Chapter 19

Chemical Thermodynamics

Kinetics

How fast a rxn. proceeds

Equilibrium

How far a rxn proceeds towards completion

Thermodynamics
Study of energy relationships \& changes which occur during chemical \& physical processes
A) First Law of Thermodynamics

Law of Conservation of Energy :

Energy can be neither created nor destroyed but may be converted from one form to another.

Energy lost = Energy gained by system by surroundings

1) Internal Energy, E

$E=$ total energy of the system
Actual value of E
cannot be determined
Only $\Delta \mathrm{E}$
2) Relating ΔE to Heat \& Work

2 types of energy exchanges occur between system \& surroundings

Heat \& Work

$+q$: heat absorbed, endothermic

- q : heat evolved, exothermic
+ w : work done on the system
- w : work done by the system
a) First Law

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}
$$

3) System and Surroundings

System = portion we single out for study

- focus attention on changes which occur w/in definite boundaries

Surroundings $=$ everything else

System : Contents of rx. flask
Surround. : Flask \& everything outside it
Agueous soln. rx :

System : dissolved ions \& molecules Surround : $\mathrm{H}_{2} \mathrm{O}$ that forms the soln.

B) Thermodynamic State \& State Functions

Thermodynamic State of a System

defined by completely specifying ALL properites of the system

- P, V, T, composition, physical st.

1) State Function

prop. of a system determined by specifying its state.
depends only on its present conditions \& NOT how it got there

$$
\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}
$$

independent of path taken to carry out the change

- Also is an extensive prop.
C) Enthalpy

In ordinary chem. rx., work generally arises as a result of pressure-volume changes

Inc. vol. \& system does work against pressure of the atmosphere

Constant Pressure

$$
\mathrm{w}=-\mathrm{P} \Delta \mathrm{~V}
$$

Negative because work done by system

$\Delta \mathrm{E}=\mathrm{q}-\mathrm{P} \Delta \mathrm{V}$

1) ΔE at Constant Volume

$\Delta E=q_{v}$
2) $\Delta \mathrm{E}$ at Constant Pressure :

$$
\begin{aligned}
& \Delta E=q_{p}-P \Delta V \\
& q_{p}=\Delta E+P \Delta V
\end{aligned}
$$

3) Enthalpy, H

$$
H=E+P V
$$

Change in enthalpy at constant P is:

$$
\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{~V}
$$

\&

$\Delta \mathrm{H}=\mathrm{q}_{\mathrm{p}}$

Can think of as heat content
state fnc. \& is extensive
D) Enthalpies of Reaction
$\Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta \mathrm{H}=-572 \mathrm{~kJ}$

Thermochemical eqn.
Physical states are given and energy associated w. rx. written to right

- MUST give physical states

If product is $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}=-484 \mathrm{~kJ}$
$\Delta \mathrm{H}$ corresponds to molar quantities given in eqn. as written
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell) \quad \Delta \mathrm{H}=-286 \mathrm{~kJ}$

1) Guidelines

a) Enthalpy is extensive

Multiply a rxn by some factor the
$\Delta \mathrm{H}$ is multiplied by that factor
b) $\Delta \mathrm{H}_{\text {reverse }}=-\Delta \mathrm{H}_{\text {forward }}$
c) Enthalpy is a state function
$\Delta \mathrm{H}$ depends on the states of reactants and products.
E) Hess's Law
$\Delta \mathrm{H}$ is a state fnc.
Same whether the process occurs as a single step or as a series of steps

The $\Delta \mathrm{H}_{\mathrm{rxn}}$ is the sum of the $\Delta \mathrm{H}^{\prime} \mathrm{s}$ for the individual steps.

$$
\Delta H_{r x}=\sum_{\text {Steps }} \Delta H_{\text {steps }}
$$

* Add chem. eqn's for steps to get overall rxn.
* Add $\Delta \mathrm{H}_{\text {steps }} \Rightarrow \Delta \mathrm{H}_{\mathrm{rxn}}$

1) Note:

In using Hess's Law:

a) If an eqn. is multiplied by a factor, $\Delta \mathrm{H}$ is multiplied by the same factor.
b) If an eqn. is reversed, sign of $\Delta \mathrm{H}$ changes
c) All substances NOT appearing in desired eqn. MUST cancel
F) Enthalpy of Formation

Enthalpy change for the formation of a compound from its elements

$\Delta \mathrm{H}_{\mathrm{f}}$

1) Standard enthalpy change

Enthalpy change when all reactants and and products are in their standard states
ΔH°

2) Standard State

Most stable state of a substance in its pure form under standard pressure (1 atm) (\& some specified temp. of interest - usually $25^{\circ} \mathrm{C}$)
3) Thermochemical Standard States
a) solid or liquid

Pure substance at 1 atm
b) gas
partial pressure of 1 atm
c) species in solution

$$
\text { Conc. of } 1 \mathrm{M}
$$

4) Standard Enthalpy of Formation

ΔH for the rxn in which 1 mole of a cmpd. is formed from its elements with ALL substances in their standard states (in kJ/mol)
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$

Note: $\quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=\mathbf{0}$ for an element in its standard state
$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$
$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})-46.2$
$\mathrm{Na}(\mathrm{s})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{s}) \quad-411.0$
$\mathrm{C}($ graphite $) \rightarrow \mathrm{C}($ diamond $) \quad+1.897$

THERMODYNAMIC QUANTITIES
FOR SELECTED SUBSTANCES
AT $298.15 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Substance \& \[
\begin{aligned}
\& \Delta \boldsymbol{H}_{f}^{\circ} \\
\& (\mathbf{k J} / \mathrm{mol})
\end{aligned}
\] \& \[
\begin{aligned}
\& \Delta G_{f}^{\circ} \\
\& (\mathrm{kJ} / \mathrm{mol})
\end{aligned}
\] \& \[
\begin{aligned}
\& S^{\circ} \\
\& (\mathrm{J} / \text { mol-K })
\end{aligned}
\] \& Substance \& \begin{tabular}{l}
\(\Delta \boldsymbol{H}_{\dot{f}}\) \\
(\(\mathrm{kJ} / \mathrm{mol}\))
\end{tabular} \& \(\Delta G_{f}^{\circ}\) (\(\mathrm{kJ} / \mathrm{mol}\)) \& \[
\begin{aligned}
\& S^{\circ} \\
\& (\mathrm{J} / \mathrm{mol}-\mathrm{K})
\end{aligned}
\] \\
\hline Aluminum \& \& \& \& \(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\) \& 52.30 \& 68.11 \& 219.4 \\
\hline \(\mathrm{Al}(\mathrm{s})\) \& 0 \& 0 \& 28.32 \& \(\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})\) \& -84.68 \& -32.89 \& 229.5 \\
\hline \(\mathrm{AlCl}_{3}(\mathrm{~s})\) \& -705.6 \& -630.0 \& 109.3 \& \(\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})\) \& -103.85 \& -23.47 \& 269.9 \\
\hline \(\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})\) \& -1669.8 \& -1576.5 \& 51.00 \& \(\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})\) \& -124.73 \& -15.71 \& 310.0 \\
\hline Barium \& \& \& \& \(\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{l})\) \& -147.6 \& -15.0 \& 231.0 \\
\hline Barium

a \& 0 \& 0 \& 63.2 \& $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$ \& 82.9 \& 129.7 \& 269.2

\hline $\mathrm{BaCO}_{3}(\mathrm{~s})$ \& -1216.3 \& -1137.6 \& 112.1 \& $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$ \& 49.0 \& 124.5 \& 172.8

\hline $\mathrm{BaO}(\mathrm{s})$ \& -553.5 \& -525.1 \& 10.42 \& $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$ \& -201.2 \& -161.9 \& 237.6

\hline \& \& \& \& $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$ \& -238.6 \& -166.23 \& 126.8

\hline Beryllium \& \& \& \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$ \& -235.1 \& -168.5 \& 282.7

\hline $\mathrm{Be}(\mathrm{s})$ \& 0 \& 0 \& 9.44 \& $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$ \& -277.7 \& -174.76 \& 160.7

\hline $\mathrm{BeO}(\mathrm{s})$ \& -608.4 \& -579.1 \& 13.77 \& $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})$ \& -1273.02 \& -910.4 \& 212.1

\hline $\mathrm{Be}(\mathrm{OH})_{2}(\mathrm{~s})$ \& -905.8 \& -817.9 \& 50.21 \& $\mathrm{CO}(\mathrm{g})$ \& -110.5 \& -137.2 \& 197.9

\hline Bromine \& \& \& \& $\mathrm{CO}_{2}(\mathrm{~g})$ \& -393.5 \& -394.4 \& 213.6

\hline $\operatorname{Br}(\mathrm{g})$ \& 111.8 \& 82.38 \& 174.9 \& $\mathrm{CH}_{3} \mathrm{COOH}(l)$ \& -487.0 \& -392.4 \& 159.8

\hline $\mathrm{Br}^{-}(\mathrm{aq})$ \& -120.9 \& -102.8 \& 80.71 \& Cesium \& \& \&

\hline $\mathrm{Br}_{2}(\mathrm{~g})$ \& 30.71 \& 3.14 \& 245.3 \& $\mathrm{Cs}(\mathrm{g})$ \& 76.50 \& 49.53 \& 175.6

\hline $\mathrm{Br}_{2}(l)$ \& 0 \& 0 \& 152.3 \& $\mathrm{Cs}(l)$ \& 2.09 \& 0.03 \& 92.07

\hline $\mathrm{HBr}(\mathrm{g})$ \& -36.23 \& -53.22 \& 198.49 \& $\mathrm{Cs}(\mathrm{s})$ \& 0 \& 0 \& 85.15

\hline Calcium \& \& \& \& $\mathrm{CsCl}(\mathrm{s})$ \& -442.8 \& -414.4 \& 101.2

\hline $\mathrm{Ca}(\mathrm{g})$ \& 179.3 \& 145.5 \& 154.8 \& Chlorine \& \& \&

\hline $\mathrm{Ca}(\mathrm{s})$ \& 0 \& 0 \& 41.4 \& $\mathrm{Cl}(\mathrm{g})$ \& 121.7 \& 105.7 \& 165.2

\hline $\mathrm{CaCO}_{3}(\mathrm{~s}$, calcite) \& -1207.1 \& -1128.76 \& 92.88 \& $\mathrm{Cl}(\mathrm{aq})$ \& -167.2 \& -131.2 \& 56.5

\hline $\mathrm{CaCl}_{2}(\mathrm{~s})$ \& -795.8 \& -748.1 \& 104.6 \& $\mathrm{Cl}_{2}(\mathrm{~g})$ \& 0 \& 0 \& 222.96

\hline $\mathrm{CaF}_{2}(\mathrm{~s})$ \& -1219.6 \& -1167.3 \& 68.87 \& $\mathrm{HCl}(\mathrm{aq})$ \& -167.2 \& -131.2 \& 56.5

\hline $\mathrm{CaO}(\mathrm{s})$ \& -635.5 \& -604.17 \& 39.75 \& $\mathrm{HCl}(\mathrm{g})$ \& -92.30 \& -95.27 \& 186.69

\hline $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$ \& -986.2 \& -898.5 \& 83.4 \& \& \& \&

\hline $\mathrm{CaSO}_{4}(\mathrm{~s})$ \& -1434.0 \& -1321.8 \& 106.7 \& Chromium

$$
\operatorname{Cr}(g)
$$ \& 397.5 \& 352.6 \& 174.2

\hline Carbon \& \& \& \& $\mathrm{Cr}(\mathrm{s})$ \& 0 \& 0 \& 23.6

\hline $\mathrm{C}(\mathrm{g})$ \& 718.4 \& 672.9 \& 158.0 \& $\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$ \& -1139.7 \& -1058.1 \& 81.2

\hline $\mathrm{C}(s$, diamond) \& 1.88 \& 2.84 \& 2.43 \& \& \& \&

\hline $\mathrm{C}(s$, graphite) \& 0 \& 0 \& 5.69 \& \& \& \&

\hline $\mathrm{CCl}_{4}(\mathrm{~g})$ \& -106.7 \& -64.0 \& 309.4 \& $$
\begin{aligned}
& \mathrm{Co}(g) \\
& \mathrm{Co}(\mathrm{~s})
\end{aligned}
$$ \& 439

0 \& 393
0 \& 179
28.4

\hline $\mathrm{CCl}_{4}(\mathrm{l})$ \& -139.3 \& -68.6 \& 214.4 \& \& \& \&

\hline $\mathrm{CF}_{4}(\mathrm{~g})$ \& -679.9 \& -635.1 \& 262.3 \& Copper \& \& \&

\hline $\mathrm{CH}_{4}(\mathrm{~g})$ \& -74.8 \& -50.8 \& 186.3 \& $\mathrm{Cu}(\mathrm{g})$ \& 338.4 \& 298.6 \& 166.3

\hline $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})$ \& 226.77 \& 209.2 \& 200.8 \& $\mathrm{Cu}(\mathrm{s})$ \& 0 \& 0 \& 33.30

\hline \& \& \& \& \& \& \& 1059

\hline
\end{tabular}

C) Determine $\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}$ from $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}^{\circ}=\sum_{\text {prod. }} \mathrm{n} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}-\sum_{\text {react. }} \mathrm{m} \Delta \mathrm{H}_{\mathrm{f}}^{\circ}
$$

$\mathrm{n}=$ coef. in bal. eqn. for each product
$m=$ coef. in bal. eqn. for each reactant

I) Spontaneous Processes

Spontaneous Process
Process which proceeds on own without outside assistance

- occurs in one direction only

NONspontaneous Process
Can NOT proceed w/o outside assistance

- reverse of spont. process

Processes which are spont. in one direction are nonspont. in the reverse direction.

Mix 2 ideal gases

Open stopcock

Spontaneously mix

Reverse process is NOT spont.

Will all spont. rxns. be exothermic or vice versa?

Will all nonspont. rxns. be endothermic or vice versa?

Spontaneity can depend on temp. \& pressure

For $\mathrm{H}_{2} \mathrm{O}$:
$\mathrm{T}>0^{\circ} \mathrm{C}$: melting spont.
$\mathrm{T}<0{ }^{\circ} \mathrm{C}$: freezing spont.
$\mathrm{T}=0^{\circ} \mathrm{C}$: equilibrium and neither conversion occurs spont.

A) Reversible \& IRreversible Processes

1) Reversible Process

Change made in a way that system \& surroundings can be restored to their original states by exactly reversing chg

NO net chg. to system or its surr.

2) IRreversible Process

Can NOT simply be reversed to restore system \& surroundings to their original states

A reversible change produces the max. amt. of work which can be done by a system on its surroundings.

3) Isothermal Expansion of a Gas

Expansion of ideal gas at constant temperature.

Remove partition - gas spont. expands to fill the whole cylinder. No work is done by the system.

Compressing the gas back to the original state requires surroundings to do work on the system.

Process is IRreversible

Can be done reversibly by doing the expansion and compression infinitely slowly so the external and internal pressures are always in equilibrium.

- can not actually be
done in real processes
- ALL real processes are IRreversible

4) Conclusions

a) A spont. process is an IRreversible process
b) Driving force is tendency to go to a less ordered state or state of higher probability.

II) Entropy, S \& $2^{\text {nd }}$ Law of Thermodynamics

Measure of randomness or disorder in a system

or

Extent to which energy is distributed among the various motions of the molecules in the system.

State Fnc: $\quad \Delta \mathrm{S}=\mathrm{S}_{\text {final }}-\mathrm{S}_{\text {initial }}$
$\Delta S>0 \quad S_{f}>S_{i} \quad$ inc. in disorder
$\Delta \mathrm{S}<0 \quad \mathrm{~S}_{\mathrm{f}}<\mathrm{S}_{\mathrm{i}}$ dec. in disorder

A) Isothermal Process

Constant temp. process

$$
\begin{aligned}
& \Delta \mathrm{S}=--\mathrm{q} \\
& \mathrm{~T} \\
& \mathrm{q}_{\mathrm{rev}}=\text { heat which would be } \\
& \text { transferred if process } \\
& \text { were reversible }
\end{aligned}
$$

S is a state function

- Thus this eqn. can be used to calc. $\Delta \mathrm{S}$ for any isothermal process (whether reversible or irreversible).

1) ΔS and Phase Changes

Phase changes occur at constant T
$\mathrm{q}_{\text {rev }}=\Delta \mathrm{H}_{\text {phase change }}$
$\Delta \mathrm{S}_{\text {phase change }}=------\frac{\mathrm{H}_{\text {phase change }}}{\mathrm{T}}$
a) Ex: boiling water at $100^{\circ} \mathrm{C}$
$\Delta \mathrm{H}_{\text {vap }}=44.01 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{S}_{\text {vap }}=\stackrel{\Delta \mathrm{H}_{\text {vap }}}{\mathrm{T}}=\frac{44.01 \mathrm{~kJ} / \mathrm{mol}}{373.15 \mathrm{~K}}$

$$
\begin{aligned}
& =0.1178 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K} \\
& =+117.8 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{aligned}
$$

B) $2^{\text {nd }}$ Law of Thermodynamics and S

Irreversible Process

Results in inc. in $\mathrm{S}_{\text {total }}(\Delta \mathrm{S}>0)$

Reversible Process

Results in no change in $\mathrm{S}_{\text {total }}(\Delta \mathrm{S}=0)$

$2^{\text {nd }}$ Law of Thermodynamics

Total entropy of a system \&
its surroundings always inc.
for a spont. process
Irreversible (Spont.) Process
$\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surf }}>0$
Reversible Process
$\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {sur r }}=0$

1) Ex: 1 mole of Liquid water is left outside where it's $-10.0^{\circ} \mathrm{C}$ and it freezes. Call. $\Delta \mathrm{S}_{\text {sys }} \& \Delta \mathrm{~S}_{\text {surf }}$. Will it spontaneously freeze?
$\Delta \mathrm{H}_{\text {fus }}=+6.01 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\text {freezing }}=-\Delta \mathrm{H}_{\text {fus }}=-6.01 \mathrm{~kJ} / \mathrm{mol}$

$$
=-0.0220 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K}=-22.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

$$
=+0.0229 \mathrm{~kJ} / \mathrm{mol} \cdot \mathrm{~K}=+22.9 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

$$
\begin{aligned}
\Delta \mathrm{S}_{\text {univ }} & =\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {sur r }} \\
& =(-22.0 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{~K})+(+22.9 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}) \\
& =+0.9 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{~K} \quad \text { Spent. }
\end{aligned}
$$

This shows that even though the entropy of the system DEC. the process was still spont. because the entropy of the surroundings increased more.
$\Delta S_{\text {univ }}>0$

Spont. processes occur w. an overall INC. in $\Delta S_{\text {univ }}$

Practically speaking we can't always easily determine $\Delta \mathrm{S}_{\text {univ }}$.

Want to focus on the system. Will see how to determine spontaneity based on $\Delta \mathrm{S}_{\text {sys }}$.

Simplify notation and refer to $\Delta \mathrm{S}_{\text {sys }}$ simply as $\Delta \mathrm{S}$

III) Molecular Inerpretation of Entropy

A) Expansion of Gas at Molecular Level

Have the following system:

(a)

The two molecules are colored red and blue to keep track of them.

Open stopcock:
We know gas expands spont.
Why?
Look at possible arrangements
of the particles

Four possible arrangements (microstates) once the stopcock is opened.

Probability that blue molecule is in left flask is $1 / 2$. Same for the red particle.

Probability that both molecules remain in the left flask is:

$$
(1 / 2)^{2}=1 / 4
$$

For 3 particles it would be

$$
(1 / 2)^{3}=1 / 8
$$

Consider a mole of gas:
Prob. all the molecules are in the left flask at the same time is:
$(1 / 2)^{N} \quad$ where $\mathrm{N}=6.02 \times 10^{23}$
Infinitesimally small!!!
Essentially ZERO prob. of all molecules in left flask at same time.

- Gas SPONT. expands
to fill both flasks
- Does NOT spont. go back to left flask

Most probable arrangements are those with essentially equal numbers of particles in both flasks.

Gas spreads out and the arrangement of gas particles is more disordered than when confined to one flask

Greater entropy

Just seen disorder on the molecular level

B) Boltzmann's Eqn. \& Microstates

Statistical Thermodynamics

Uses statistics and probability to link microscopic \& macroscopic worlds.

Microstate

Single possible arrangement of the positions and kinetic energies of the molecules - snapshot

Exceptionally LARGE \# microstates

Can use probability and statistics to determine total \# microstates for a thermodynamic state

$\mathrm{W}=\#$ microstates

Very Large \# for a mole of particles
Related to Entropy

Boltzmann Eqn.

$\mathrm{S}=\mathrm{k} \cdot \ln \mathrm{W}$

$$
\begin{aligned}
\mathrm{k} & =\text { Boltzmann's constant } \\
& =1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

S is a measure of \# microstates associated w. a particular macroscopic state
$\Delta \mathrm{S}=\mathrm{k} \cdot \ln \mathrm{W}_{\text {final }}-\mathrm{k} \cdot \ln \mathrm{W}_{\text {initial }}$

$$
=\mathrm{k} \cdot \ln \frac{\mathrm{~W}_{\mathrm{f}}}{-----} \mathrm{W}_{\mathrm{i}}
$$

When $\mathrm{W}_{\mathrm{f}}>\mathrm{W}_{\mathrm{i}} \quad \Delta \mathrm{S}>0$

Entropy inc. w. \# microstates
Ex: Inc volume of a gas
greater vol - greater \# of positions available to the particles and greater \# microstates
\therefore Entropy inc. as vol. inc.

C) Molecular Motions and Energy

Ideal gas particles are idealized points w. no vol. and no bonds

- translational motion only

Real molecules

- translational motion
- rotational motions
spin about an axis
Linear:
2 axes of spin
Nonlinear: 3 axes of spin

- vibrational motions

$$
\begin{aligned}
& \text { Atoms periodically move toward } \\
& \& \text { away from each other } \\
& \text { Linear: } \quad 3 N-5 \\
& \text { Nonlinear: } \quad 3 N-6
\end{aligned}
$$

$\mathrm{N}=\#$ atoms in molecule $(\mathrm{N}>2)$
\# microstates inc. as complexity of molecule inc.

- there are many more vibrational motions

D) Predicting Sign of $\Delta \mathrm{S}$

1) Phase changes

Solid ----> Liquid ----> Gas

$$
\Delta S>0 \quad \Delta S>0
$$

2) Number of Molecules Inc.

$$
\mathrm{F}_{2}(\mathrm{~g}) \text {----> } 2 \mathrm{~F}(\mathrm{~g})
$$

$$
\Delta S>0
$$

3) Inc. \# Atoms in a Molecule

Inc. degrees of freedom

$$
\Delta S>0
$$

4) Mixing of Substances

Generally, $\Delta \mathrm{S}_{\text {soln }}>0$
5) Temp. Changes

Inc. Temp., KE inc.

- molecules move faster
- broadens distribution of speeds
$\Delta S>0$

6) Vol. Inc.

$$
\begin{aligned}
& \text { Vol. inc. - greater \# positions } \\
& \text { available to atoms }
\end{aligned}
$$

$\Delta S>0$
E) Ex: The $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ of liquid acetone is
$-247.6 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. The $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ for the vapor is $-216.6 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. What is the entropy change when 1.00 mol of liquid acetone vaporizes at $25^{\circ} \mathrm{C}$?
F) Ex: A sample of 2.00 mol of an ideal gas expands from a vol. of 1.0 L to 10.0 L at constant temperature. What is the entropy change, $\Delta \mathrm{S}$? Is the sign of ΔS consistent w. your expectations?

IV) Third Law \& Standard Entropy

A) $3^{\text {rd }}$ Law

A perfectly crystalline substance at 0 K has entropy of zero

Can measure Absolute entropy, also called standard entropy, S°

- entropy value for standard state of species

Standard State

Pure substance: 1 atm pressure
Species in Soln: 1 M

Can calculate from heat capacities

$S_{T}^{\circ}=\int_{0}^{T} \frac{C_{p}(T) d T}{T}$

1) Values for compounds do NOT correspond to formation from the elements
2) Absolute entropy of an element in its solid state $\neq 0$
3) Values on order of 10 's of joules (not kJ like enthalpy)

Formula	$\begin{aligned} & S^{\circ}, \\ & \mathbf{J} /(\mathbf{m o l} \cdot \mathbf{K}) \end{aligned}$	Formula	$\begin{aligned} & S^{\circ}, \\ & \mathbf{J} /(\mathbf{m o l} \cdot \mathbf{K}) \end{aligned}$	Formula	$\begin{aligned} & S_{\mathbf{J} /(\mathbf{m o l} \cdot \mathbf{K})}, \end{aligned}$
Hydrogen		Carbon		Carbon (continued)	
$\mathrm{H}^{+}(a q)$	0	C(graphite)	5.7	$\operatorname{HCN}(l)$	112.8
$\mathrm{H}_{2}(\mathrm{~g})$	130.6	C(diamond)	2.4	$\mathrm{CCl}_{4}(\mathrm{~g})$	309.7
Sodium		$\mathrm{CO}(\mathrm{g})$	197.5	$\mathrm{CCl}_{4}(\mathrm{l})$	214.4
$\mathrm{Na}^{+}(\mathrm{aq})$	60.2	$\mathrm{CO}_{2}(\mathrm{~g})$	213.7	$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$	266
$\mathrm{Na}(\mathrm{s})$	51.4	$\mathrm{HCO}_{3}{ }^{-}(a q)$	95.0	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	161
$\mathrm{NaCl}(\mathrm{s})$	72.1	$\mathrm{CH}_{4}(\mathrm{~g})$	186.1	Silicon	
$\mathrm{NaHCO}_{3}(s)$	102	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	219.2	$\mathrm{Si}(\mathrm{s})$	18.0
$\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$	139	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	229.5	$\mathrm{SiO}_{2}(s)$	41.5
Calcium		$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	172.8	$\mathrm{SiF}_{4}(\mathrm{~g})$	285
$\mathrm{Ca}^{2+}(a q)$	-55.2	$\mathrm{HCHO}(\mathrm{g})$	219	Lead	
$\mathrm{Ca}(\mathrm{s})$	41.6	$\mathrm{CH}_{3} \mathrm{OH}(l)$	127	$\mathrm{Pb}(\mathrm{s})$	64.8
$\mathrm{CaO}(s)$	38.2	$\mathrm{CS}_{2}(\mathrm{~g})$	237.8	$\mathrm{PbO}(s)$	66.3
$\mathrm{CaCO}_{3}(s)$	92.9	$\mathrm{CS}_{2}(l)$	151.0	$\mathrm{PbS}(s)$	91.3
		$\mathrm{HCN}(g)$	201.7		

B) Entropy Change for a Rxn.

$$
\Delta \mathrm{S}_{\mathrm{rxn}}^{\circ}=\sum_{\text {prod. }} \operatorname{n} \mathrm{S}^{\circ}-\sum_{\text {react. }} \mathrm{m} S^{\circ}
$$

$\mathrm{n}=$ coef. in bal. eqn. for each product
$m=$ coef. in bal. eqn. for each reactant

1) Ex: Calculate the entropy change for the formation of $\mathrm{H}_{2} \mathrm{O}$ from its elements at $25^{\circ} \mathrm{C}$.

$$
\mathrm{S}_{(\mathrm{H} 2)}^{0}=130.58 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

$$
\mathrm{S}_{(\mathrm{O})}^{0}=205.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

$$
\mathrm{S}_{(\mathrm{H} 2 \mathrm{O}, \text { liq) }}^{0}=69.91 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
$$

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \nRightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

$\Delta \mathrm{S}_{\mathrm{rxn}}^{\circ}=2 \mathrm{~S}_{(\mathrm{H} 2 \mathrm{O}, \mathrm{liq})}^{0}-\left[2 \mathrm{~S}_{(\mathrm{H} 2)}^{0}+\mathrm{S}_{(\mathrm{O} 2)}^{0}\right]$

$$
=(2 \mathrm{~mol})(69.91 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K})-
$$

$$
[(2 \mathrm{~mol})(130.58 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{~K})+
$$

$$
(1 \mathrm{~mol})(205.0 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{~K})]
$$

$$
=-326.3 \mathrm{~J} / \mathrm{K}
$$

V) Gibbs Free Energy \& Spontaneity

$$
\mathrm{G}=\mathrm{H}-\mathrm{TS}
$$

State Fnc: $\quad \Delta \mathrm{G}=\mathrm{G}_{\text {final }}-\mathrm{G}_{\text {initial }}$
At constant T \& P
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
Under standard state conditions,
$\Delta \mathrm{G}^{\circ}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{S}^{\circ}$

How does this relate to spontaneity?

$\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}$

$$
=\Delta \mathrm{S}_{\mathrm{sys}}+\frac{-\Delta \mathrm{H}_{\mathrm{sys}}}{\mathrm{~T}}
$$

Rearrange:

$$
\begin{gathered}
-\mathrm{T} \Delta \mathrm{~S}_{\text {univ }}=\Delta \mathrm{H}_{\text {sys }}-\mathrm{T} \Delta \mathrm{~S}_{\text {sys }} \\
\Delta \mathrm{G}=-\mathrm{T} \Delta \mathrm{~S}_{\text {univ }}
\end{gathered}
$$

Now have an eqn. which relates spont. to the system.

At constant T \& P

$\Delta \mathrm{G}<0 \quad$ spont.
$\Delta \mathrm{G}>0 \quad$ NONspont.
$\Delta \mathrm{G}=0$
equilibrium
A) Standard Free-Energy Change

$$
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}
$$

reactants in
standard state products in standard state
B) Standard Free Energies of Formation
$\Delta 6^{\circ}$ when 1 mole of substance is formed from its elements in their stablest states at $1 \mathrm{~atm}($ or 1 m) at a specified temp. (usually $25^{\circ} \mathrm{C}$).

$$
\begin{aligned}
& \Delta G_{r x}^{0}=\sum_{\text {prod. }} n \Delta G_{f}^{0}-\sum_{\text {react }} m \Delta G_{f}^{0} \\
& \Delta G_{f}^{0}(\text { elments })=0
\end{aligned}
$$

Formula	$\begin{aligned} & \Delta G_{f}^{\circ}, \\ & \mathbf{k J} / \mathbf{m o l} \end{aligned}$	Formula	$\begin{aligned} & \Delta G_{f}^{\circ}, \\ & \mathbf{k J} / \mathbf{m o l} \end{aligned}$	Formula	ΔG_{f}°, $\mathrm{kJ} / \mathrm{mol}$
Hydrogen		Carbon		Carbon (continued)	
$\mathrm{H}^{+}(a q)$	0	C(graphite)	0	$\mathrm{HCN}(l)$	121
$\mathrm{H}_{2}(\mathrm{~g})$	0	C(diamond)	2.9	$\mathrm{CCl}_{4}(\mathrm{~g})$	-53.7
Sodium		$\mathrm{CO}(\mathrm{g})$	-137.2	$\mathrm{CCl}_{4}(\mathrm{l})$	-68.6
$\mathrm{Na}^{+}(a q)$	-261.9	$\mathrm{CO}_{2}(\mathrm{~g})$	-394.4	$\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{g})$	-133.7
$\mathrm{Na}(\mathrm{s})$	0	$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})$	-587.1	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(l)$	-174.8
$\mathrm{NaCl}(s)$	-348.0	$\mathrm{CH}_{4}(\mathrm{~g})$	-50.8	Silicon	
$\mathrm{NaHCO}_{3}(s)$	-851.9	$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$	68.4	$\mathrm{Si}(\mathrm{s})$	0
$\mathrm{Na}_{2} \mathrm{CO}_{3}(s)$	-1048.1	$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$	-32.9	$\mathrm{SiO}_{2}(s)$	-856.5
Calcium		$\mathrm{C}_{6} \mathrm{H}_{6}(l)$	124.5	$\mathrm{SiF}_{4}(g)$	-1506
$\mathrm{Ca}^{2+}(a q)$	-553.0	$\mathrm{HCHO}(\mathrm{g})$	-110	Lead	
$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{CH}_{3} \mathrm{OH}(l)$	-166.2	$\mathrm{Pb}(s)$	0
$\mathrm{CaO}(s)$	-603.5	$\mathrm{CS}_{2}(g)$	66.9	$\mathrm{PbO}(s)$	-189
$\mathrm{CaCO}_{3}(s)$	-1128.8	$\mathrm{CS}_{2}(\mathrm{l})$	63.6	$\operatorname{PbS}(s)$	-96.7

1) Ex: calc. ΔG° at $25^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{OH}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{COHH}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \Delta G_{f}^{\circ}-177.8 \quad 0 \quad-392.5-237.2
\end{aligned}
$$ (kJTmal)

$$
\begin{gathered}
\Delta G^{\circ}=(-392.5+-237.2)-(-174.8+0) \\
\Delta G^{\circ}=-454.9 \mathrm{~kJ}
\end{gathered}
$$

2) Ex: Cole. ΔG° at $25^{\circ} \mathrm{C}$ for the conversion of diamond to graphite. Which is more stable under standard conditions?

$$
\underset{(\mathrm{kJ} / \mathrm{mol})}{\Delta G_{f}^{0}} \underset{ }{c \text { (diamond) })} \rightarrow \underset{\text { (graphite) }}{C}
$$

c) $\triangle G^{\circ}$ and Spontaneity

UG indicates spontaneity
However, if everything is in their standard states can use ΔG°

1) ΔG° is large $(-)$ number $(<-10 \mathrm{~kJ})$ spont. \& mostly products at equil. (goes to completion)
2) ΔG° is large (t) number $(>10 \mathrm{~kJ})$ nonspont. \& mostly reactants (very little $r x$.)
3) $-10 \mathrm{~kJ}<46^{\circ}<10 \mathrm{~kJ}$ equil. mixture w. significant ants. of reactants $\&$ products
4) Ex: Predict sign of $\Delta 5^{\circ}$ for the following $r x$. * whether the $r x$. is sport. \& where equil lies.

$$
\begin{aligned}
& \mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~S}) \longrightarrow \\
& \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+2 \mathrm{NH}_{3}(\mathrm{aq})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

II) Interpretation of Free Energy
A) Maximum Work
ΔG is the max. energy available (free) to do useful work
$\omega_{\max }=\Delta G \quad\binom{$ no entropy }{ produced }
$-\Delta G$: max. useful work obtainable in spent. $r x$.
$+\triangle G$: min. work required to cause a process to occur.
B) Coupling Rx's

Use a sport. $r x$. to "drive" a nonspont. $r x$.

Ex: extract Cu from an ore

$$
C u_{2} S(s) \rightarrow 2 \mathrm{Cu}(\mathrm{~s})+S(\mathrm{~s}) \quad \Delta G^{\circ}=+86.2 \mathrm{~kJ}
$$

non spout.
Couple to a sponto $r x$.

$$
\begin{gathered}
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{2}(g) \quad \Delta G^{\circ}=-300.1 \mathrm{~kJ} \\
\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Cu}(\mathrm{~s})+S \mathrm{SO}_{2}(g) \\
\Delta G^{0}=-213.9 \mathrm{~kJ}
\end{gathered}
$$

overall $r x$. is spout.
XV) Temperature Dependence of ΔG
A) Variation w. Temp.

$$
\Delta G_{T}=\Delta H_{25^{\circ} \mathrm{C}}-T \Delta S_{25^{\circ} \mathrm{C}}
$$

Assumes $\triangle H \& \Delta S$ do not vary much w. temp.

Applies to ΔG° as well
B) Predicting Spontameity
$\frac{\Delta H}{-} \frac{\Delta S}{+} \frac{\Delta G}{(-) \text { at all } T} \frac{\text { Result }}{\text { spont. }}$

+ - (+) at all T Nonspont
- (-) if T low spont. at low T
$+\quad+(-)$ if T high spont. at high T
C) Ex: For a certain process $\Delta H=178 \mathrm{~kJ}$ \& $\Delta S=160 \mathrm{~J} / \mathrm{k}$. Estimate the min. temp. at which the process will be spontaneous.
III) Relationships Between $\triangle G, \Delta 6^{\circ}, * K$
ΔG for nonstandard states is related to ΔG° by,

$$
\Delta G=\Delta G^{\circ}+R T \ln Q
$$

Q (K, if at equil.) is the thermodynamic $r x$. quotient
Conc. of gases \Rightarrow partial pressures (atm) Conc. of solutes
in liq. son. \Rightarrow molarities (M) in liq. son.

$$
\begin{aligned}
& 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{2} \mathrm{CONH}(\mathrm{ag})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& Q \text { or } K\left.=\frac{\left[\mathrm{NH}_{2} \mathrm{CONH}\right.}{2}\right] \\
& \mathrm{NH}_{3}^{2} \cdot P_{\mathrm{CO}_{2}}
\end{aligned}
$$

$$
\begin{gathered}
A(g) \rightleftharpoons B(g) \\
\Delta G=\Delta G^{\circ}+R T \ln \frac{P_{B}}{P_{A}}
\end{gathered}
$$

If $P_{A} \not \& P_{B}$ are both 1 atm,

$$
\Delta G=\Delta G^{\circ}
$$

A) Ex: What is ΔG at $25^{\circ} \mathrm{C}$ if

$$
\begin{aligned}
& \Delta G^{0}=10.0 \mathrm{~kJ} \\
& P_{A}=1.00 \mathrm{~atm}, P_{B}=1.00 \times 10^{-5} \mathrm{~atm} \\
& \Delta G=
\end{aligned}
$$

B) Relating ΔG° to K

At equilibrium,

$$
\begin{aligned}
& \triangle G=0 \quad+Q=K \\
& O=\Delta G^{\circ}+R T \ln K \\
& \Delta G^{\circ}=-R T \ln K
\end{aligned}
$$

C) 2 types of calk.
given conc. (cake $K) \Rightarrow \Delta G^{\circ}$
given ΔG_{f}° (call. ΔG°) $\Rightarrow K$

1) Ex: Determine ΔG^{0} for a $r x$. by measuring conc. at equil.

$$
\begin{aligned}
& H_{2}(\mathrm{~g})+I_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g}) \\
& P_{H I}=0.420 \mathrm{~atm}, P_{H_{2}}=0.504 \mathrm{atan} ; 25^{\circ} \mathrm{C} \\
& K
\end{aligned}=K_{P}=\frac{P_{H_{I}}^{2}}{P_{H_{2}}}=\frac{(0.420)^{2}}{0.504}=0.350 \quad \begin{aligned}
\Delta G^{\circ} & =-R T \ln K \\
& =-\left(8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~mol} . \mathrm{K}}\right)(298)(-1.05) \\
& =+2.60 \mathrm{~kJ}
\end{aligned}
$$

Nonspont., but value is small Corresponds to K reflecting signif. ames. of react. $\&$ prod. at equil.
2) Ex: Use ΔG_{f}° values to determine ΔG° + then K + from K the equil. conc.
Calk. K_{p} at $25^{\circ} \mathrm{C}$ for.

$$
\begin{aligned}
& 2 H C l(g)+F_{2}(g) \rightleftharpoons 2 H F(g)+\mathrm{Cl}_{2}(\mathrm{~g}) \\
& 1 G_{f}^{\circ}-95.3 \\
& \Delta G^{\circ}=2(-275)-2(-95.3)=-359 \mathrm{~kJ} \\
& \ln K=\frac{-\Delta G^{\circ}}{R T}=\frac{-\left(-359 \times 10^{3} \mathrm{~J}\right)}{(8.314 \mathrm{mmd} \cdot \mathrm{k})(298)}=144.9 \\
& K=K_{P}=8.5 \times 10^{62}
\end{aligned}
$$

Large $(-) \Delta G^{\circ} \Rightarrow$ large K - essentially goes to completion
D) Free-Energy Change During R_{x}.

How does free energy change along free-energy curve from reactants to products?

$$
A \rightleftharpoons B
$$

Slope of free-energy curve, $\triangle G$, determines spout. at given composition
ΔG° controls position of the min.

- depends on relative values of $G_{\text {react. }} \& G_{\text {prod. }}+$ always lies closer to lower energy

If reactants have lower energy, equil. is closer to reactants $\Delta G^{0}>0$, nonspont.

If products have lower energy, equil. is closer to products

$$
\Delta G^{\circ}<0 \text {, spont. }
$$

E) Extent of Reaction

1) ΔG° is large + negative

Forward $r x$ is spontaneous
Extremely large K

- formation of products virtually complete

2) $\triangle G^{\circ}$ is large + positive

Forward $r x$. is non spent.

- NOT complete $r x$.

Extremely small K - mostly reactants at equil.

K in range of 57 to $0.018\left(25^{\circ} \mathrm{C}\right)$
Appreciable amounts of reactants AND products at equil.
VIII) Variation of $K w . T$
A) Method 1

$$
\overline{\ln K}=\frac{-\Delta G_{T}^{\circ}}{R T}
$$

B) Method 2: van't Hoff Eqn.

$$
\ln K=\frac{-\Delta H^{\circ}}{R}\left(\frac{1}{T}\right)+C
$$

or

$$
\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta H}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
$$

