II) Changes of State

Phase Changes or Transitions
Energy must be supplied to overcome IAF when phase changes involve going to a less ordered state.
A) Fusion (Melting)
$s \xrightarrow{\Delta} l$ endothermic $T \uparrow K E \uparrow$, until $K E \approx I A F$ moles. vibrate $\&$ overcome IAF
$\Delta H_{\text {fus }} \equiv$ molar heat of fusion $\left(\frac{\mathrm{kT}}{\mathrm{mol}}\right)$ heat (enthalpy) reg. to melt 1 mole of solid
B) Vaporization (Evaporation)
$l \xrightarrow{\Delta} g$ endothermic
Molecule must:

1) be near surface
2) have sufficient energy to overcome IAF

- inc. T (add heat)
$\Delta H_{v} \equiv$ molar heat of vaporization $\left(\frac{\mathrm{kJ}}{\mathrm{mol}}\right)$ heat reg. to convert 1 mole of liq. to vapor, at a given temp.

Transparency 82 Figure 11.17 Distribution of kinetic energies of surface molecules

c) $\triangle H$ and IAF
larger $\Delta H_{v} \Rightarrow$ stronger IAF in liquid
larger $\Delta H_{\text {frs }} \Rightarrow$ stronger IAF in solid.

$$
\Delta H_{v}>\Delta H_{\text {fus }}
$$

I) Vapor Pressure

Evap. in a closed container
\# gas molecules inc. \& they exert a pressure

- some moles. condense back into liq.

Eventually,
rate of rap. = rate of cone
Dynamic Equilibrium

$$
l \underset{\text { condensation }}{\stackrel{\text { vaporization }}{\rightleftharpoons}} g
$$

Vapor Pressure
Pressure exerted by a gas in equal. w. its liquid
V.P. depends on IAF in liquid
stronger IAF \Rightarrow lower V.P.
Also,
$T \uparrow \quad$ VIP. \uparrow

Transparency 81
 Figure 11.18 Vapor pressure of four liquids as a function of temperature

I) Boiling Points

Heat a liq. open to atmosphere
T inc., V.P. inc. until,
V.P. $=\mathrm{atm}$. pressure

Bubbles of vapor form throughout liquid Boiling
Boiling Pt.
Temp. at which

$$
\text { VIP. }=P_{\text {atm }}
$$

Normal b.p \equiv b.p. at 1 atm
A) Clausis-Clapeyron Eq.

$$
\ln P=-\frac{\Delta H_{v}}{R T}+C
$$

$$
P \equiv V_{1} P \cdot \text { at } T(k)
$$

$$
R \equiv 8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$C \equiv$ constant of integration
Use to find $\triangle H_{v}$:
Plot $\ln P$ voes. $\frac{1}{T}$

- linear

$$
\text { slope }=-\frac{\Delta H_{2}}{R}
$$

1) Base 10 Form

$$
\log P=-\frac{\Delta H_{v}}{2.303 \cdot R T}+C
$$

Plot $\log P$ va. $\frac{1}{T}$

$$
\text { slope }=-\frac{\Delta H_{v}}{2.303 \cdot R}
$$

2) Two-Point Form

$$
\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{\Delta H_{2}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

Ebbing, GENERAL CHEMISTRY, Third Edition
Figure 11.9 Logarithm of vapor pressure versus $1 / T$

3) Ex: The following is $P-T$ data for ethanol. what is $\Delta \mathrm{H}_{v}$?

$$
\begin{gathered}
P_{1}=43.9 \text { tor at } T_{1}=20^{\circ} \mathrm{C} \\
P_{2}=352.7 \text { torr at } T_{2}=60^{\circ} \mathrm{C} \\
\ln \left(\frac{P_{2}}{P_{1}}\right)=\frac{\Delta H_{v}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln \left(\frac{352.7}{43.9}\right)=\frac{\Delta H_{v}}{8.345 \mathrm{Jma} d \mathrm{~K}}\left(\frac{1}{293 \mathrm{~K}}-\frac{1}{333 \mathrm{~K}}\right) \\
\Delta H_{v}=42.3 \mathrm{~kJ} / \operatorname{mol}
\end{gathered}
$$

VI) Melting Point
m.p. is temp. at which
solid $\&$ liq. coexist in equilibrium

$$
s \underset{\text { freezing }}{\stackrel{\text { melting }}{\rightleftharpoons}} \ell
$$

normal mp. \equiv mp. at 1 atm
Changes in P have very small effects on m.p.
III) Vapor Pressure of Solids

$$
\begin{aligned}
& \& \stackrel{\text { sublimation }}{\stackrel{\text { deposition }}{ } g} \\
& T \uparrow \quad P_{\text {rap }} \uparrow \\
& I A F \uparrow \quad P_{\text {vap }} \downarrow \\
& \text { Generally, } \\
& V_{1} P_{\text {Solid }}<V_{1} P_{\text {liq. }}
\end{aligned}
$$

Transparency 79 Figure 11.14 Energy changes accompanying phase changes

