Chapter 7

Periodic Properties of the Elements

I) Development of the P.T.

Generally, the electronic structure of atoms correlates w. the prop. of the elements

- reflected by the arrangement of the elements in the P.T.

A number of elements were discovered based on expected prop. of the "missing" elements.

A) Noble Gases

ns²np⁶ - very stable

B) Representative Elements

"last" e⁻ added to s & p orbitals

distinct & fairly regular variations in prop. w. changes in atomic #

C) <u>d-Transition Elements</u>

e⁻ added to d orbitals

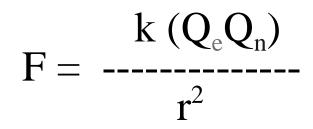
 $ns^2(n-1)d^x$

II) Effective Nuclear Charge

Net (+) charge attracting an e⁻

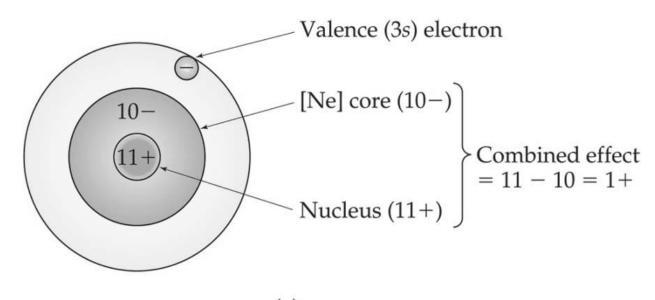
$$Z_{eff} = Z - S$$

- S = screening constant
 - avg. number of e⁻'s between nucleus & any particular e⁻
 - depends on specific orbitals

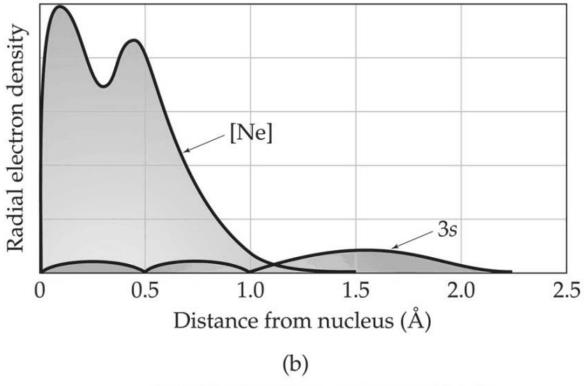

Subsets of e⁻:

- 1) core e⁻
- 2) valence e⁻

Inner e⁻ screen or shield outer e⁻ from full (+) charge


Primary interaction of e^- & nucleus is due to charge:

Coulomb's Law:



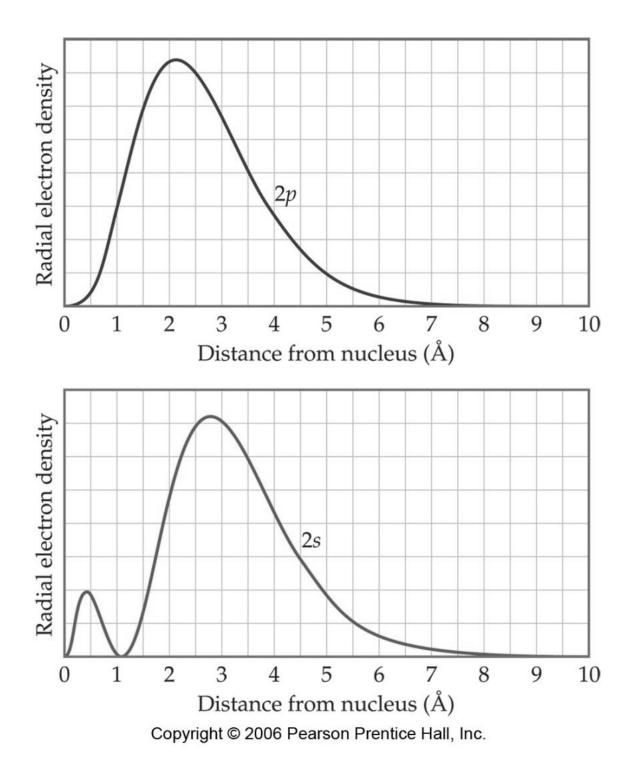
However, valence shell e⁻ do not experience full nuclear charge

- partially shielded by the core e⁻

(a)

Copyright © 2006 Pearson Prentice Hall, Inc.

Value of S is usually close to # core e⁻


Valence shell e^- do not screen each other effectively.

- same distance from nucleus

The "p" e⁻ do not screen "s" e⁻

The "s" e^- do screen "p" $e^$ somewhat due to a probability for these e^- to be nearer the nucleus

- penetration

A) General Trends

1) Across Row

 Z_{eff} inc. by ~1 as each atom has added 1 proton to nucleus and 1 e⁻ to valence shell (which does not screen)

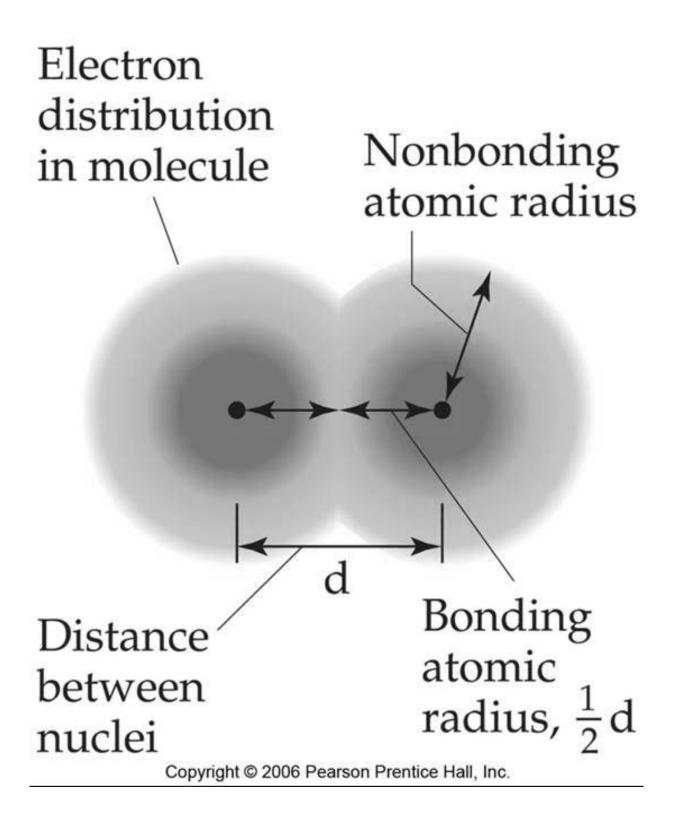
Z_{eff} inc.

2) Down Column

 Z_{eff} inc. <u>slightly</u> as valence shell e^{-} can penetrate better

III) Atomic and Ionic Radii

- A) Atomic Radii
 - 1) Nonbonding


Closest approach of atoms based on gas phase collisions or crystal structures

2) Bonding Atomic Radius

Bond Length:

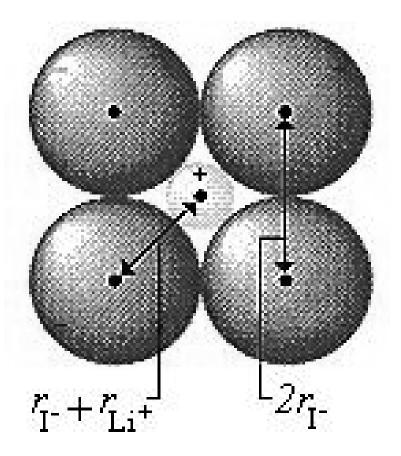
Distance between atoms in a covalently bound cmpd., averaged over many cmpds.

b.a.r = $\frac{1}{2}$ bond length

3) Size inc. down a group

e⁻ occupy a higher energy level w. each element down a group & n determines size of orbital and avg. radius

 \therefore Inc. n \Rightarrow Inc. atomic size


- 4) Size generally dec. across a period from left to right
 - e⁻ added to same shell
 - nuclear charge, Z_{eff}, inc. which pulls whole shell closer
- 5) Overall Trend

Inc. atomic radius

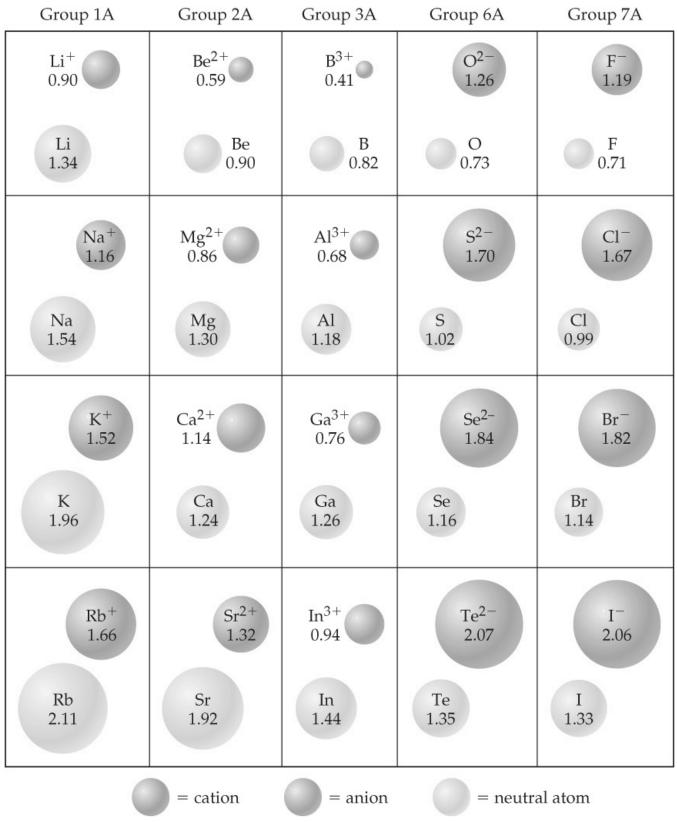
B) Ionic Radii

Determined from crystal structure of ionic cmpds.

Averaged interatomic distance from multiple cmpds.

1) Cations

always smaller than parent atom


 Cs^+ smaller than Cs

a) Size decreases with increasing ionic charge

 $Fe^{3+} < Fe^{2+}$; $Cu^{2+} < Cu^{+}$

- 2) <u>Anions</u> always larger than parent atom $Br^{-} > Br \qquad S^{2-} > S$
- 3) <u>Isoelectronic Series</u> Same #e⁻

$$^{16}S^{2^-} > {}_{17}Cl^- > {}_{19}K^+ > {}_{20}Ca^{2^+}$$

 $\overrightarrow{Z_{eff} inc., radius dec.}$

© 2012 Pearson Education, Inc.

IV) Ionization Energy, I.E.

Ionization: removal of an e⁻

I.E. : energy required to remove e⁻ from gaseous atom or ion

e⁻ removed is from highest energy level (highest n & ℓ)

I.E. depends on avg. distance from the nucleus.

<u>First I.E</u>, I_1

Energy req. to remove the highest energy e⁻ from neutral atom

Mg (g) \rightarrow Mg⁺ (g) I₁ = 738 kJ/mol

Second I.E I_2

Energy req. to remove the next highest energy e⁻ from ion

 $Mg^{+}(g) \rightarrow Mg^{2+}(g) = 1450 \text{ kJ/mol}$

Successive I.E. inc. in magnitude

- # e⁻ dec. (less repulsion)
- Z (# p⁺) same (greater attraction)

	\mathcal{I}_{l}	Ia	I ₃	$\mathcal{I}_{_{\mathcal{H}}}$	I_{5}		
Na	496 [Ne]	4560	7	inner-shell e-			
Mg	738 3 _A '	1450 [Ne]	7730	1			
Al	577 31 ²	1816 32'	2.744 [Ne]	11,600	1		
Si	786 3423p	1577 3.e2	3228 32'	4354 [Ne]	16,100		
Р	1060 3a ² 3p ²	1890	2905	4950	6270		
S	999 Зл ² зр ³	2260	3375	4565	6950		

I.E. for removing e⁻ beyond valence e⁻ greater than energy involved in chem. rxns & bonding

 only e⁻ outside noble-gas core involved in chem. change

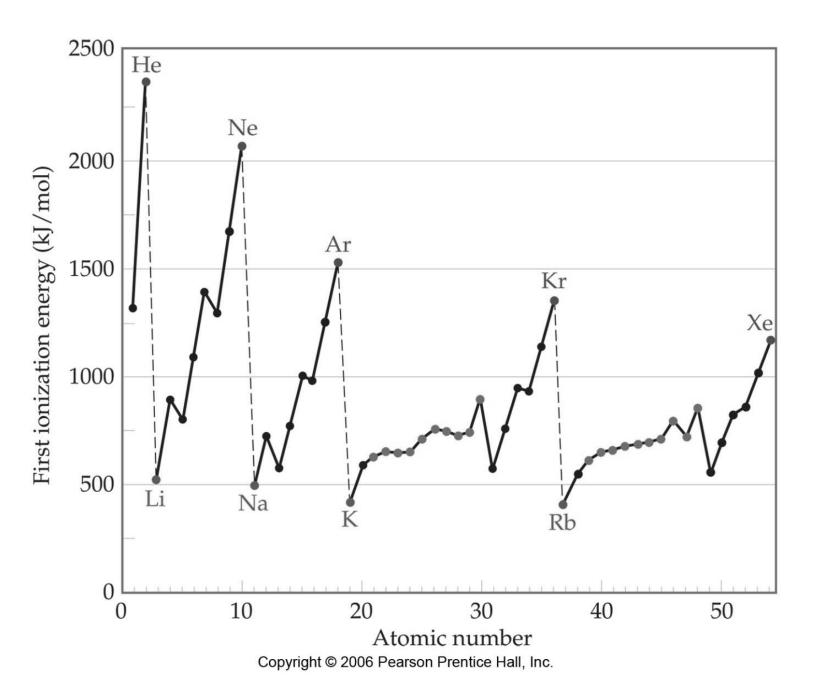
Remember:

Atoms tend to lose or gain e⁻ to get filled outer shell

 $-e^{-}$ config. of a noble gas

Note

I.E. depends on avg. distance from nucleus & Z_{eff}


I.E. $\propto Z_{eff}$ I.E. $\propto 1/r$

A) <u>Up a Group</u>

- Dec. atomic radius
- e⁻ held more tightly
 - I.E. Inc.
- B) Across a Period
 Dec. atomic radius
 Z_{eff} inc. e⁻ held more tightly
 I.E. Inc

C) <u>Summary</u>

D) Irregularities

e⁻ config. accounts for irregularities

Li \rightarrow Ne, generally inc.

However,

Be $(1s^2 2s^2) > B (1s^2 2s^2 2p^1)$ N $(1s^2 2s^2 2p^3) > O (1s^2 2s^2 2p^4)$

¹/₂-filled & filled subshells more stable

Elements at end of each transition series, Zn, Cd & Hg have higher I.E. than following element

pseudo-noble-gas

Highest I.E. for noble gases - filled s & p subshells

E) Electron Config. of Ions

1) Representative Ions

a) Metals

Form Cations

1) <u>s - block</u>

Groups 1A & 2A

All valence e⁻ removed - noble-gas config.

Na $1s^2 2s^2 2p^6 3s^1$

 Na^+ 1s² 2s² 2p⁶ [Ne]

1) <u>p - block</u>

Groups 3A - 5A

Lose p e⁻ fairly readily (group # - 2)

Often req. too much energy to remove all val. e⁻ (group #)

Pb [Xe] $4f^{14} 5d^{10} 6s^2 6p^2$

 Pb^{2+} [Xe] $4f^{14} 5d^{10} 6s^2$

 Pb^{4+} [Xe] $4f^{14} 5d^{10}$

 Pb^{2+} more common than Pb^{4+}

b) NonMetals

Monatomic anions charge = (group # - 8)

> - add e⁻ to obtain noble-gas e⁻ config.

S [Ne] $3s^2 3p^4$

 S^{2-} [Ne] $3s^2 3p^6$

C1 [Ne] $3s^2 3p^5$

 Cl^{-} [Ne] $3s^2 3p^6$

2) Transition Metal Ions

Generally, only highest energy e⁻ lost Outer s-subshell e⁻

Many tran. metals form +2 cations

- lose both s-subshell e⁻

For ions of higher charge d-subshell e⁻ are lost

a) <u>Ex 1:</u>

Group 2B Zn, Cd, Hg $(n-1)d^{10}ns^2 \rightarrow (n-1)d^{10}$ Zn^{2+} , Cd^{2+} , Hg^{2+} b) <u>Ex 2:</u> Fe [Ar] $4s^2 3d^6$ Fe^{2+} [Ar] $3d^{6}$ Fe^{3+} [Ar] $3d^5$

V) Electron Affinity, EA

Energy associated with the gain of an e^- by a gaseous atom or ion

A) First EA

 $Cl(g) + e^{-} \rightarrow Cl^{-}(g) = EA = -349 \text{ kJ/mol}$

Energy released for most neutral atoms & all positive ions

greater attraction for $e^- \Rightarrow$ more neg. EA

B) Second EA

 $O^{-}(g) + e^{-} \rightarrow O^{2-}(g)$ EA = +710 kJ/mol

2nd e⁻ must be forced onto a neg. charged ion which requires energy

Н -73							He > 0
Li -60	Be > 0	В -27	C -122	N > 0	O -141	F -328	Ne > 0
Na -53	Mg > 0	Al -43	Si -134	Р -72	S -200	Cl -349	Ar > 0
K -48	Ca -2	Ga -30	Ge -119	As -78	Se -195	Br -325	Kr > 0
Rb -47	Sr -5	In -30	Sn -107	Sb -103	Te -190	I -295	Xe > 0
1A	2A	3A	4A	5A	6A	7A	8A

Copyright © 2006 Pearson Prentice Hall, Inc.

A) Periodic Trends in EA

Generally, parallels variation in atomic size

- not as well-established as other trends (exceptions)
- e⁻ placed into outer shell
 - closer it gets to nucleus
 & greater Z_{eff}

larger neg. EA

C) <u>Summary</u>

Inc. EA

1) Exceptions

a) 2nd period

F: -328 kJ/mol Cl: -349 kJ/mol

True for other 2nd period elements

Small size of 2nd period elements

e⁻ enters small outer shell

Adding an e⁻ places it very close to other 2s and 2p e⁻ resulting in stronger e⁻ - e⁻ repulsions.

b) Other Exceptions

Adding an e⁻ to stable e⁻- config.

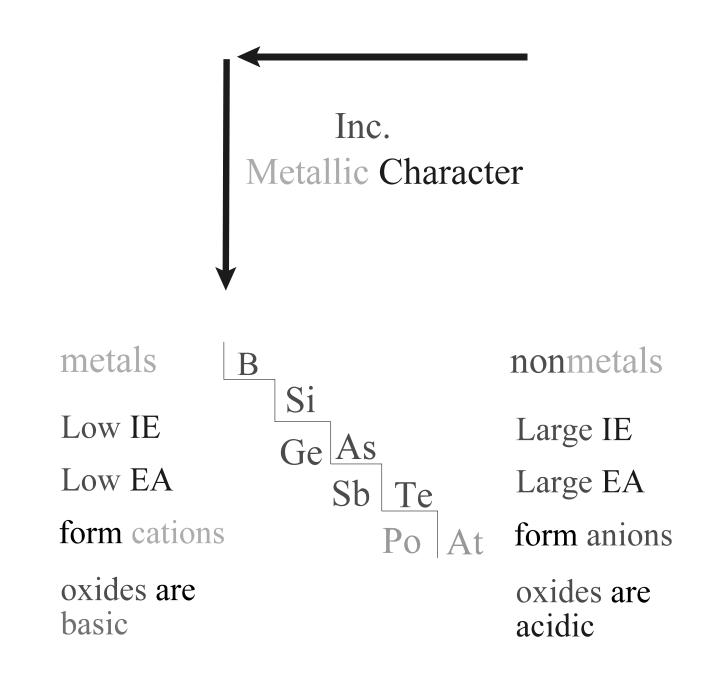
1) Group 2A

full s subshell

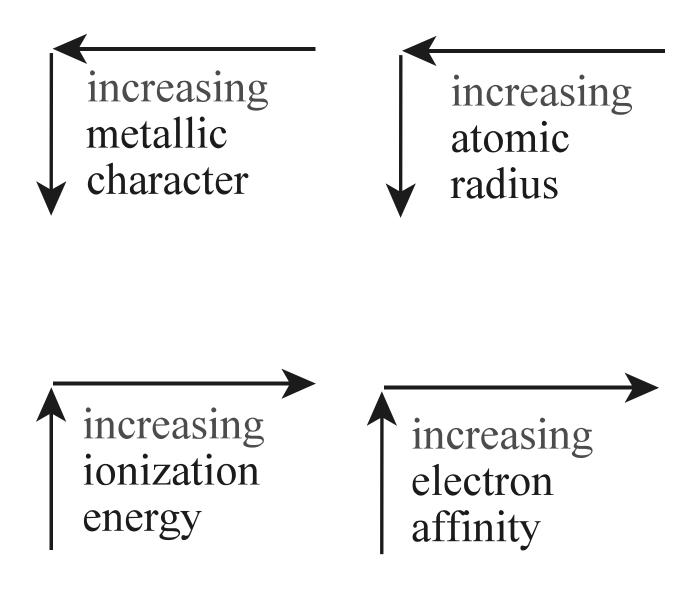
added e⁻ goes into p subshell

2) <u>Group 5A</u>

1/2 - filled p valence subshell


added e^- pairs w. another e^- in occupied p orbital & experiences repulsions

3) Group 8A


filled valence shell

e⁻ goes into next higher shell

VI) Metals, Nonmetals, Metalloids

Summary of Periodic Trends

