Example 2 discussed in class but not completed (you were supposed to complete it).
Given P, V and T data for the amount of CO produced determine how many moles of $\mathrm{Sb}_{4} \mathrm{O}_{6}$ were required?

$$
\mathrm{Sb}_{4} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{C}(\mathrm{~g})----->4 \mathrm{Sb}(\mathrm{~s})+6 \mathrm{CO}(\mathrm{~g})
$$

If we knew the moles of CO produced we could do a mole-to-mole stoichiometry problem.
We can determine the moles of CO given the $\mathrm{P}, \mathrm{V}, \mathrm{T}$ data using the Ideal Gas Law:
Use IGL to calculate the moles of CO

$$
\begin{aligned}
\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}} & =\frac{(0.987 \mathrm{~atm})(3.20 \mathrm{~L})}{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot-\mathrm{K})(30 \underline{0} .15 \mathrm{~K})} \\
& =0.1281 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

Convert the moles of CO to moles of $\mathrm{Sb}_{4} \mathrm{O}_{6}$

$$
\begin{aligned}
? \mathrm{~mol} \mathrm{Sb}_{4} \mathrm{O}_{6} & =0.1281 \mathrm{~mol} \mathrm{CO} \times \frac{1 \mathrm{~mol} \mathrm{Sb}_{4} \mathrm{O}_{6}}{6 \mathrm{~mol} \mathrm{CO}} \\
& =0.021 \underline{\mathbf{3}} 6 \mathrm{~mol} \mathrm{Sb}_{4} \mathrm{O}_{6} \\
& =0.0214 \mathrm{~mol} \mathrm{Sb}_{4} \mathrm{O}_{6}
\end{aligned}
$$

