Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250
Spring Semester 2022
Quiz X

Name \qquad Rec. TA/time
Show ALL your work or EXPLAIN to receive full credit.

1. (5 pts) A reaction with activation energy of $123 \mathrm{~kJ} / \mathrm{mol}$ is originally at $38.0^{\circ} \mathrm{C}$. At what temperature, in ${ }^{\circ} \mathbf{C}$, will its rate constant be double that at $38.0^{\circ} \mathrm{C}$?
2. (9 pts) Consider the following hypothetical reaction and the established rate law. Select an acceptable mechanism.

$$
\mathrm{A}_{2}+\mathrm{B}_{2} \rightarrow \mathrm{X}+\mathrm{Y} \quad \text { rate }=\mathrm{k}\left[\mathrm{~A}_{2}\right]\left[\mathrm{B}_{2}\right] /[\mathrm{Y}] \quad(\exp \text { rate law })
$$

a) $\mathrm{A}_{2} \rightleftarrows 2 \mathrm{~A}$ (fast)
b) $\mathrm{A}_{2}+\mathrm{B}_{2} \rightleftarrows \mathrm{C}$ (fast)
$\mathrm{B}_{2}+\mathrm{A} \rightarrow \mathrm{C}$ (slow)
$\mathrm{C} \rightarrow \mathrm{X}+\mathrm{Y}$ (slow)
$\mathrm{C}+\mathrm{A} \rightarrow \mathrm{X}+\mathrm{Y}$ (fast)
c) $\mathrm{A}_{2} \rightleftarrows \mathrm{C}+\mathrm{Y}$ (fast)
d) $\mathrm{B}_{2} \rightarrow 2 \mathrm{~B}$ (slow)
$\mathrm{B}_{2}+\mathrm{C} \rightarrow \mathrm{X}$ (slow)
$\mathrm{B}+\mathrm{A}_{2} \rightarrow \mathrm{C}$ (fast)
$\mathrm{C}+\mathrm{B} \rightarrow \mathrm{X}+\mathrm{Y}$ (fast)
e) $\mathrm{B}_{2} \rightleftarrows 2 \mathrm{~B}$ (fast)
$\mathrm{B} \rightarrow \mathrm{C}+\mathrm{Y}$ (slow)

$$
\mathrm{A}_{2}+\mathrm{C}+\mathrm{B} \rightarrow \mathrm{X} \text { (fast) }
$$

3. (9 pts) The following mechanism has been proposed for the gas phase reaction between H_{2} and CO.

$$
\begin{array}{rlr}
\mathrm{H}_{2} & \not 22 \mathrm{H} \\
\mathrm{H}+\mathrm{CO} & \rightarrow \mathrm{HCO} & \text { (fast, equilibrium) } \\
\mathrm{H}+\mathrm{HCO} & \rightarrow \mathrm{H}_{2} \mathrm{CO} & \text { (fast) } \tag{fast}
\end{array}
$$

NOT on Carmen quiz. Just for practice.
(a) What is the overall reaction?
(b) What is (are) the intermediate(s) in the mechanism?
(c) What is the molecularity of each of the following elementary steps?
$\underline{\text { Step } 1} \underline{\text { Step 2 }}$
(d) What is the rate-determining step (explain why)?
(e) What is the rate law predicted by this mechanism?
4. (3 pts) Given the following mechanism, which answer below contains all species which may be classified as catalyst(s) in the formation of XO_{2} from X and $\mathrm{O}_{2}\left(\mathrm{X}+\mathrm{O}_{2} \rightarrow \mathrm{XO}_{2}\right)$?

$$
\begin{aligned}
& \mathrm{X}+\mathrm{YO}_{2} \longrightarrow \mathrm{XO}+\mathrm{YO} \\
& \mathrm{XO}+\mathrm{YO} \longrightarrow \mathrm{XO}_{2}+\mathrm{Y} \\
& \mathrm{Y}+\mathrm{O}_{2}+\mathrm{Z} \longrightarrow \mathrm{YO}+\mathrm{ZO} \\
& \mathrm{YO}+\mathrm{ZO} \longrightarrow \mathrm{YO}_{2}+\mathrm{Z}
\end{aligned}
$$

a) YO_{2} and Y
b) YO and ZO
c) $\mathrm{XO}, \mathrm{YO}_{2}$, and Z
d) $\mathrm{XO}, \mathrm{YO}, \mathrm{Y}$ and ZO
e) YO_{2} and Z
5. (3 pts) Which response contains all the following statements that are TRUE and no false statements?

1. From the Arrhenius equation one can say that the rate constant always decreases as temperature rises.
2. The activation energy, E_{a}, for a reaction generally does not change as temperature changes (i.e. E_{a} is treated as a constant).
3. The activation energy, E_{a}, is usually about the same as $\mathbf{\Delta H}$ (or $\Delta \mathrm{E}$) for a reaction.
4. A catalyst increases the rate of a reaction by lowering the activation energy, E_{a}.
5. A catalyst increases the kinetic energy of the reactants.
a) 5
b) 1,3
c) 3,5
d) 2,4
e) $3,4,5$
6. (3 pts) The equilibrium constant for the following reaction is 70 at $350^{\circ} \mathrm{C}$. A system at equilibrium has $\left[\mathrm{N}_{2}\right]=0.200 \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]=0.118 \mathrm{M}$. What is the $\left[\mathrm{H}_{2}\right]$?

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

7. (3 pts) The properly written heterogeneous K_{c} expression for the following reaction as written is:

$$
\mathrm{NiCO}_{3}(\mathrm{~s})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightleftarrows \mathrm{Ni}^{2+}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

8. (5 pts) Given the following two equilibrium reactions,
(1) $2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NOBr}(\mathrm{g}) \quad \mathrm{K}_{1}=2.00$
(2) $\quad \mathrm{NO}(\mathrm{g}) \rightleftarrows 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{2}=1.45 \times 10^{15}$

What is the equilibrium constant, K_{3}, for the reaction below?

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftarrows 2 \operatorname{NOBr}(\mathrm{~g}) \quad \mathrm{K}_{3}
$$

9. (4 pts) The equilibrium constant K_{c} for the following reaction at $1100^{\circ} \mathrm{C}$ is 6.80×10^{51}. What is K_{p} ?

$$
\mathrm{B}(\mathrm{~s})+3 / 2 \mathrm{~F}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{BF}_{3}(\mathrm{~g})
$$

10. (5 pts) The following reaction is started with 2.000 moles of SO_{3} in a $2.000-\mathrm{L}$ container. When equilibrium is reached there are 1.645 moles of SO_{3} in the container. What is the value of the equilibrium constant, K_{C} ? (Show the ICE table. You can use numbers or variables in your ICE table.)

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \rightleftarrows 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

11. (3 pts) A plot of $\ln (\mathrm{r})$ vs. $\ln [\mathrm{A}]$ has a slope of -2.5 and an intercept of -10.55 . Determine the rate constant and order of the reaction for the rate law, $r=k[A]^{n}$.

USEFUL INFORMATION

$$
\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.3145 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

Lanthanide	$\begin{array}{\|c\|} \hline 140.12 \\ \mathrm{Ce} \end{array}$	$\begin{aligned} & 140.91 \\ & { }_{59} \mathbf{P r} \end{aligned}$	$\begin{array}{\|c\|} \hline 144.24 \\ \mathrm{Nd} \\ 60 \end{array}$	145 $\mathbf{P m}$	$\begin{aligned} & 150.36 \\ & \mathrm{Sm} \\ & 62 \end{aligned}$	$\begin{aligned} & 151.96 \\ & { }_{63} \mathbf{E u} \end{aligned}$	$\begin{array}{\|c\|} \hline 157.25 \\ \text { Gd } \\ 64 \end{array}$	$\underbrace{158.93}_{65} \mathbf{T b}$	$\begin{gathered} 162.50 \\ \text { Dy } \\ 66 \end{gathered}$	$\begin{aligned} & 164.93 \\ & \text { Ho } \\ & 67 \end{aligned}$	$\begin{aligned} & 167.26 \\ & \mathbf{E r}^{28} \end{aligned}$	$\begin{aligned} & 168.93 \\ & \mathrm{Tm} \\ & 69 \end{aligned}$	$\begin{aligned} & \hline 173.04 \\ & \mathbf{Y b} \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 173.04 \\ & \mathbf{L u} \\ & 71 \end{aligned}$
Actinide Series	$\begin{aligned} & \hline 232.04 \\ & \mathbf{T h} \\ & 90 \end{aligned}$	$\begin{aligned} & \frac{231.04}{} \mathbf{P a}_{91} \end{aligned}$	$\begin{array}{\|c} \hline 238.03 \\ 92 \end{array}$	$\begin{aligned} & 237.05 \\ & \mathbf{N p} \\ & 93 \end{aligned}$	${ }_{94} \mathbf{P u}$	${ }_{95} \mathrm{Am}$	${ }_{96} \mathrm{Cm}$	${ }_{97}{ }^{\text {Bk }}$	${ }_{98} \mathbf{C f}$	${ }_{99}{ }^{\text {Es }}$	$\underset{100}{\text { Fm }}$	$\underset{101}{\mathbf{M d}}$	$\begin{gathered} \text { No } \\ 102 \end{gathered}$	${ }_{103}^{\mathbf{L r}}$

A PERIODIC CHART OF THE ELEMENTS
(Based on ${ }^{12} \mathrm{C}$)

Copyright R. J. Zellmer, April 10, 2022

