Example discussed in class but not completed (you were supposed to complete it).
What volume of $\mathrm{N}_{2}(\mathrm{~g})$ at STP would be produced by the rx. of 0.86 g of $\mathrm{NO}(\mathrm{g})$?

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})----->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

1) Method 1

Do a gram to mole stoichiometry problem to convert grams of NO to moles of N_{2} and then use the IGL to calc. the volume of N_{2}.

Use IGL to calculate the vol. of N_{2}

$$
\begin{aligned}
\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}= & \left.\frac{(0.01 \mathbf{4} 33 \mathrm{~mol} \mathrm{~N}}{2}\right)(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(273.15 \mathrm{~K}) \\
& =0.3 \underline{\mathbf{2}} 13 \mathrm{~L}=0.32 \mathrm{~L}(3 \underline{\mathbf{2}} 0 \mathrm{~mL}) \text { of } \mathrm{N}_{2}
\end{aligned}
$$

2) Method 2

Convert the grams of NO to moles, use the IGL to get the vol. of NO, then do a vol. to vol. stoichiometry problem.

$$
? \mathrm{~mol} \mathrm{NO}=0.86 \mathrm{~g} \mathrm{NO} \mathrm{x} \frac{1 \mathrm{~mol} \mathrm{NO}}{30.01 \mathrm{~g} \mathrm{NO}}=0.02 \underline{\mathbf{8}} 65 \mathrm{~mol} \mathrm{NO}
$$

Use IGL to calculate the vol. of NO

$$
\begin{aligned}
\mathrm{V}=--\mathrm{nRT} & =\frac{(0.02 \underline{8} 65 \mathrm{~mol} \mathrm{NO})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(273.15 \mathrm{~K})}{(1 \mathrm{~atm})} \\
& =0.6426 \mathrm{~L} \mathrm{NO}
\end{aligned}
$$

Do a vol to vol stoich. problem to get volume of N_{2} from volume of NO

3) Method 3

Use dimensional analysis to convert grams of NO to volume of N_{2} using the Standard Molar Volume of $22.41 \mathrm{~L} / \mathrm{mol}$. You can do this because the reaction takes place at STP, which stands for Standard Temperature and Pressure (273.15 K and 1 atm).

$$
\begin{aligned}
? \mathrm{~L} \mathrm{~N}_{2}= & 0.86 \mathrm{~g} \mathrm{NO} \times \frac{1 \mathrm{~mol} \mathrm{NO}}{30.01 \mathrm{~g} \mathrm{NO}} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{2} \\
2 \mathrm{~mol} \mathrm{NO} & \frac{22.41 \mathrm{~L} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}} \\
& =0.3 \underline{\mathbf{2}} 11 \mathrm{~L}=0.32 \mathrm{~L}(3 \underline{\mathbf{2}} 0 \mathrm{~mL}) \text { of } \mathrm{N}_{2}
\end{aligned}
$$

This is like method 1 above with 1 extra step. Can only do this (use $22.41 \mathrm{~L} / \mathrm{mol}$) at STP.

