Chapter 7

Periodic Properties of the Elements

I) Development of the P.T.

Generally, the electronic structure of atoms correlates w. the prop. of the elements

- reflected by the arrangement of the elements in the P.T.

A number of elements were discovered based on expected prop. of the "missing" elements.

A) Noble Gases

B) Representative Elements

"last" e added to s & p orbitals

distinct & fairly regular variations in prop. w. changes in atomic #

C) d-Transition Elements

e added to d orbitals

$$ns^2(n-1)d^x$$

II) Effective Nuclear Charge

Net (+) charge attracting an e

$$Z_{eff} = Z - S$$

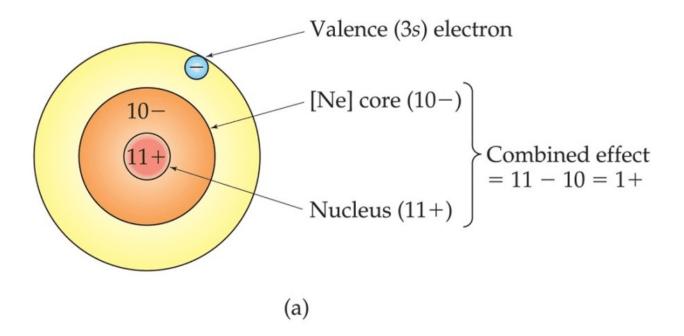
S = screening constant

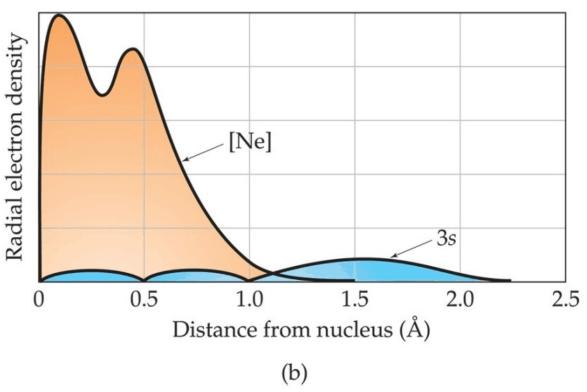
- avg. number of e-'s between nucleus & any particular e-
- depends on specific orbitals

Subsets of e⁻:

- 1) core e
- 2) valence e

Inner e screen or shield outer e from full (+) charge


Primary interaction of e⁻ & nucleus is due to charge:


Coulomb's Law:

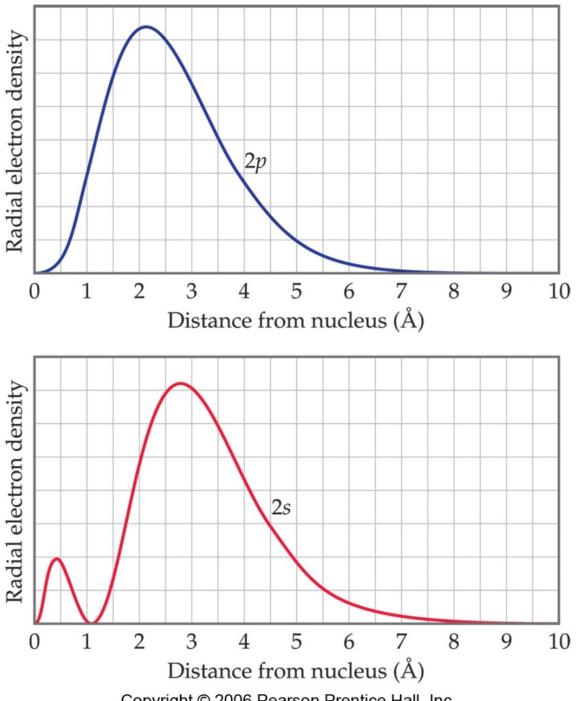
$$F = \frac{k \left(Q_e Q_n \right)}{r^2}$$

However, valence shell e do not experience full nuclear charge

- partially shielded by the core e

Copyright © 2006 Pearson Prentice Hall, Inc.

Value of S is usually close to # core e⁻


Valence shell e⁻ do not screen each other effectively.

- same distance from nucleus

The "p" e do not screen "s" e

The "s" e do screen "p" e somewhat due to a probability for these e to be nearer the nucleus

- penetration

Copyright © 2006 Pearson Prentice Hall, Inc.

A) General Trends

1) Across Row

Z_{eff} inc. by ~1 as each atom has added 1 proton to nucleus and 1 e⁻ to valence shell (which does not screen)

Z_{eff} inc.

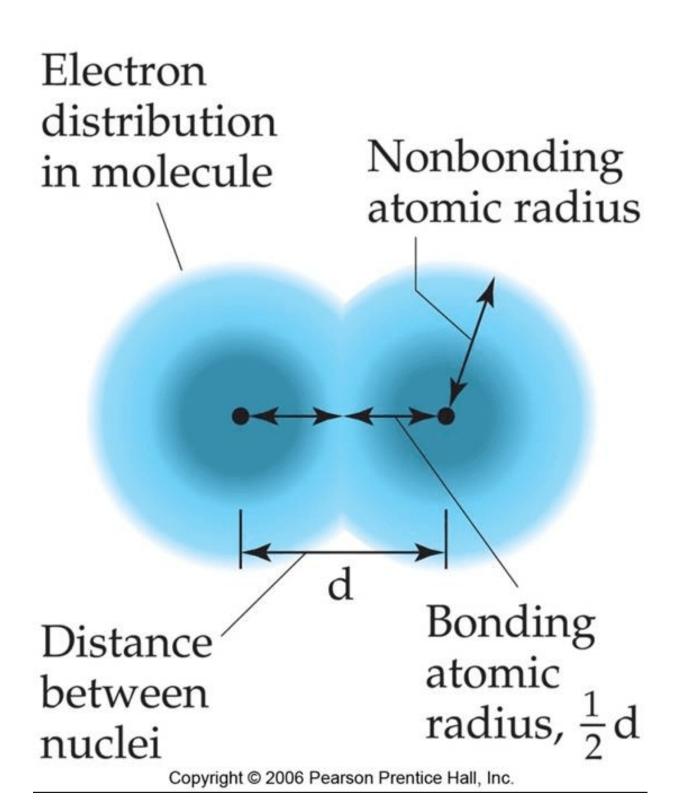
2) Down Column

Z_{eff} inc. <u>slightly</u> as valence shell e⁻ can penetrate better

III) Atomic and Ionic Radii

A) Atomic Radii

1) Nonbonding

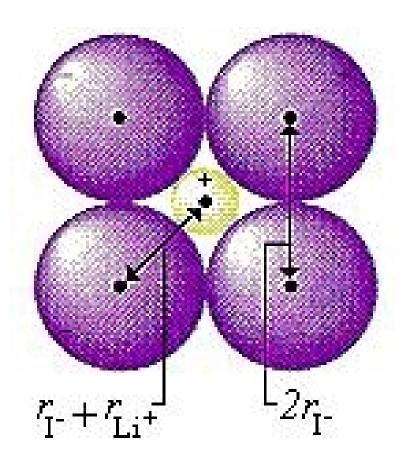

Closest approach of atoms based on gas phase collisions or crystal structures

2) **Bonding Atomic Radius**

Bond Length:

Distance between atoms in a covalently bound cmpd., averaged over many cmpds.

 $b.a.r = \frac{1}{2} bond length$


- 3) Size inc. down a group
 - e occupy a higher energy level w. each element down a group & n determines size of orbital and avg. radius
 - \therefore Inc. n \Rightarrow Inc. atomic size
- 4) Size generally dec. across a period from left to right
 - e added to same shell
 - nuclear charge, Z_{eff}, inc. which pulls whole shell closer
- 5) Overall Trend

Inc. atomic radius

B) Ionic Radii

Determined from crystal structure of ionic cmpds.

Averaged interatomic distance from multiple cmpds.

1) Cations

always smaller than parent atom

Cs⁺ smaller than Cs

a) Size decreases with increasing ionic charge

$$Fe^{3+} < Fe^{2+}$$
; $Cu^{2+} < Cu^{+}$

2) Anions

always larger than parent atom

$$Br^- > Br$$
 $S^{2-} > S$

3) Isoelectronic Series

Same #e⁻

$$S^{2-} > {}_{17}Cl^{-} > {}_{19}K^{+} > {}_{20}Ca^{2+}$$
 Z_{eff} inc., radius dec.

Group 1A	Group 2A	Group 3A	Group 6A	Group 7A					
Li ⁺	Be ²⁺	B ³⁺	O ²⁻	F ⁻					
0.90	0.59	0.41	1.26	1.19					
Li 1.34	Be 0.90	B 0.82	O 0.73	F 0.71					
Na ⁺	Mg ²⁺	Al ³⁺	S ²⁻	Cl ⁻					
1.16	0.86	0.68	1.70	1.67					
Na	Mg	Al	S	Cl					
1.54	1.30	1.18	1.02	0.99					
K ⁺	Ca ²⁺ 1.14	Ga ³⁺	Se ²⁻	Br ⁻					
1.52		0.76	1.84	1.82					
K	Ca	Ga	Se	Br					
1.96	1.24	1.26	1.16	1.14					
Rb ⁺ 1.66	Sr ²⁺ 1.32	In ³⁺ 0.94	Te ²⁻ 2.07	1 ⁻ 2.06					
Rb	Sr	In	Te	I					
2.11	1.92	1.44	1.35	1.33					
= cation = anion = neutral atom									

© 2012 Pearson Education, Inc.

IV) Ionization Energy, I.E.

Ionization: removal of an e

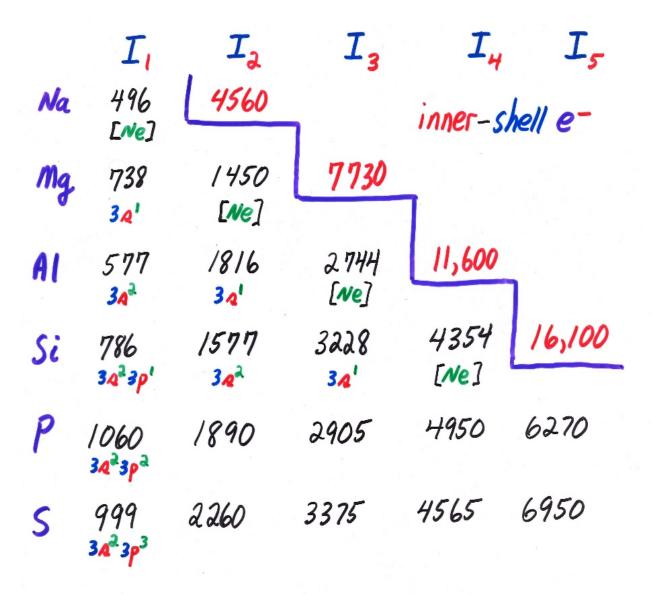
I.E.: energy required to remove efform gaseous atom or ion

$$Na \rightarrow Na^{+} + e^{-}$$
 5.1 eV
 $Cs \rightarrow Cs^{+} + e^{-}$ 3.9 eV

e⁻ removed is from highest energy level (highest n & ℓ)

I.E. depends on avg. distance from the nucleus.

Energy req. to remove the highest energy e⁻ from neutral atom


$$Mg(g) \rightarrow Mg^{+}(g) \qquad I_{1} = 738 \text{ kJ/mol}$$

Energy req. to remove the next highest energy e⁻ from ion

$$Mg^{+}(g) \rightarrow Mg^{2+}(g) I_{2} = 1450 \text{ kJ/mol}$$

Successive I.E. inc. in magnitude

- # e⁻ dec. (less repulsion)
- Z (# p⁺) same (greater attraction)

I.E. for removing e beyond valence e greater than energy involved in chem. rxns & bonding

- only e outside noble-gas core involved in chem. change

Remember:

Atoms tend to lose or gain e to get filled outer shell

- e config. of a noble gas

Note

I.E. depends on avg. distance from nucleus & Z_{eff}

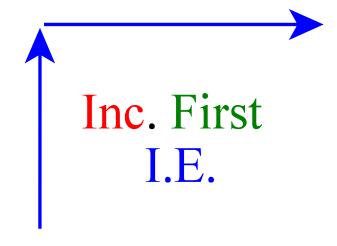
I.E.
$$\propto Z_{\text{eff}}$$

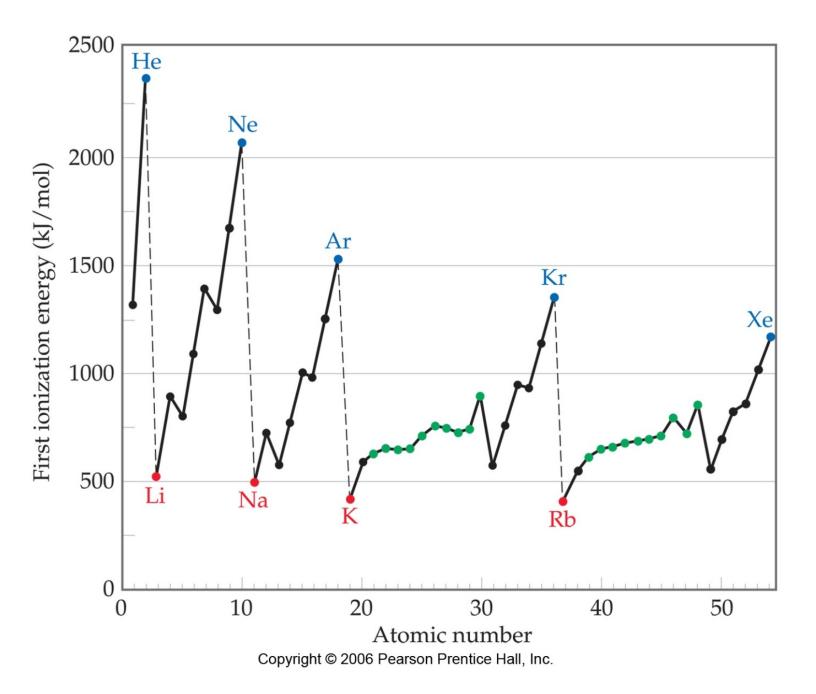
I.E. $\propto 1/r$

A) Up a Group

Dec. atomic radius

e⁻ held more tightly
I.E. Inc.


B) Across a Period


Dec. atomic radius

Z_{eff} inc. e⁻ held more tightly

I.E. Inc

C) **Summary**

D) Irregularities

e config. accounts for irregularities

Li → Ne, generally inc.

However,

Be
$$(1s^2 2s^2)$$
 > B $(1s^2 2s^2 2p^1)$

$$N (1s^2 2s^2 2p^3) > O (1s^2 2s^2 2p^4)$$

½-filled & filled subshells more stable

Elements at end of each transition series, Zn, Cd & Hg have higher I.E. than following element

pseudo-noble-gas

Highest I.E. for noble gases
- filled s & p subshells

- E) Electron Config. of Ions
 - 1) Representative Ions
 - a) Metals

Form Cations

1) <u>s - block</u>

Groups 1A & 2A

All valence e removed

- noble-gas config.

Na $1s^2 2s^2 2p^6 3s^1$

 Na^+ $1s^2$ $2s^2$ $2p^6$ [Ne]

```
1) <u>p - block</u>
Groups 3A - 5A
Lose p e fairly readily
   (group # - 2)
Often req. too much energy
to remove all val. e
       (group #)
Pb [Xe] 4f^{14} 5d^{10} 6s^2 6p^2
Pb^{2+} [Xe] 4f^{14} 5d^{10} 6s^2
Pb<sup>4+</sup> [Xe] 4f<sup>14</sup> 5d<sup>10</sup>
Pb<sup>2+</sup> more common than Pb<sup>4+</sup>
```

b) NonMetals

Monatomic anions

charge =
$$(group # - 8)$$

- add e to obtain noble-gas e config.

S [Ne]
$$3s^2 3p^4$$

$$S^{2-}$$
 [Ne] $3s^2 3p^6$

C1 [Ne]
$$3s^2 3p^5$$

C1 [Ne]
$$3s^2 3p^6$$

2) Transition Metal Ions

Generally, only highest energy e⁻ lost

Outer s-subshell e⁻

Many tran. metals form +2 cations

- lose both s-subshell e

For ions of higher charge d-subshell e are lost

Group 2B

Zn, Cd, Hg

$$(n-1)d^{10} ns^2 \rightarrow (n-1)d^{10}$$

$$Zn^{2+}$$
, Cd^{2+} , Hg^{2+}

b) <u>Ex 2:</u>

Fe
$$[Ar] 4s^2 3d^6$$

$$Fe^{2+}$$
 [Ar] $3d^6$

$$Fe^{3+}$$
 [Ar] $3d^5$

V) Electron Affinity, EA

Energy associated with the gain of an e⁻ by a gaseous atom or ion

A) First EA

$$Cl(g) + e^{-} \rightarrow Cl^{-}(g)$$
 EA = -349 kJ/mol

Energy released for most neutral atoms & all positive ions

greater attraction for e[−] ⇒ more neg. EA

B) Second EA

$$O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$$
 EA = +710 kJ/mol

2nd e⁻ must be forced onto a neg. charged ion which requires energy

H -73							He > 0
Li -60	Be > 0	B −27	C –122	N > 0	O -141	F −328	Ne > 0
Na -53	Mg > 0	Al -43	Si -134	P -72	S -200	C1 -349	Ar > 0
K -48	Ca –2	Ga -30	Ge -119	As -78	Se –195	Br -325	Kr > 0
Rb -47	Sr -5	In -30	Sn –107	Sb -103	Te -190	I -295	Xe > 0
1A	2A	 3A	4A	5A	6A	7A	8A


A) Periodic Trends in EA

Generally, parallels variation in atomic size

- not as well-established
 as other trends (exceptions)
- e placed into outer shell
 - closer it gets to nucleus & greater Z_{eff}

larger neg. EA

C) **Summary**

1) Exceptions

a) 2nd period

F: -328 kJ/mol C1: -349 kJ/mol

True for other 2nd period elements

Small size of 2nd period elements

e enters small outer shell

Adding an e⁻ places it very close to other 2s and 2p e⁻ resulting in stronger e⁻- e⁻ repulsions.

b) Other Exceptions

Adding an e⁻ to stable e⁻- config.

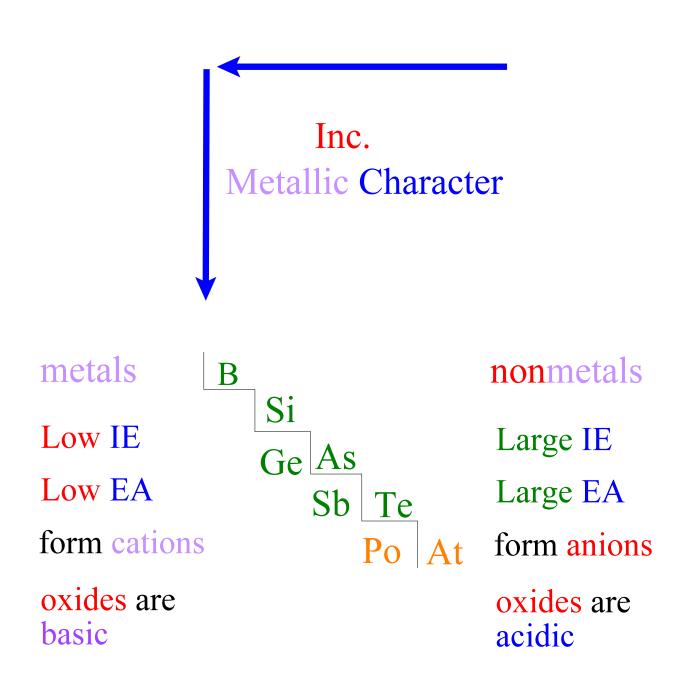
1) Group 2A

full s subshell

added e goes into p subshell

2) <u>Group 5A</u>

½ - filled p valence subshell


added e⁻ pairs w. another e⁻ in occupied p orbital & experiences repulsions

3) <u>Group 8A</u>

filled valence shell

e goes into next higher shell

VI) Metals, Nonmetals, Metalloids

Summary of Periodic Trends

increasing metallic character increasing atomic radius

increasing ionization energy

increasing electron affinity