Chapter 9

Molecular Geometry & Bonding Theories

I) Molecular Geometry (Shapes)

Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure

Molecular Geometry

Arrangement or positions of atoms relative to each other

Bond Angles

Angles made by lines joining the nuclei of atoms bonded

A) Basic AB_n Arrangements

Various molecular shapes can arise from the 5 basic AB_n shapes.

© 2012 Pearson Education, Inc.

II) <u>VSEPR Theory</u>

Valence-Shell Electron-Pair Repulsion

e pair: lone pair e or bonding e (single, double & triple bonds treated same)

really considering
 regions of e⁻ density (domains)

VSEPR: e pairs arrange
themselves as far apart
as possible to minimize
repulsions between them

- controls geometry around central atom

A) Types of Geometry

1) Electron-Domain Geom.

arrangement of bonding and nonbonding e⁻ pairs (domains) about the central atom

2) Molecular Geom. (Shapes)

arrangement of bonded atoms about the central atom

described using ONLY the ATOMS

Distinction is very important!

Electron-Domain Geom

TABLE 9.1 • Electron-Domain Geometries as a Function of Number of Electron Domains

Number of Electron Domains	Arrangement of Electron Domains	Electron-Domain Geometry	Predicted Bond Angles
2 —	180°	Linear	180°
3	120	Trigonal planar	120°
4	109.5°	Tetrahedral	109.5°
5 12	200	Trigonal bipyramidal	120° 90°
6	90°	Octahedral	90°

ED and MG for AB₂, AB₃ & AB₄ EDs

TABLE 9.2 • Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom					
Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
2	Linear	2	0	Linear	ö=с=ö
3	Trigonal planar	3	0	Trigonal planar	:F: -
		2	1	Bent	
4	Tetrahedral	4	0	Tetrahedral	H HW. H
		3	1	Trigonal pyramidal	HW. H
		2	2	Bent	H ^{un} ,Ö.

© 2012 Pearson Education, Inc.

B) <u>2</u> e Pairs

LINEAR

1) <u>CO</u>₂

$$\ddot{O} = C = \ddot{O}$$

2)<u>HCN</u>

$$H-C\equiv N$$
:

3)BeCl₂

 $4) N_2 O$

$$N=0 \leftrightarrow N=0$$

C) 3e-Pairs

Trigonal Planar

Basic e pair geometry

=> 2 possible molecular geom. or shapes

1) 3 bonding pairs

B) 120°

*NO*₃

H2CO

2) 2 bonding 4 1 non bonding BENT (angular); Angle < 120° VU2 0/1/8°0 0 100 50₂
0
5
0
5
0
119.5°

Molecular geom. is determined by arrangement of e-pairs but is described by positions of the nuclei.

Why is the bond angle not exactly 120°?

Lone-pair e⁻ (nbe) not trapped between two atoms and thus spread out and take up more space. Repulses bonding pairs and reduces the bond angles.

Bonding electron pair

Nucleus
© 2012 Pearson Education, Inc.

D) 4 e- Pairs

3 possible molecular geam or shapes

1) 4 bonding pairs

CH4 PH4 NH4 SO4

Note: bond angle dec. by ~ 2° for each lone pair of e

Arrangement of Electron Pairs and Geometry of Some Simple Molecules

Tetrahedral arrangement of electron pairs

Molecular geometry:

ED and MG for AB₅ & AB₆ EDs

TABLE 9.3 • Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
5	Trigonal	5	0	Trigonal bipyramidal	PCl ₅
	bipyramidal	4	1	Seesaw	SF_4
		3	2	T-shaped	CIF ₃
		2	3	Linear	XeF ₂
6	Octahedral	6	0	Octahedral	SF ₆
		5	1	Square pyramidal	BrF_5
		4	2	Square planar	${\sf XeF}_4$

E) <u>5 e⁻ Pairs Domains</u>

Copyright © 2006 Pearson Prentice Hall, Inc.

Two "different" bonds.

- 3 equatorial bonds forming a trigonal planar arrangement w. 120° angles
- 2 axial bonds which are perpendicular to the trigonal planar equatorial bonds (90° angles)

4 Molecular Geometries

1) trigonal bipyramidal

Angles: 120° & 90°

2) seesaw

Angles: $\sim 120^{\circ} \& \sim 90^{\circ}$

3) T-shaped

Angles: $\sim 90^{\circ}$

4) linear

Angle: 180°

a) Lone-pair e & Bonding Pairs

In 2, 3 and 4:

lpe wind up in the equatorial positions to maximize separation and reduce repulsions.

In 2 & 3 lpe⁻ pushes bonding pairs closer together and reduces angles

F) 6 e Pair Domains

Octahedral structure

3 Molecular Geometries

1) octahedral

Angles: 90°

2) square pyramidal

Angles: ~ 90°

3) square planar

Angles: 90°

G) Shapes of Larger Molecules

Same rules apply to individual atoms in larger molecules.

III) Molecular Shape and Polarity

MUST have polar bonds

MUST consider shape

If the centers of + and – charges do not coincide, the molecule is polar.

A) Diatomic Molecules

A diatomic molecule w. a polar bond is polar

$$^{\delta+}$$
 H — C1 $^{\delta-}$

B) Polyatomic Molecules

For polyatomic molecules geometry is very important in predicting if the centers of + and – charges coincide.

The dipole moment is for the entire molecule

vector sum of ALL of the individual bond dipole moments.

Cl—Be—Cl

$$0 = C = 0$$

$$H-C\equiv N$$

$$4) H_{2}O$$

TABLE 9.2 • Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
2	Linear	2	0	Linear	ö=c=ö
3	Trigonal planar	3	0	Trigonal planar	;F: -
		2	1	Bent	
4	Tetrahedral	4	0	Tetrahedral	H C H ^{thr} H
		3	1	Trigonal pyramidal	H ^{Mr.} N
		2	2	Bent	H ^W H

© 2012 Pearson Education, Inc.

5) PCl₅

TABLE 9.3 • Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom

Number of Electron Domains	Electron- Domain Geometry	Bonding Domains	Nonbonding Domains	Molecular Geometry	Example
5		5	0		PCl ₅
	Trigonal bipyramidal	4	1	Trigonal bipyramidal Seesaw	SF_4
		3	2	T-shaped	CIF ₃
		2	3	Linear	XeF ₂
6	Octahedral	6	0	Octahedral	SF ₆
		5	1	Square pyramidal	${ m BrF}_5$
		4	2	Square planar	XeF_4
				oquare planar	

^{© 2012} Pearson Education, Inc.

IV) Covalent Bonding and Orbital Overlap

Wave Interference:

e behave like any other wave & when 2 waves meet they can interact constructively or destructively.

Constructive interference:

waves add together and get a bonding orbital

Destructive interference:

waves subtract from each other and get an antibonding orbital

A) Sigma (σ) Bonds

e density concentrated between nuclei along the internuclear axis

Results from overlap of 2 "s" orb., "s" & "p" orb., 2 "p" orb. end-to-end, "s" & hybrid orb., 2 hybrid orb (end on)

$$s + s \Rightarrow \sigma$$
 $s + p \Rightarrow \sigma$
 $p + p \Rightarrow \sigma$

A) Pi (π) Bonds

e density above and below internuclear axis

Results from sideways overlap of parallel *p* orbitals

V) <u>Hybrid Orbitals - Valence Bond Theory</u>

Bonds are created by orbital overlap to produce σ or π bonds

To explain many observed molecular geometries, pure "s" and "p" atomic orbitals are combined to produce a set of "hybrid" orbitals on atoms.

These hybrid orbitals then form bonds between atoms producing the correct geometry.

A) sp Hybrid Orbitals

BeF₂ linear with 2 single bonds

Be atom:

Should not form bonds
- no singly occupied orbitals

As it forms bonds it can absorb enough energy to "promote" one $2s e^-$ to a 2p orbital.

The *s* and *p* orbitals then mix or "hybridize" to form two degenerate *sp hybrid* orbitals.

These *sp hybrid* orbitals have two lobes like a p orbital.

One of the lobes is larger and more rounded as is the *s* orbital.

These two degenerate orbitals align themselves 180° from each other:

linear

Consistent with the observed geometry of Be compounds.

B) sp² Hybrid Orbitals

BF₃: trigonal planar, 120°

36

C) <u>sp³ Hybrid Orbitals</u>

CH₄: tetrahedral, 109.5°

D) <u>Hybrid Orbitals - Summary</u>

TABLE 9.4 • **Geometric Arrangements Characteristic of Hybrid Orbital Sets** Atomic Hybrid **Orbital Set Orbital Set** Geometry **Examples** 180° BeF₂, HgCl₂ Two sp s,pLinear Three sp^2 BF₃, SO₃ s,p,p120° Trigonal planar 109.5° Four sp^3 CH₄, NH₃, H₂O, NH₄⁺ s,p,p,pTetrahedral

© 2012 Pearson Education. Inc

VI) Multiple Bonds

Overlap of hybrid orbitals with *s* or *p* or other hybrid orbitals (end-to-end):

σ bonds.

e⁻ density is symmetric about the internuclear axis of σ bond, groups can rotate about the bond without breaking it.

- free rotation about σ bonds

Single bonds are o bonds

Multiple bonding requires π bonds

A) **Double Bonds**

Look at ethylene: C_2H_4

σ bonds between C and H and both C atoms using *sp*² hybrid orbitals

leaves "p" orbitals on each C which can overlap sideways to form π bonds

Trigonal planar around each C atom - whole molecule is planar

 π bond is perpendicular to plane

No free rotation between C atoms

Double bond $\equiv 1 \sigma + 1 \pi$

B) Triple Bonds

Look at acetylene: C_2H_2

σ bonds between C and H and both C atoms using *sp* hybrid orbitals

leaves 2 sets of "p" orbitals on each C which can overlap sideways to form 2 sets of π bonds

$$H - C = \frac{\sigma}{2\pi} C - H$$

Linear around each C atom

Triple bond
$$= 1 \sigma + 2 \pi$$

C) Resonance & Delocalized Bonding

Localized σ and π bonds can't explain resonance.

Instead can think of atoms forming delocalized π bonding.

Benzene:

Each C atom is sp^2 hybridized and has 1 atomic p orbital left over

- form a delocalized π bond

VII) Molecular Orbitals

Some things not explained by VB theory

In MO theory orbitals are constructed as combination of AOs from <u>ALL</u> atomsin the molecule.

The MO can span more than 2 atoms.

Each MO can still only contain 2 e

In VB theory orbitals are mixed on individual atoms 1st then bonded together as needed

In MO theory the orbitals of all atoms mix and are then used to form the lowest energy molecular orbitals.