Chapter 6

Electronic Structure of Atoms

The number \& arrangement of e^{-}in an atom is responsible for its chemical behavior
I) The Wave Nature of Light
A) Electromagnetic Radiation

Radiant Energy

light, X-rays, UV, microwaves, etc.

All move at the speed of light,

$$
\mathbf{c}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

have wavelike characteristics
long wavelength

high
freq.

short wavelength

λ, wavelength distance between successive peaks

\mathbf{v}, frequency number of complete wavelengths or cycles
which pass a given point per second
amplitude
height of peak - related

$$
\begin{array}{lll}
\begin{array}{l}
\text { long } \\
\text { wavelength }
\end{array} & \begin{array}{l}
\text { low } \\
\text { frequency }
\end{array} \\
\text { short } \\
\text { wavelength }
\end{array} \quad \begin{aligned}
& \text { high } \\
& \text { frequency }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{v} \propto \frac{1}{\lambda} \\
& \mathbf{v}=\frac{\mathbf{c}}{\lambda} \quad \text { or }
\end{aligned}
$$

$$
\boldsymbol{v} \cdot \lambda=\mathbf{c}
$$

units for v
s^{-1}; cycles/s ; hertz, Hz

X- rays visible IR microwave radio

$\lambda(\mathrm{m})$
10^{-9}
10^{-7}
10^{-5}
10^{-2}
10^{2}
$\mathbf{v}\left(\mathrm{s}^{-1}\right) \quad 10^{17}$
10^{15}
10^{13}
10^{10}
10^{6}

II) Quantized Energy and Photons

A) Plank's Theory

Energy changes are quantized

- discrete energy changes
$\Delta \mathrm{E}=\mathrm{nh} \boldsymbol{v} \quad \mathrm{n}=1,2,3,4, \ldots$
Planck's constant
$\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$,
Smallest increment of energy, at a given frequency, is termed a quantum of energy

B) Photoelectric Effect

A minimum freq. of light shining on a metal surface causes it to emit e^{-}

Einstein: energy is a stream of particle like energy packets called photons

- radiant energy is quantized

$$
\mathrm{E}_{\text {photon }}=\mathrm{h} \mathbf{v}=\frac{\mathrm{h} \mathbf{c}}{\lambda}
$$

high \mathbf{v} (low $\lambda) \Rightarrow$ high E
low \boldsymbol{v} (high λ) \Rightarrow low E
Note : duality of light - behaves both as a wave and particle

© 2012 Pearson Education, Inc.

1) Ex: A laser emits a signal with a wavelength of 351 nm . Calculate the energy of a photon of this radiation.

$$
\begin{aligned}
& \mathrm{E}=\mathrm{h} \mathbf{v}=--\cdots \mathbf{c} \\
& \lambda
\end{aligned}
$$

III) Line Spectra and the Bohr Model

A) Line Spectra

1) White light passing through a prism results in band called a

continuous spectrum (rainbow)

Copyright © 2006 Pearson Prentice Hall, Inc.
2) monochromatic light

Light with a single wavelength

- lasers

3) Line Spectra

discharge tube - atom absorbs energy \& it can later emit it as light

Passed through a prism see a series of narrow colored lines (specific λ 's)

Line Spectrum

Each line associated with a particular energy and color

Different elements give different \& distinctive line spectra

- characteristic of a particular element
- use to identify elements

B) Rydberg Equation

> Wavelengths of lines in hydrogen spectrum given by,

$$
\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)
$$

$$
\mathrm{n}_{2}>\mathrm{n}_{1}
$$

Rydberg Constant

$$
\mathrm{R}_{\mathrm{H}}=1.097 \times 10^{7} \mathrm{~m}^{-1}
$$

B) Bohr Model

1) Energy Levels \& Orbits

e is restricted to certain energy levels corresponding to spherical orbits, w. certain radii, about the nucleus

$$
\begin{aligned}
\mathrm{r} & =\mathrm{n}^{2} \mathrm{a}_{0} \\
\mathrm{E}_{\mathrm{n}} & =-\mathrm{h} \mathrm{c} \cdot \mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}^{2}}\right) \\
\mathrm{n} & =\text { principle quantum number } \\
\mathrm{n} & =1,2,3, \ldots, \infty
\end{aligned}
$$

Bohr radius:

$$
\begin{aligned}
& \mathrm{a}_{0}=5.292 \times 10^{-11} \mathrm{~m}=0.5292 \AA \\
& \mathrm{hc} \cdot \mathrm{R}_{\mathrm{H}}=2.180 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

a) Ground State
e^{-}in $\mathrm{n}=1$ orbit closest to nucleus
largest value of $1 / \mathrm{n}^{2}$
most negative E

* Lowest energy level

Note: most neg. E represents most stable state

Radii and energies of Bohr orbits 1-3

CHEMISTRY: THE CENTRAL SCIENCE
by Brown/Le May/Bursten
© by Prentice Hall
A Division of Simon \& Schuster
Englewood Cliffs, New Jersey 07632
b) Excited States

n > 1

higher energy
less neg. E, less stable
inc. distance from nucleus
$r \propto n^{2}$
c) Zero-Point of Energy
$\mathrm{n}=\infty$
e^{-}completely separated from nucleus
$\mathrm{E}_{\infty}=-\mathrm{hc} \cdot \mathrm{R}_{\mathrm{H}}\left(\frac{1}{\infty}\right)=0$
2) Energy Transitions
a) Absorption of Energy
e^{-}absorbs energy

- jumps to higher energy
levels, farther from nucleus
- Excited State

b) Emission of Energy - light
e- "falls" to lower level
- emits the energy diff. as a quantum of light,
a photon

$\mathrm{E}_{\text {photon }}=-\Delta \mathrm{E}_{\text {emission }}=\mathrm{h} \mathbf{v}=\frac{\mathrm{h} \mathbf{c}}{\lambda}$
c) Energy Changes

Energy diff. between orbits

$$
\begin{aligned}
& =E_{f}-E_{i}=\frac{-h \mathbf{c} \cdot R_{H}}{n_{f}^{2}}-\frac{-h \mathbf{c} \cdot R_{H}}{n_{i}^{2}} \\
& \Delta E=-h \mathbf{c} \cdot R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right)
\end{aligned}
$$

$$
\Delta \mathrm{E}=-2.180 \times 10^{-18} \mathrm{~J}\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right)
$$

$$
\text { 1) } \mathrm{n}_{\mathrm{f}}>\mathrm{n}_{\mathrm{i}}
$$

$$
\Delta \mathrm{E}>0, \quad \mathrm{E} \quad \text { inc. }
$$

Absorption
2) $\mathrm{n}_{\mathrm{f}}<\mathrm{n}_{\mathrm{i}}$

$$
\Delta \mathrm{E}<0, \quad \mathrm{E} \quad \text { dec. }
$$

Emission

$$
\text { 3) } \mathrm{n}_{\mathrm{f}}=\infty
$$

complete removal of e^{-}
Ionization

$$
\begin{gathered}
\mathrm{H}(\mathrm{~g}) \longrightarrow \mathrm{H}^{+}(\mathrm{g})+\mathrm{e}^{-} \\
\mathrm{n}_{\mathrm{i}}=1 \quad \mathrm{n}_{\mathrm{f}}=\infty \\
\Delta \mathrm{E}=\mathrm{h} \mathrm{c} \cdot \mathrm{R}_{\mathrm{H}}\left(\frac{1}{1^{2}}\right)=2.180 \times 10^{-18} \mathrm{~J}
\end{gathered}
$$

d) Energy of a Photon

Energy of a photon emitted when e" "drops" to a lower energy level is related to freq. (wavelength) of radiation

$$
\begin{gathered}
\mathrm{E}_{\text {photon }}=-\Delta \mathrm{E}_{\mathrm{em}}=\mathrm{h} \mathbf{v}=\frac{\mathrm{h} \mathbf{c}}{\lambda} \\
\mathbf{v}=\mathrm{c} \cdot \mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right) \\
\text { or } \\
\frac{1}{\lambda}=\mathrm{R}_{\mathrm{H}}\left(\frac{1}{\mathrm{n}_{\mathrm{f}}^{2}}-\frac{1}{\mathrm{n}_{\mathrm{i}}^{2}}\right)
\end{gathered}
$$

e) Ex : Calc. the wavelength of a line in the visible spectrum for which $\mathrm{n}_{\mathrm{i}}=3$.

$$
\frac{1}{\lambda}=R_{H}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
$$

Balmer Series (visible):

$$
\mathrm{n}_{\mathrm{f}}=2
$$

IV) Wave Behavior of Matter

A) de Broglie

Matter should have wave prop.
For photons:

$$
\mathrm{E}_{\text {photon }}=\mathrm{h} \mathbf{v}=\frac{\mathrm{h} \mathbf{c}}{\lambda}
$$

From Einstein:

$$
\begin{aligned}
\mathrm{E} & =\mathrm{mc}^{2} \\
\lambda & =\frac{\mathrm{h}}{\mathrm{mc}}
\end{aligned}
$$

wavelength for photon traveling at c with an effective mass, m

B) de Broglie Wavelength for Particles

$$
\lambda=\frac{\mathrm{h}}{\mathrm{mv}}
$$

$\mathrm{v}=$ velocity of the particle
$\mathrm{h}\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)$ is extremely small so λ is too small for macroscopic particles.
λ can only be detected for particles w. very small mass,
i.e. $\quad e^{-}\left(m=9.11 \times 10^{-28} g\right)$

1) Ex 1: Calculate the de Broglie

 wavelength for a 907.2 kg car moving at a speed of $96.6 \mathrm{~km} / \mathrm{hr}$.$$
\begin{aligned}
\lambda & =\frac{\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)}{(907.2 \mathrm{~kg})(26.83 \mathrm{~m} / \mathrm{s})} \\
& =2.72 \times 10^{-38} \mathrm{~m}
\end{aligned}
$$

2) Ex 2: Calculate the de Broglie wavelength for an electron moving at a speed of $3 \times 10^{6} \mathrm{~m} / \mathrm{s}$.

$$
\left(6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)
$$

$$
\begin{aligned}
\lambda & =\frac{\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(3 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)}{(0.243 \mathrm{~nm})} \\
= & 2.43 \times 10^{-10} \mathrm{~m} \quad\left(\begin{array}{l}
\text { m }
\end{array}\right.
\end{aligned}
$$

X-rays

C) Heisenberg Uncertainty Principle

The wave-particle duality of matter makes it impossible to precisely measure both the position and momentum of an object.

$\Delta \mathrm{x}=$ uncertainty in position
$\Delta \mathrm{p}=$ uncertainty in momentum (mv)
$\Delta x \cdot \Delta p \geq \frac{h}{4 \pi}$

Limit on simultaneously measuring position and momentum (speed).

V) Quantum Mechanics

Impose wave properties on e^{-}
A) Schrödinger's Wave Equation

Total energy of H -atom is sum of K.E. and P.E.

Time-Independent Sch. Eqn.: (in one dimension)
$\hbar^{2} \quad d^{2} \psi(x)$

K.E.

PeE.
Total E
$\hbar=\mathrm{h} / 2 \pi$

1) Wave Functions

Get a series of solutions to the wave eqn.
wave functions, ψ

Each ψ corresponds to a specific energy \& describes a region about the nucleus, an orbital, in which an e^{-}w. that energy may be found ψ has no direct physical meaning

Can only determine the probability of finding e^{-}in a certain region of space at a given instant,
ψ^{2}
probability density

Electron density

Greater where e^{-}spends more of its time.

Probability of finding an e^{-}is high in regions of high e^{-}density

B) Orbitals \& Quantum Numbers

ψ represents an orbital and has 3 characteristic quantum numbers associated with it,

n
 energy
 shape
 orientation
 and
 of an
 distance
 orbital
 from nucleus

The first 3 arise naturally from the solution of the Sch. Eqn.

There is a $4^{\text {th }}$ quantum no.

$$
\mathrm{m}_{\mathrm{s}}: \text { spin }
$$

1) Principal quantum number, n

Determines:

- energy level
- average distance from nucleus
- Identifies the shell

$$
\mathrm{n}=1,2,3,4, \ldots . .
$$

Larger $\mathrm{n} \Rightarrow$ farther shell is from nucleus \& higher energy

Max. no. of e^{-}in shell $=2 \mathrm{n}^{2}$

$$
\begin{array}{ll}
\mathrm{n}=1 & 2(1)^{2}=2 \mathrm{e}^{-} \\
\mathrm{n}=2 & 2(2)^{2}=8 \mathrm{e}^{-} \\
\mathrm{n}=3 & 2(3)^{2}=18 \mathrm{e}^{-}
\end{array}
$$

2) Azimuthal q. n. , ℓ (Angular Momentum q.n.)
identifies subshell (energy sublevels)
defines shape of orbital
\# subshells in a shell $=\mathrm{n}$

$$
\ell=0,1,2, \ldots .(n-1)
$$

Subshell designated by letters:

$$
\begin{array}{lllll}
\ell=\begin{array}{llll}
0 & 1 & 2 & 3 \\
\mathrm{~s} & \mathrm{p} & \mathrm{~d} & \mathrm{f}
\end{array} & \mathrm{~g}
\end{array}
$$

$$
4 \ldots
$$

$\# e^{-}$in $\begin{array}{llllll}\text { subshell } & 2 & 6 & 10 & 14 & 18\end{array}$ $2(2 \ell+1)$

If $\begin{array}{rrrr}\mathrm{n}=4 \quad \ell= & 0, & 1, & 2, \\ & 4 \mathrm{~s} & 4 \mathrm{p} & 4 \mathrm{~d}\end{array} \quad 4 \mathrm{f}$
$n^{\text {th }} \quad$ no. of
shell subshells

1	1	1 s	2	2
2	2	$2 \mathrm{~s}, 2 \mathrm{p}$	$2+6$	8
3	3	$3 \mathrm{~s}, 3 \mathrm{p}, 3 \mathrm{~d}$	$2+6+10$	18
4	4	$4 \mathrm{~s}, 4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}$	$2+6+10+14$	32

3) Magnetic q.n., m_{l}

Describes orientation of orbital in space

$$
\mathrm{m}_{\ell}=+\ell, \ldots, 0, \ldots,-\ell
$$

integer values from $+\ell$ to $-\ell$
\# possible values $=$ \# orbitals in for $\mathrm{m}_{\ell} \quad$ a subshell
$(2 \ell+1)$ orbitals in a subshell

Total \# orbitals in shell $n=n^{2}$
orbital contains a max. of $2 \mathrm{e}^{-}$
max. $\# \mathrm{e}^{-}$in subshell $=2(2 \ell+1)$
a) Ex:

$$
\ell=0 \quad m_{\ell}=0
$$

s subshell has 1 orbital $\max \# \mathrm{e}^{-}$ in subshell
d
3
f
4
g
5
h

TABLE 6.2 - Relationship among Values of n, I, and m_{l} through $n=4$

\boldsymbol{n}	Possible Values of l	Subshell Designation	Possible Values of $\boldsymbol{m}_{\boldsymbol{l}}$	Number of Orbitals in Subshell	Total Number of Orbitals in Shell
1	0	$1 s$	0	1	1
2	0	$2 s$	0	1	
	1	$2 p$	$1,0,-1$	3	4
3	0	$3 s$	0	1	
	1	$3 p$	$1,0,-1$	3	9
4	$3 d$	$2,1,0,-1,-2$	5		
	$4 s$	0	1		
	$4 p$	$1,0,-1$	3	16	

© 2012 Pearson Education, Inc.

Energy Levels in the H atom

$n=1$ shell has one orbital
$n=2$ shell has two subshells composed of four orbitals
$n=3$ shell has three subshells composed of nine orbitals © 2012 Pearson Education, Inc.

VI) Representations of Orbitals

ψ has no direct physical meaning

$\psi^{2} \quad$ probability density (electron density)
 probability of finding e^{-}at a given point in space

$\left(4 \pi r^{2}\right) \psi^{2}$ radial probability density
probability of finding e^{-}at a specific distance, r , from the nucleus
A) s orbitals

$\ell=0 \quad$ All s orb. are spherical

1) 3 trends from radial prop. dist.

a) Number of peaks inc. w. inc. n
\# peaks $=\mathrm{n}$
most probable distance further out \& peaks get larger as move further from nucleus
b) Number of nodes inc. w. inc. n
points where the prob. is zero
\# nodes $=\mathrm{n}-1$
\# spherical nodes $=\mathrm{n}-\ell-1$
\# angular nodes $=\ell$
c) e^{-}density spreads out w. inc. n

2) Contour Representation

represent a volume of space in which there is a high probability of finding the e^{-}
usually 90%

1s
2s

3 s
e^{-}in orb. of higher n will be greater avg. distance from nucleus

All p orbitals have 2 lobes pointing in opposite directions

dumbbell or teardrop

The 3 p orbs in a subshell differ in their orientation in space

- at right angles to each other

(a)

(b)

H atom has only $1 \mathrm{e}^{-}$

$\mathrm{E}_{\text {orb }}$ depends on n and is determined by attraction between positive proton and negative e^{-} and average distance between them

Many-e ${ }^{-}$atoms:
Add $\mathrm{e}^{-}-\mathrm{e}^{-}$repulsions to $\mathrm{E} \&$
diff. e^{-}-nucleus attractions
Causes subshells to have diff. E
$\mathrm{E}_{\text {orb }}$ now depends on n and ℓ
E of orbitals w/in subshell still degenerate

A) Electron Spin
e^{-}"spins" about its own axis

$$
\begin{aligned}
& \text { - spinning charge generates } \\
& \text { a magnetic field }
\end{aligned}
$$

e^{-}only spin in either of 2 directions

quantized

electron spin q.n., m_{s}
$+1 / 2$
up
$-1 / 2$
down
1

B) Pauli Exclusion Principle

No $2 \mathrm{e}^{-}$in an atom can have same set of 4 quantum no.'s
$\mathrm{n}, \quad \ell, \mathrm{m}_{\ell}, \mathrm{m}_{\mathrm{s}}$
Look at 1s orbital
$\mathrm{n}=1, \quad \ell=0, \quad \mathrm{~m}_{\ell}=0$
can have only $2 \mathrm{e}^{-} \mathrm{w}$. diff.
values of $m_{s},+1 / 2$ or $-1 / 2$

Limits max. \# e ${ }^{-}$in orbital to 2

- MUST have opposite spins

C) Summary of Quantum Numbers

1) Shell number, n

$\mathrm{n}=1,2,3,4, \ldots$.
energy level \& avg. distance
Period no. \Rightarrow highest n

Max \# e^{-}in shell $=2 \mathrm{n}^{2}$

2) Subshell, ℓ (shape of orbital)

\# subshells in shell $=\mathrm{n}$

$$
\begin{gathered}
l=0,1,2, \ldots .(\mathrm{n}-1) \\
\mathrm{s}, \mathrm{p}, \mathrm{~d}, \mathrm{f}, \mathrm{~g}, \mathrm{~h} . . . \\
\# \mathrm{e}^{-} \text {in subshell }=2(2 \ell+1)
\end{gathered}
$$

3) Orbitals, m_{ℓ} (orientation)
$m_{\ell}=+\ell, \ldots, 0, \ldots,-\ell$

$$
\# \text { orb. in shell }=\mathrm{n}^{2}
$$

$(2 \ell+1)$ orbitals in a subshell max. $\# \mathrm{e}^{-}$in subshell $=2(2 \ell+1)$
4) S pin, m_{s}

$$
+1 / 2(1) \quad-1 / 2(l)
$$

Subshell letters, \# orbitals \& $\max \# \mathrm{e}^{-}$in subshell

$$
\ell=\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5
\end{array}
$$

subshell letters

\# orbitals in subshell

$\max \# \mathrm{e}^{-}$in
 26
 $10 \quad 14 \quad 18 \quad 22 \ldots$ subshell

VIII) Electron Configurations

Orbitals filled in order of inc. energy until all e^{-}have been used

x - \# e^{-}in subshell n ℓ
 shell ${ }^{\wedge} \quad$ subshell

$$
\begin{array}{ll}
{ }_{1} \mathrm{H} & 1 \mathrm{~s}^{1} \\
{ }_{2} \mathrm{He} & 1 \mathrm{~s}^{2} \\
{ }_{6} \mathrm{C} & 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p}
\end{array}
$$

A) Ex: Consider sulfur, ${ }_{16} \mathrm{~S}: 16 \mathrm{e}^{-}$

$$
{ }_{16} \mathrm{~S} \quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} \underbrace{}_{\substack{\text { valence shell } \\ \text { (outer shell) }}} 3 \mathrm{~s} 3 \mathrm{p}
$$

${ }_{16} \mathrm{~S}$ is in $3{ }^{\text {rd }}$ period ; $\mathrm{n}_{\max }=3$
${ }_{16} \mathrm{~S}$ is in group VI A, $6 \mathrm{e}^{-}$in outer or valence shell
valence $\mathrm{e}^{-} \Rightarrow \mathrm{e}^{-}$in outer or valence shell
core $\mathrm{e}^{-} \Rightarrow \mathrm{e}^{-}$in inner shells

Note: For representative elements
Period no. $\Rightarrow \mathrm{n}$ value of valence shell

Group no. \Rightarrow \# of valence e^{-}

Elements in a group have similar chemical and physical properties

- same valence shell e^{-}configuration
e^{-}in outer shell are ones involved in chemical reactions

B) Shorthand Electron Configuration

Focus attention on valence shell e^{-}

$$
{ }_{16} S \quad 1 s^{2} 2 s^{2} 2 p^{6} \quad 3 s^{2} 3 p^{4}
$$

completed subshells $\Rightarrow[\mathrm{Ne}]$
noble gas from previous period
$[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{4}$

1) Ex: ${ }_{6} C$

$$
1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} \Rightarrow[]
$$

C) Orbital Diagrams

A dash __ indicates an orbital

Use arrows, 1 or \downarrow to indicate e^{-} with up or down spin

${ }_{1} \mathrm{H}_{1 \mathrm{~s}}{ }^{1} \frac{1}{1 \mathrm{~s}}$ ${ }_{2} \mathrm{He} \quad 1 \mathrm{~s}^{2} \frac{11}{1 \mathrm{~s}}$
${ }_{5} \mathrm{~B}: 5 \mathrm{e}^{-}$

$$
\begin{aligned}
& 1 \mathrm{~s} 2 \mathrm{~s} 2 \mathrm{p} \\
& {[\quad] \quad \frac{}{2 \mathrm{~s}} \quad-\frac{}{2 p}-}
\end{aligned}
$$

single e^{-}in an orbital, 1 , unpaired

paramagnetic substance

- unpaired $\mathrm{e}^{-9} \mathrm{~s}$
- attracted by magnetic field
$2 \mathrm{e}^{-}$in same orbital, $1 \downarrow$, paired

Diamagnetic substance

- all e^{-}paired
- not attracted by magnetic field

D) Hund's Rule

$$
\begin{aligned}
& { }_{6} \mathrm{C}: 6 \mathrm{e}^{-} \\
& 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2} \Rightarrow[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}
\end{aligned}
$$

3 possible orbital diagrams:
$[\mathrm{He}] \frac{11}{2 \mathrm{~s}}-\frac{}{2 \mathrm{p}} \quad$ paired

| $[\mathrm{He}] \frac{1 \mathrm{l}}{2 \mathrm{~s}}$ |
| :---: |$-\frac{}{2 \mathrm{p}}-\frac{$| unpaired |
| :---: |
| diff. spin |}{$[\mathrm{He}] \frac{11}{2 \mathrm{~s}}-\frac{1}{2 p}-$| unpaired |
| :---: |
| same spin |}

Hinds Rule: e^{-}occupy diff. orbitals of a subshell until all are singly occupied before e^{-}pairing occurs.

E) Electron-Dot Symbols

Represent e^{-}in the s \& p orb. of the valence shell as dots arranged around the symbol of the element.

There are 4 s \& p orb. \& 4 positions about the symbol

\author{

- treat like orb. diagrams
}

Note: only real useful for representative elements
A) Ex's: Draw e- dot symbols

1) ${ }_{6} \mathrm{C}$
[He] $2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$
$\ddot{\mathrm{C}}$.
2) ${ }_{12} \mathrm{Mg}$
$[\mathrm{Ne}] 3 \mathrm{~s}^{2} \quad \mathrm{Mg}$
3) ${ }_{16} \mathrm{~S}$
[Ne] $3 s^{2} 3 p^{4} \quad S$
[Ne]
3s
$3 p$

IX) Electron Conf \& Periodic Table

Look at ${ }_{32} \mathrm{Ge}$

$$
\begin{aligned}
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{2} \\
& \mathrm{n}=4 \quad 5 \mathrm{~s} \\
& \text { 4p } \\
& \text { 3d } \\
& \text { 4s } \\
& \mathrm{n}=3 \quad 3 \mathrm{p} \\
& \text { 3s } \\
& \mathrm{n}=2 \quad 2 \mathrm{p} \\
& \text { 2s } \\
& \mathrm{n}=1 \quad 1 \mathrm{~s}
\end{aligned}
$$

What was happening?

left, filling s orb
 $2 \mathrm{e}^{-}, 2$ columns
 right, filling p orb.
 $6 \mathrm{e}^{-}, 6$ columns

center, filling d orb
$10 \mathrm{e}^{-}, 10$ columns

Period no. \Rightarrow n value of s \& p subshells of valence shell

Group no. \Rightarrow \# of valence e^{-}

\square Representative s-block elements
\square Transition metals
\square Representative p-block elements
$\square f$-Block metals
A) Ex's:

1) ${ }_{16} \mathrm{~S}$

Period no.
 3

Group no. VI A
2) ${ }_{34} \mathrm{Se}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{aligned} & 1.008 \\ & \mathbf{H}^{1} \end{aligned}$																	$2^{4.003}$
2	$\begin{aligned} & \hline 6.941 \\ & \mathbf{L i} \end{aligned}$	9.012 $4^{B e}$											${ }_{5}^{10.81}{ }^{\mathbf{B}}$	${ }_{6}^{12.011} \mathrm{C}$	${ }_{7}^{14.007} \mathbf{N}$	$\begin{aligned} & 15.999 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 18.998 \\ & 9 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 20.179 \\ & \mathrm{Ne} \\ & 10 \end{aligned}$
3	$\begin{aligned} & 22.990 \\ & \mathbf{N a} \\ & 11 \end{aligned}$	$\begin{array}{\|l} \hline 24.305 \\ \mathbf{M g} \\ 12 \end{array}$											${ }_{13}^{26.98}$ Al	${ }_{14}^{28.09}$	$\begin{array}{\|l} 30.974 \\ 15 \end{array}$	${ }_{16}^{32.06}$	$\begin{array}{\|c} \hline \frac{35.453}{\mathrm{Cl}} \\ 17 \end{array}$	$\begin{aligned} & \hline 39.948 \\ & \mathbf{A r} \\ & 18 \end{aligned}$
4	$\begin{aligned} & 39.098 \\ & 19 \end{aligned}$	$\begin{array}{\|c} \hline 40.08 \\ \text { Ca } \\ \hline 20 \end{array}$	$\left.\right\|_{21} ^{44.96} \mathbf{S c}$	${ }_{22} \mathbf{T i}^{47.88}$	$\left.\right\|_{23} ^{50.94} \mathbf{V}$	$\underset{24}{\mathrm{Cr}}$	$\begin{array}{\|c} \mathbf{5}^{54.94} \\ \mathbf{M n} \end{array}$	${ }_{26}{ }^{55.85}$	$\begin{gathered} 58.93 \\ { }_{27} \end{gathered}$		$\begin{aligned} & 63.546 \\ & { }_{29} \mathrm{Cu} \end{aligned}$	$\begin{array}{\|l\|} \hline 65.38 \\ \mathbf{Z n} \\ 30 \end{array}$	$\begin{aligned} & \mathbf{6 9 . 7 2} \\ & \mathbf{G a} \\ & 31 \end{aligned}$	$\begin{array}{\|c} \hline \mathbf{7 2 . 5 9} \\ \mathbf{G e} \end{array}$	$\begin{array}{\|l} \hline 74.92 \\ \mathbf{A s} \\ 33 \end{array}$	$\begin{array}{\|l} \hline 78.96 \\ \mathbf{S e}^{74} \end{array}$	$\begin{array}{\|c} 79.904 \\ \mathbf{B r} \\ 35 \end{array}$	${ }_{36}^{\mathbf{K r}}$
5		$\stackrel{8}{\mathbf{S r}}_{38}^{87.62}$	${ }_{39}^{88.91} \mathbf{Y}$	${ }_{40}{ }^{81.22} \mathbf{Z r}$	$\mathbf{N a}_{41}^{\mathbf{9 2 . 9 1}}$	95.94 Mo 42	${ }_{43}{ }^{98}$	$\begin{array}{\|l\|} \hline 101.07 \\ \mathbf{R u} \\ \hline 44 \end{array}$	$\begin{array}{\|l\|} \hline 102.91 \\ \mathbf{R h} \\ 45 \end{array}$	$\begin{array}{\|l\|} \hline 106.42 \\ \text { Pd } \\ 46 \end{array}$	$\begin{aligned} & 107.87 \\ & { }_{47} \mathbf{A g} \end{aligned}$	$\begin{array}{\|l\|} \hline 112.41 \\ \mathbf{C d} \end{array}$	$\begin{array}{\|l} \hline 114.82 \\ \text { In } \\ 49 \end{array}$	$\begin{array}{\|l} \hline 118.69 \\ \mathbf{S n} \\ 50 \end{array}$	$\begin{array}{\|c} 121.75 \\ \mathbf{S b} \\ 51 \end{array}$	$\begin{array}{\|l} \hline 127.60 \\ \mathrm{Te}^{2} \end{array}$	$\begin{aligned} & \hline 126.90 \\ & \text { I } \\ & 53 \end{aligned}$	$\begin{array}{\|c} 131.39 \\ \mathbf{X e} \\ 54 \end{array}$
6	$\begin{aligned} & 132.91 \\ & { }_{55} \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 137.33 \\ & { }_{56}{ }^{\mathbf{B a}} \end{aligned}$	$\begin{array}{\|l} \hline 138.91 \\ { }_{57}^{\mathbf{L a}} \end{array}$	$\begin{array}{\|l\|} \hline 178.39 \\ \mathbf{H f} \\ 72 \end{array}$	$\begin{aligned} & \hline 180.95 \\ & 73 \\ & 7 \mathbf{T a}^{2} \end{aligned}$	$\begin{array}{\|l\|} \hline 183.85 \\ 74 \end{array}$			$\begin{array}{\|l\|} \hline 192.22 \\ \mathbf{I r} \\ 77 \end{array}$	$\begin{array}{\|l\|} \hline 195.08 \\ \mathbf{P t} \\ 78 \end{array}$	$\begin{aligned} & 196.97 \\ & \mathbf{A u} \\ & 79 \end{aligned}$	$\begin{aligned} & 200.59 \\ & \mathbf{H g} \\ & 80 \end{aligned}$	$\begin{array}{\|l} \hline 204.38 \\ \mathrm{Tl} \\ 81 \end{array}$	$\begin{array}{\|l\|} \hline 207.2 \\ \mathbf{P b} \\ 82 \end{array}$	$\begin{aligned} & 208.98 \\ & \mathbf{B i} \\ & 83 \end{aligned}$	$\begin{array}{\|c} \hline 209 \\ \text { Po } \\ 84 \end{array}$	$\begin{array}{\|c} 210 \\ \mathbf{A t} \\ 85 \end{array}$	$\begin{array}{\|c} \hline 222 \\ \mathbf{R n}^{2} \end{array}$
7	${ }_{87}^{223}$	$\begin{array}{\|l} \hline 226.03 \\ \mathbf{R a} \\ 88 \end{array}$	$\begin{aligned} & 227.03 \\ & \mathbf{A c} \\ & 89 \end{aligned}$	$\begin{array}{\|c} \hline 261 \\ \mathbf{R f} \\ 104 \\ \hline \end{array}$	$\begin{gathered} 262 \\ \mathbf{H a} \\ 105 \end{gathered}$	$\begin{array}{\|c} \hline 263 \\ \mathbf{S g} \\ 106 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 262 \\ \mathbf{N s} \\ 107 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 265 \\ \mathbf{H s} \\ 108 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 266 \\ \mathbf{M t} \\ 109 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 269 \\ 110 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 272 \\ 111 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 277 \\ 112 \\ \hline \end{array}$						

6	Lanthanide Series		$\begin{aligned} & 140.91 \\ & \mathbf{P r} \\ & 59 \end{aligned}$	$\begin{aligned} & 144.24 \\ & \mathrm{Nd} \\ & 60 \end{aligned}$	145 $\mathbf{P m}$	$\begin{aligned} & 150.36 \\ & \mathbf{S m} \\ & 62 \end{aligned}$	$\begin{array}{\|l\|} \hline 151.96 \\ \mathbf{E u} \\ 63 \end{array}$	$\begin{aligned} & 157.25 \\ & \text { Gd } \\ & 64 \end{aligned}$	$\begin{aligned} & 158.93 \\ & \mathbf{T b} \\ & 65 \end{aligned}$	$\begin{aligned} & 162.50 \\ & \mathbf{D y ~}^{166} \end{aligned}$	$\begin{aligned} & 164.93 \\ & \mathbf{H o} \\ & 67 \end{aligned}$	$\begin{aligned} & 167.26 \\ & \mathbf{E r} \\ & 68 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 168.93 \\ \operatorname{Tm} \\ 69 \end{array}, ~ \end{aligned}$	$\begin{aligned} & \hline 173.04 \\ & \mathbf{Y b} \\ & 70 \end{aligned}$	$\begin{array}{\|l} \hline 173.04 \\ \mathbf{L u} \\ 71 \end{array}$
7	Actinide Series	$\begin{aligned} & \hline 232.04 \\ & \text { Th } \\ & 90 \end{aligned}$	$\begin{aligned} & \hline 231.04 \\ & \mathbf{P a} \\ & 91 \end{aligned}$	$\begin{aligned} & 238.03 \\ & 92 \end{aligned}$	$\begin{array}{\|l\|} \hline 237.05 \\ \mathbf{N p} \\ 93 \end{array}$	${ }_{94}^{\mathbf{P u}}$	${ }_{95}{ }^{\mathbf{A m}}$	${ }_{96} \mathbf{C m}$	${ }_{97} \mathbf{B k}$	${ }_{98} \mathbf{C f}$	${ }_{99} \text { Es }$	$\underset{100}{\text { Fm }}$	$\begin{array}{\|l} \mathbf{M d} \\ 101 \end{array}$	$\begin{aligned} & \text { No } \\ & 102 \end{aligned}$	$\begin{array}{\|c\|} \mathbf{L r} \\ 103 \end{array}$

A PERIODIC CHART OF THE ELEMENTS
(Based on ${ }^{12} \mathrm{C}$)
3) ${ }_{43} \mathrm{Tc}$
4) ${ }_{82} \mathrm{~Pb}$
B) Exceptions

$$
\begin{array}{ll}
{ }_{24} \mathrm{Cr} & \text { expect } \\
& {[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{4}} \\
& \text { find }[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{5} \\
& \\
{ }_{29} \mathrm{Cu} & \text { expect } \\
& {[\mathrm{Ar}] 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{9}} \\
& \text { find }[\mathrm{Ar}] 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}
\end{array}
$$

Reason: 4s and 3d are very close in energy. (Can act like degenerate orb)
$1 / 2$ filled \& filled subshells are more stable.

