Chemistry 1250 - Sp22 Practice Midterm 3

This material is copyrighted. Any use or reproduction is not allowed except with the expressed written permission of Dr. Zellmer. If you are taking Chem 1250 you are allowed to print one copy for your own use during the semester you are taking Chem 1250 with Dr. Zellmer. You are not allowed to disseminate this material to anyone else during the semester or in the future.

1.	Consider a cylinder fitted with a movable piston that can expand against the atmosphere. The initial
	pressure, volume and absolute temperature inside the cylinder are P _i , V _i and T _i . What is the new
	temperature of the system when the pressure is tripled and the volume is decreased to one half of the
	original volume?

a) $(4/9) T_i$ b) $6 T_i$ c) $(3/2) T_i$ d) $(1/6) T_i$ e) $(2/3) T_i$

2. What <u>volume</u> will 1.60 g of O_2 occupy at STP? (atomic weights: O = 16.00)

a) 44.8 L

b) 22.4 L

c) 11.2 L

d) 2.24 L

e) 1.12 L

The atmosphere in a sealed 1.0-L cylinder at 3.00 atm and 20.0° C contains hydrogen and helium. If the partial pressure of hydrogen is 0.20 atm., what is the **mass** (g) of **helium** in the cylinder? 3. (atomic weights: He = 4.00, H = 1.008)

a) 0.47

b) 0.32

c) 0.27

d) 3.2

e) 4.7

- 4. The empirical formula of a volatile liquid is C₂H₄O. A 0.345-gram sample of its vapor occupied 85.0 mL at 100.0 °C and 0.942 atm. What is the **molecular formula** for the compound? (Atomic weights: H = 1.008, C = 12.01, O = 16.00)
 - a) C_2H_4O
- b) $C_3H_6O_2$ c) $C_4H_8O_2$
- d) $C_6H_{12}O_3$ e) $C_8H_{16}O_4$

- 5. A mixture of 0.50 mol Ne, 0.50 mol of CO and 0.50 mol of H₂S is introduced into a 10.0 L container at 25°C. The container has a pinhole leak. After a period of time: (atomic weights: H = 1.008, C = 12.01, O = 16.00, Ne = 20.18, S = 32.07)
 - a) the partial pressure of Ne exceeds that of CO and that of H₂S in the remaining gas
 - b) the partial pressure of CO exceeds that of Ne and that of H₂S in the remaining gas
 - c) the partial pressure of H₂S exceeds that of Ne and that of CO in the remaining gas
 - d) the partial pressures of CO and H₂S are equal and exceed that of Ne in the remaining gas
 - e) the partial pressures of the all the gases remain equal throughout this time

- 6. Which of the following, a-d, is NOT an assumption of the kinetic molecular theory for a gas?
 - a) Gases are made up of tiny particles in constant chaotic motion.
 - b) Gas particles are very small compared to the average distance between the particles.
 - c) Gas particles collide with the walls of their container in elastic collisions.
 - d) The average velocity of the gas particles is directly proportional to the absolute temperature.
 - e) Choose this answer if **ALL** statements, **a-d**, are **correct**.

- 7. The purpose of the van der Waals equation is to give calculated pressures which are closer to the real (measured) pressures than what is obtained by using the Ideal Gas Law. For CO₂ the van der Waals constants, a and b, are 3.59 L²•atm/mol² and 0.0427 L/mol, respectively. For 1.000 mol of CO₂ at 0.0°C in a 3.000 L container one can conclude (to 4 s.f.).
 - a) The gas is behaving ideally.
 - b) The molecules experience higher net attraction to each other.
 - c) The volume of the gas molecules is now a significant fraction of the volume of the container.
 - d) The average molecular speed has increased.
 - e) no statement can be made without more information.

Calculate the volume of boron hydride, B₄H₁₀, at 755 torr and 33.0°C required to completely react with 8. 15.7 L of oxygen, O_2 , at the same temperature and pressure. (M.wts. in amu: $B_4H_{10}^2 = 53.32$, $O_2 = 31.998$, $B_2O_3 = 69.62$, $H_2O = 18.015$)

$$2 B_4 H_{10}(g) + 11 O_2(g) \rightarrow 4 B_2 O_3(s) + 10 H_2 O(g)$$

- a) 2.85 L

- b) 3.94 L c) 5.20 L d) 9.16 L e) 12.8 L

- 9. Which of the following statements is **INCORRECT**?
 - a) HF has a **greater** viscosity than HBr.
 - b) CH₃OH has a **lower** boiling point than CH₃NH₂.
 - c) The vapor pressure of solid CO_2 is **higher** than the vapor pressure of solid SO_2 at a given temperature.
 - d) CH₃F has weaker attractive forces than CH₃OH.
 - e) H₂O has a **higher** critical temperature than H₂S.

10. Which of the following compounds is **INCORRECTLY** paired with the intermolecular forces that exist between neighboring molecules?

a) SCl₆

London forces only

b) OF₂

London forces only

c) PBr₃

London forces, dipole-dipole forces

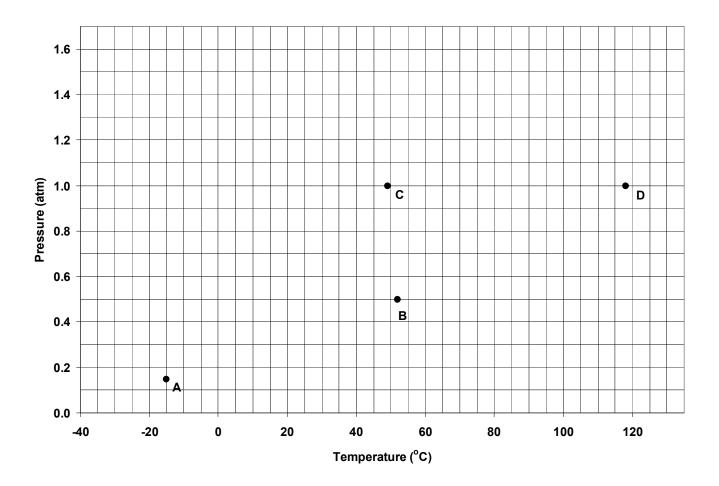
d) CH₃F

London forces, dipole-dipole forces

e) CH₃C=O | OH London forces, dipole-dipole forces, hydrogen bonding

- Calculate the amount of heat (kJ) required to heat 125 g of mercury (Hg) from 25.0°C to its boiling point (357°C) and then vaporize it? (specific heat of liquid Hg = $0.138 \text{ J/g} \cdot ^{\circ}\text{C}$, $\Delta H_{\text{vap}} = 292 \text{ J/g}$)
 - a) 42.2 kJ
- b) 47.4 kJ
- c) 30.8 kJ
- d) 36.5 kJ
- e) 5.73 kJ

For question 12, it would be helpful to sketch a phase diagram for an imaginary compound (the points are already plotted for you):


triple point = 52 °C, 0.5 atm

critical point = 329 °C, 5.8 atm (not shown)

normal melting point = 49 °C

normal boiling point = 118 °C

vapor pressure of solid at -15 $^{\circ}$ C = 0.15 atm

12. Which of the following statements is **INCORRECT** about the compound?

- a) Increasing the temperature from 0 $^{\circ}$ C to 60 $^{\circ}$ C at 0.7 atm will cause fusion to occur.
- b) The solid is **less** dense than the liquid.
- c) The solid can melt at temperatures below 49 $^{\circ}\mathrm{C}$ when the pressure is increased.
- d) Condensation occurs if the pressure is increased from 0.1 atm to 0.5 atm at 0 $^{\circ}$ C.
- e) The solid will **sublime** rather than melt when the temperature is **raised** if the **pressure** is **0.3** atm.

13.	The unit cell of an ionic compound is described as having cations, A, in a simple cubic arrangement with
	cations, B, at the body center of the cube and anions, X, at the center of each face. What is the empirical
	formula of the compound?

a) ABX_3 b) AB_2X_2 c) AB_2X_4 d) A_2BX_2 e) $A_2B_2X_3$

An element crystallizes in a body centered cubic lattice and has a radius of 1.247 Å. The density is 7.20 14. g/cm³. What is the **atomic weight**?

a) 45.0

b) 47.9

c) 52.0

d) 54.9

e) 55.8

Choose the member of each of the following pairs that are expected to have the **HIGHER** normal melting 15. point.

SiC or H ₂ O	HF or NaC	Cl Mo or Si	e^{-1} Fe ₂ O ₃ or KCl
a) SiC	NaCl	Sn	Fe_2O_3
b) SiC	NaCl	Mo	Fe_2O_3
c) SiC	HF	Mo	KCl
d) H ₂ O	NaCl	Mo	KCl
e) H ₂ O	HF	Sn	Fe_2O_3

- 16. Which of the following statements is(are) **FALSE**?
 - 1. The hexagonal close-packed structure is ABABAB---.
 - 2. Neighboring molecules in a molecular solid are held together by covalent bonds.
 - 3. Ionic substances are **good** conductors of electricity.
 - 4. Atoms in a solid consisting of only one element has **6 nearest neighbors** if the crystal structure has a face-centered cubic structure.
 - 5. LiF has the NaCl structure. Thus, each Li⁺ has 6 nearest neighbor F⁻ ions.
 - a) 3, 4
- b) 1, 3, 4
- c) 2, 3, 5
- d) 3, 4, 5
- e) 2, 3, 4
- 17. For which of the following combinations would the **solubility** be the **LOWEST**?
 - a) Na₂SO₄ in CCl₄
 - b) HF in C₂H₅OH
 - c) CH₃CN in H₂O
 - d) Br_2 in C_6H_6
 - e) NH₄Cl in H₂O
- 18. Which of the following, **a-d**, **INCORRECTLY** identifies the most important **solute-solvent** attractions in the given solution?

a) C_2H_5 -O- C_2H_5 in H_2O

London, dipole-dipole and hydrogen bonding

b) CaCl₂ in CH₃OH

ion-dipole

c) CH₃NH₂ in CCl₄

London

d) CH₃OH in CHBr₃

London, dipole-dipole and hydrogen bonding

e) Choose this answer if ALL statements, a-d, are correct.

An aqueous solution is 5.31% (by mass) glucose, $C_6H_{12}O_6$. What **mass** (in g) of solution is required to give 0.0109 moles of $C_6H_{12}O_6$? (At. Wts.: H = 1.008, C = 12.01, 0 = 16.00; Mol. Wts.: $C_6H_{12}O_6 = 180.16$, $H_2O = 18.02$)

a) 14.0

b) 28.0

c) 37.0

d) 45.0

e) 50.0

20. Which of the following aqueous solutions should have the **HIGHEST** osmotic pressure?

a) 0.012 M K₂SO₄ at 25°C

b) $0.011 \text{ M FeCl}_3 \text{ at } 50^{\circ}\text{C}$

c) 0.011 M FeCl₃ at 25°C

d) 0.02 M KCl at 25°C

e) 0.02 M KCl at 50°C

What <u>mass</u> of sucrose, $C_{12}H_{22}O_{11}$ should be dissolved in 4.00×10^2 g water to produce a solution that boils at $101.36^{\circ}C$? ($K_b = 0.512^{\circ}C/m$) (Mol. Wts.: $C_{12}H_{22}O_{11} = 342.30$, $H_2O = 18.02$)

a) 241 g

b) 273 g

c) 305 g

d) 364 g

e) 392 g

- 22. Which of the following statements is **FALSE**?
 - a) The vapor pressure of a solution with a nonvolatile solute is due just to the solvent.
 - b) A $0.10 \, m$ solution of CaSO₄ would be expected to exhibit more ion pairing than a $0.10 \, m$ solution of KCl.
 - c) The vapor pressure of a solution of a nonvolatile solute is lower than that of the pure solvent.
 - d) The vapor pressure of a solution increases with increasing temperature.
 - e) In water, hydrophilic colloid particles tend to separate from the water.
- 23. The following rate data were obtained at 25°C for the indicated reaction. What is the rate-law expression for the reaction?

		$A + 2B \rightarrow$	3 C
Exp.	[A](M)	[B] (M)	rate of reaction (M/min)
1	0.20	0.20	2.00×10^{-4}
2	0.20	0.40	1.60×10^{-3}
3	0.40	0.80	1.024×10^{-1}

a) rate = k[A][B]

b) rate = $k[A][B]^2$

c) rate = $k[A]^2[B]^2$

d) rate = $k[A]^2[B]^3$

e) rate = $k[A]^3 [B]^3$

- 24. A reaction is second order in A, 1/2 order in B and 3/2 order in C. The initial rate of the reaction is 1.0 x 10⁻⁶ M/sec and the rate constant is 70.7 M⁻³s⁻¹. If the initial concentration of A is 0.0100 M and B is 0.0200 M what is the **initial concentration** of C?
 - a) $3.0 \times 10^{-5} M$ b) 0.0050 M
- c) 0.010 M
- d) 0.020 M
- e) 0.040 M

- The reaction A \rightarrow B + C is known to be **zero**-order in A with a rate constant of 5.0 x 10^{-2} M/s at 25° C. 25. An experiment was run at 25 °C where $[A]_0 = 1.0 \text{ M}$. After 5.0 seconds, the <u>rate</u> (M/s) is
 - a) 5.0×10^{-2}

b) 2.5×10^{-2}

c) 1.25×10^{-2}

d) 1.0×10^{-3}

e) 5.0×10^{-3}

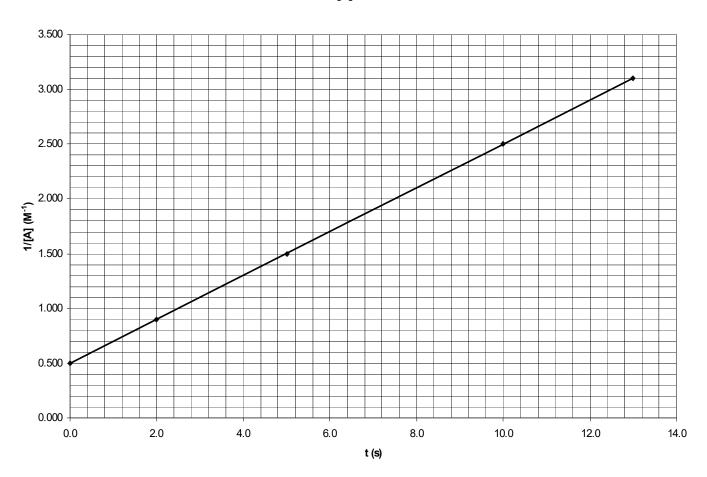
The reaction $A_2 \rightarrow B + C$ obeys the rate law 26.

rate = $(1.0 \times 10^{-2} \text{ min}^{-1}) [A_2]$ at 298 K

How long (in min) will it take for the reactant to reach 60% of its initial concentration?

a) 3.9

b) 5.1 x 10


c) 9.0 x 10

d) 6.5×10^2

e) 1.5×10^3

27. The following graph is obtained from concentration and time data. What is the <u>first half-life</u>, $t_{1/2}$ (secs) (at the start of the reaction)?

1/[A] vs t

a) 2.50

b) 3.47

c) 5.00

d) 10.0

e) 0.347

28. The rate constant for a reaction at 40.0° C is exactly three times that at 20.0° C. Calculate the Arrhenius energy of activation, E_a , for the reaction.

13

a) 30.0 kJ/mol

b) 366 kJ/mol

c) 41.9 kJ/mol

d) 3.20 kJ/mol

e) 200 kJ/mol

29. Given the following mechanism, which answer below contains all species which may be classified as **catalyst(s)** in the formation of XO_2 from X and O_2 ($X + O_2 \rightarrow XO_2$)?

a) YO₂ only

b) YO and ZO

c) XO, YO₂, and Z

- d) XO, YO, Y and ZO
- e) YO₂ and Z

Consider the following hypothetical reaction and the established rate law. Select an acceptable 30. mechanism.

$$A_2 + B_2 \rightarrow X + Y$$

$$A_2 + B_2 \rightarrow X + Y$$
 rate = k [A₂] [B₂]/[Y] (exp rate law)

a)
$$A_2 \rightleftharpoons 2 A \text{ (fast)}$$

$$B_2 + A \rightarrow C \text{ (slow)}$$

$$C + A \rightarrow X + Y \text{ (fast)}$$

c)
$$A_2 \rightleftharpoons C + Y (fast)$$

$$B_2 + C \rightarrow X \text{ (slow)}$$

d)
$$B_2 \rightarrow 2 B \text{ (slow)}$$

b) $A_2 + B_2 \rightleftharpoons C$ (fast)

 $C \rightarrow X + Y \text{ (slow)}$

$$B + A_2 \rightarrow C \text{ (fast)}$$

$$C + B \rightarrow X + Y \text{ (fast)}$$

e)
$$B_2 \rightleftharpoons 2 B$$
 (fast)

$$B \rightarrow C + Y (slow)$$

$$A_2 + C + B \rightarrow X \text{ (fast)}$$

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

Avogadro's number = 6.02×10^{23} particles/mole

$$1 \text{ Å} = 1 \text{ x } 10^{-10} \text{ m} = 1 \text{ x } 10^{-8} \text{ cm}$$

molar volume at STP = 22.41L

 $KE = \frac{1}{2} \text{ mv}^2$, $KE_{avg} = \frac{1}{2} \text{ mu}^2$, total average KE per mole = 3/2 RT

$$S_{gas} = k_{H} * P_{gas}$$

$$(P + \frac{n^{2}a}{V^{2}}) (V - nb) = nRT$$

$$u = \sqrt{\frac{3RT}{M}}$$

$$\mathcal{M} = \frac{RT}{D}D$$

$$ln\left(\frac{P_2}{P_1}\right) = \frac{\Delta H v}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad \log\left(\frac{P_2}{P_1}\right) = \frac{\Delta H v}{2303R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad ln(P) = \frac{-\Delta H v}{R} \left(\frac{1}{T}\right) + C$$

$$P_A = X_A P_A^{\circ}$$
 $\Delta P = X_{\text{solute}} P_A^{\circ}$ $\Delta T = iK_f m$ $\Delta T = iK_h m$ $\Pi = iMRT$

$$[A]_t = -kt + [A]_0$$
 $\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$ $\ln[A]_t = -kt + \ln[A]_0$

$$t_{1/2} = \frac{0.693}{k}$$
 $t_{1/2} = \frac{1}{k[A]_0}$ $t_{1/2} = \frac{[A]_0}{2k}$

$$k = Ae^{-E_a/RT}$$
 $\ln(k) = -\left(\frac{E_a}{R}\right)\left(\frac{1}{T}\right) + \ln(A)$

$$\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \qquad \log\left(\frac{k_2}{k_1}\right) = \frac{E_a}{2.303R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	ША	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.81 B 5	12.011 C	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
۷	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)

Chemistry 1250

Answers to Practice Midterm 3

1) C

11) A

21) D

2) E

12) D

22) E

3) A

13) A

23) E

4) D

14) C

24) C

5) C

15) B

25) A

6) D

16) E

26) B

7) B

17) A

27) A

8) A

18) D

28) C

9) B

19) C

29) E

10) B

20) B

30) C