zr Nb Mo Tec Ru Rh Pd Ag Cd In Sn Sb Te I Xe
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
132.91 | 13733 | 13801 | 178.39 [ 180.95 | 183.85 | 186.21 [ 190.23 | 192.22 | 195.08 | 196.97 | 20059 | 20438 | 2072 | 20898 | 200 | 210 | 222
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
223 22603 | 22703 | 261 | 262 | 263 | 262 | 265 | 266 | 269 | 272 | 277
Fr Ra Ac Rf Ha Sg Ns Hs Mt
87 88 89 104 |05 o6 [107 |08 o9 |10 111 112
6| Lanthanide | 17012 [ 18091 14224 [ 145 15036 | I51.96 [ 157.25 [ 15803 | 162.50 | 164.93 | 167.26 | 16893 | 73.04 [ 173.04
anthanide - c, Pr Nd Pm | Sm Eu Gd Th Dy Ho Er Tm | Yb Lu
Series 58 59 60 61 62 63 64 65 66 67 68 69 70 71
™ Actinid 232.04 | 231.04 | 238.03 [ 237.05
ctinide Th Pa U Np | Pu Am | cm | Bk ct Es Fm | Md | No Lr
Series 90 91 92 93 94 95 96 97 98 99 100 |01 |02 |103
A PERIODIC CHART OF THE ELEMENTS

(Based

on '’C)

65



3) slc
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4) .,Pb

67



B) Exceptions

,Cr  expect [Ar] 4s” 3d"

find  [Ar] 4s' 3d’

wCu  expect [Ar]4s”3d”

find  [Ar] 4s' 3d"

Reason: 4s and 3d are very close in
energy. (Can act like degenerate orb)

15 filled & filled subshells
are more stable.
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