Chapter 9 #### Molecular Geometry & Bonding Theories #### I) Molecular Geometry (Shapes) Chemical reactivity of molecules depends on the nature of the bonds between the atoms as well on its 3D structure #### Molecular Geometry Arrangement or positions of atoms relative to each other #### **Bond Angles** Angles made by lines joining the nuclei of atoms bonded ## A) Basic AB_n Arrangements # Various molecular shapes can arise from the 5 basic AB_n shapes. © 2012 Pearson Education, Inc. #### II) <u>VSEPR Theory</u> Valence-Shell Electron-Pair Repulsion e pair: lone pair e or bonding e (single, double & triple bonds treated same) really considering regions of e⁻ density (domains) VSEPR: e pairs arrange themselves as far apart as possible to minimize repulsions between them - controls geometry around central atom ## A) Types of Geometry 1) Electron-Domain Geom. arrangement of bonding and nonbonding e⁻ pairs (domains) about the central atom 2) Molecular Geom. (Shapes) arrangement of bonded atoms about the central atom described using ONLY the ATOMS Distinction is very important! ## Electron-Domain Geom **TABLE 9.1 • Electron-Domain Geometries as a Function of Number of Electron Domains** | Number of
Electron Domains | Arrangement of
Electron Domains | Electron-Domain
Geometry | Predicted
Bond Angles | |-------------------------------|------------------------------------|-----------------------------|--------------------------| | 2 — | 180° | Linear | 180° | | 3 | 120 | Trigonal
planar | 120° | | 4 | 109.5° | Tetrahedral | 109.5° | | 5 12 | 200 | Trigonal
bipyramidal | 120°
90° | | 6 | 90° | Octahedral | 90° | ## ED and MG for AB₂, AB₃ & AB₄ EDs | TABLE 9.2 • Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom | | | | | | |--|---------------------------------|--------------------|-----------------------|-----------------------|---------------------| | Number of
Electron
Domains | Electron-
Domain
Geometry | Bonding
Domains | Nonbonding
Domains | Molecular
Geometry | Example | | 2 | Linear | 2 | 0 | Linear | ö=с=ö | | 3 | Trigonal planar | 3 | 0 | Trigonal planar | :F:

 -
 | | | | 2 | 1 | Bent | | | 4 | Tetrahedral | 4 | 0 | Tetrahedral | H
HW. H | | | | 3 | 1 | Trigonal
pyramidal | HW. H | | | | 2 | 2 | Bent | H ^{un} ,Ö. | © 2012 Pearson Education, Inc. ## B) <u>2</u> e Pairs ## LINEAR 1) <u>CO</u>₂ $$\ddot{O} = C = \ddot{O}$$ 2)<u>HCN</u> $$H-C\equiv N$$: 3)BeCl₂ $4) N_2 O$ $$N=0 \leftrightarrow N=0$$ # C) 3e-Pairs Trigonal Planar Basic e pair geometry => 2 possible molecular geom. or shapes 1) 3 bonding pairs B) 120° *NO*₃ H2CO 2) 2 bonding 4 1 non bonding BENT (angular); Angle < 120° VU2 0/1/8°0 0 100 50₂ 0 5 0 5 0 119.5° Molecular geom. is determined by arrangement of e-pairs but is described by positions of the nuclei. ## Why is the bond angle not exactly 120°? Lone-pair e⁻ (nbe) not trapped between two atoms and thus spread out and take up more space. Repulses bonding pairs and reduces the bond angles. Bonding electron pair Nucleus © 2012 Pearson Education, Inc. # D) 4 e- Pairs 3 possible molecular geam or shapes 1) 4 bonding pairs CH4 PH4 NH4 SO4 Note: bond angle dec. by ~ 2° for each lone pair of e # Arrangement of Electron Pairs and Geometry of Some Simple Molecules #### Tetrahedral arrangement of electron pairs # Molecular geometry: ## ED and MG for AB₅ & AB₆ EDs TABLE 9.3 • Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom | Number of
Electron
Domains | Electron-
Domain
Geometry | Bonding
Domains | Nonbonding
Domains | Molecular
Geometry | Example | |----------------------------------|---------------------------------|--------------------|-----------------------|-------------------------|------------------| | 5 | Trigonal | 5 | 0 | Trigonal
bipyramidal | PCl ₅ | | | bipyramidal | 4 | 1 | Seesaw | SF_4 | | | | 3 | 2 | T-shaped | CIF ₃ | | | | 2 | 3 | Linear | XeF ₂ | | 6 | Octahedral | 6 | 0 | Octahedral | SF ₆ | | | | 5 | 1 | Square pyramidal | BrF_5 | | | | 4 | 2 | Square planar | ${\sf XeF}_4$ | #### E) <u>5 e⁻ Pairs Domains</u> Copyright © 2006 Pearson Prentice Hall, Inc. #### Two "different" bonds. - 3 equatorial bonds forming a trigonal planar arrangement w. 120° angles - 2 axial bonds which are perpendicular to the trigonal planar equatorial bonds (90° angles) #### **4 Molecular Geometries** 1) trigonal bipyramidal Angles: 120° & 90° 2) seesaw Angles: $\sim 120^{\circ} \& \sim 90^{\circ}$ 3) T-shaped Angles: $\sim 90^{\circ}$ 4) linear Angle: 180° a) Lone-pair e & Bonding Pairs In 2, 3 and 4: lpe wind up in the equatorial positions to maximize separation and reduce repulsions. In 2 & 3 lpe⁻ pushes bonding pairs closer together and reduces angles ## F) 6 e Pair Domains #### Octahedral structure #### 3 Molecular Geometries 1) octahedral Angles: 90° 2) square pyramidal Angles: ~ 90° 3) square planar Angles: 90° #### G) Shapes of Larger Molecules Same rules apply to individual atoms in larger molecules. #### III) Molecular Shape and Polarity MUST have polar bonds MUST consider shape If the centers of + and – charges do not coincide, the molecule is polar. #### A) Diatomic Molecules A diatomic molecule w. a polar bond is polar $$^{\delta+}$$ H — C1 $^{\delta-}$ #### B) Polyatomic Molecules For polyatomic molecules geometry is very important in predicting if the centers of + and – charges coincide. The dipole moment is for the entire molecule vector sum of ALL of the individual bond dipole moments. ## Cl—Be—Cl $$0 = C = 0$$ $$H-C\equiv N$$ $$4) H_{2}O$$ TABLE 9.2 • Electron-Domain and Molecular Geometries for Two, Three, and Four Electron Domains around a Central Atom | Number of
Electron
Domains | Electron-
Domain
Geometry | Bonding
Domains | Nonbonding
Domains | Molecular
Geometry | Example | |----------------------------------|---------------------------------|--------------------|-----------------------|-----------------------|--| | 2 | Linear | 2 | 0 | Linear | ö=c=ö | | 3 | Trigonal planar | 3 | 0 | Trigonal planar | ;F:

 -
 | | | | 2 | 1 | Bent | | | 4 | Tetrahedral | 4 | 0 | Tetrahedral | H

C
H ^{thr} H | | | | 3 | 1 | Trigonal pyramidal | H ^{Mr.} N | | | | 2 | 2 | Bent | H ^W H | © 2012 Pearson Education, Inc. ## 5) PCl₅ TABLE 9.3 • Electron-Domain and Molecular Geometries for Five and Six Electron Domains around a Central Atom | Number of
Electron
Domains | Electron-
Domain
Geometry | Bonding
Domains | Nonbonding
Domains | Molecular
Geometry | Example | |----------------------------------|---------------------------------|--------------------|-----------------------|-----------------------------------|------------------| | 5 | | 5 | 0 | | PCl ₅ | | | Trigonal
bipyramidal | 4 | 1 | Trigonal
bipyramidal
Seesaw | SF_4 | | | | 3 | 2 | T-shaped | CIF ₃ | | | | 2 | 3 | Linear | XeF ₂ | | 6 | Octahedral | 6 | 0 | Octahedral | SF ₆ | | | | 5 | 1 | Square pyramidal | ${ m BrF}_5$ | | | | 4 | 2 | Square planar | XeF_4 | | | | | | oquare planar | | ^{© 2012} Pearson Education, Inc. #### IV) Covalent Bonding and Orbital Overlap #### Wave Interference: e behave like any other wave & when 2 waves meet they can interact constructively or destructively. #### Constructive interference: waves add together and get a bonding orbital #### Destructive interference: waves subtract from each other and get an antibonding orbital ## A) Sigma (σ) Bonds e density concentrated between nuclei along the internuclear axis Results from overlap of 2 "s" orb., "s" & "p" orb., 2 "p" orb. end-to-end, "s" & hybrid orb., 2 hybrid orb (end on) $$s + s \Rightarrow \sigma$$ $s + p \Rightarrow \sigma$ $p + p \Rightarrow \sigma$ ### A) Pi (π) Bonds # e density above and below internuclear axis Results from sideways overlap of parallel *p* orbitals #### V) <u>Hybrid Orbitals - Valence Bond Theory</u> Bonds are created by orbital overlap to produce σ or π bonds To explain many observed molecular geometries, pure "s" and "p" atomic orbitals are combined to produce a set of "hybrid" orbitals on atoms. These hybrid orbitals then form bonds between atoms producing the correct geometry. #### A) sp Hybrid Orbitals BeF₂ linear with 2 single bonds Be atom: Should not form bonds - no singly occupied orbitals As it forms bonds it can absorb enough energy to "promote" one $2s e^-$ to a 2p orbital. The *s* and *p* orbitals then mix or "hybridize" to form two degenerate *sp hybrid* orbitals. These *sp hybrid* orbitals have two lobes like a p orbital. One of the lobes is larger and more rounded as is the *s* orbital. # These two degenerate orbitals align themselves 180° from each other: #### linear Consistent with the observed geometry of Be compounds. ## B) sp² Hybrid Orbitals BF₃: trigonal planar, 120° 36 ## C) <u>sp³ Hybrid Orbitals</u> ## CH₄: tetrahedral, 109.5° #### D) <u>Hybrid Orbitals - Summary</u> **TABLE 9.4** • **Geometric Arrangements Characteristic of Hybrid Orbital Sets** Atomic Hybrid **Orbital Set Orbital Set** Geometry **Examples** 180° BeF₂, HgCl₂ Two sp s,pLinear Three sp^2 BF₃, SO₃ s,p,p120° Trigonal planar 109.5° Four sp^3 CH₄, NH₃, H₂O, NH₄⁺ s,p,p,pTetrahedral © 2012 Pearson Education. Inc #### VI) Multiple Bonds Overlap of hybrid orbitals with *s* or *p* or other hybrid orbitals (end-to-end): σ bonds. e⁻ density is symmetric about the internuclear axis of σ bond, groups can rotate about the bond without breaking it. - free rotation about σ bonds Single bonds are o bonds #### Multiple bonding requires π bonds #### A) **Double Bonds** Look at ethylene: C_2H_4 σ bonds between C and H and both C atoms using *sp*² hybrid orbitals leaves "p" orbitals on each C which can overlap sideways to form π bonds Trigonal planar around each C atom - whole molecule is planar π bond is perpendicular to plane No free rotation between C atoms Double bond $\equiv 1 \sigma + 1 \pi$ #### B) Triple Bonds Look at acetylene: C_2H_2 σ bonds between C and H and both C atoms using *sp* hybrid orbitals leaves 2 sets of "p" orbitals on each C which can overlap sideways to form 2 sets of π bonds $$H - C = \frac{\sigma}{2\pi} C - H$$ Linear around each C atom Triple bond $$= 1 \sigma + 2 \pi$$ #### C) Resonance & Delocalized Bonding Localized σ and π bonds can't explain resonance. Instead can think of atoms forming delocalized π bonding. #### Benzene: Each C atom is sp^2 hybridized and has 1 atomic p orbital left over - form a delocalized π bond #### VII) Molecular Orbitals Some things not explained by VB theory In MO theory orbitals are constructed as combination of AOs from <u>ALL</u> atomsin the molecule. The MO can span more than 2 atoms. Each MO can still only contain 2 e In VB theory orbitals are mixed on individual atoms 1st then bonded together as needed In MO theory the orbitals of all atoms mix and are then used to form the lowest energy molecular orbitals.