_____ Rec. TA/time _____

Show ALL your work or EXPLAIN to receive full credit.

(5 pts) A reaction with activation energy of 123 kJ/mol is originally at 38.0 °C. At what temperature, in ${}^{\circ}\mathbf{C}$, will its rate constant be double that at 38.0 ${}^{\circ}\mathbf{C}$?

(9 pts) Consider the following hypothetical reaction and the established rate law. Select an acceptable 2. mechanism.

$$A_2 + B_2 \rightarrow X + Y$$

$$A_2 + B_2 \rightarrow X + Y$$
 rate = k [A₂] [B₂]/[Y] (exp rate law)

a)
$$A_2 \rightleftharpoons 2 A \text{ (fast)}$$

b)
$$A_2 + B_2 \rightleftharpoons C$$
 (fast)

$$B_2 + A \rightarrow C \text{ (slow)}$$

$$C \rightarrow X + Y \text{ (slow)}$$

$$C + A \rightarrow X + Y \text{ (fast)}$$

c)
$$A_2 \rightleftharpoons C + Y \text{ (fast)}$$

d)
$$B_2 \rightarrow 2 B \text{ (slow)}$$

$$B_2 + C \rightarrow X \text{ (slow)}$$

$$B + A_2 \rightarrow C \text{ (fast)}$$

$$C + B \rightarrow X + Y$$
 (fast)

e)
$$B_2 \rightleftharpoons 2 B$$
 (fast)

$$B \rightarrow C + Y \text{ (slow)}$$

$$A_2 + C + B \rightarrow X \text{ (fast)}$$

3.	(9 pts)	The following	mechanism 1	has been i	proposed fo	r the gas	phase reaction	n between H	and CO
٠.	() ()	1110 10110 111112	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		or openate		pridate redetion		2 and CC

$$H_2 \rightleftharpoons 2 H$$

(fast, equilibrium)

$$H + CO \rightarrow HCO$$

(slow)

$$H + HCO \rightarrow H_2CO$$

(fast)

NOT on Carmen quiz. Just for practice.

- (a) What is the overall reaction?
- (b) What is (are) the **intermediate(s)** in the mechanism?
- (c) What is the **molecularity** of each of the following elementary steps?

Step 1 Step 2

- (d) What is the **rate-determining step** (explain why)?
- (e) What is the <u>rate law</u> predicted by this mechanism?

4.	(3 pts) Given the following mechanism, which answer below contains all species which may be
	classified as catalyst(s) in the formation of XO_2 from X and O_2 (X + $O_2 \rightarrow XO_2$)?

$$X + YO_2 \longrightarrow XO + YO$$

 $XO + YO \longrightarrow XO_2 + Y$
 $Y + O_2 + Z \longrightarrow YO + ZO$
 $YO + ZO \longrightarrow YO_2 + Z$

- a) YO₂ and Y
- b) YO and ZO
- c) XO, YO₂, and Z
- d) XO, YO, Y and ZO e) YO₂ and Z

- 1. From the Arrhenius equation one can say that the rate constant always decreases as temperature
- 2. The activation energy, E_a, for a reaction generally does **not** change as temperature changes (i.e. E_a is treated as a constant).
- 3. The activation energy, E_a , is usually about the **same** as ΔH (or ΔE) for a reaction.
- 4. A catalyst <u>increases</u> the rate of a reaction by <u>lowering</u> the activation energy, E_a.
- 5. A catalyst <u>increases</u> the kinetic energy of the reactants.
- a) 5

- b) 1, 3

- c) 3, 5 d) 2, 4 e) 3, 4, 5

6. (3 pts) The equilibrium constant for the following reaction is 70 at
$$350^{\circ}$$
C. A system at equilibrium has $[N_2] = 0.200 \text{ M}$ and $[NH_3] = 0.118 \text{ M}$. What is the $[H_2]$?

$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$

7	(2)	\ TT1	1	•	1 4	т	7	pression	C /1	C 11	•			•	•
/	1 4 ntc	1 I he	nroneriy	U Written	hetero	Teneous	$\sim v$	nreceion	tor the	talla	$\Delta W = \Delta W$	reaction	26 11/11	11tten	10
/ •	12 013	1 1110	DIODCII	v wiitteii	IIC ICI O	eciicous i	Σ $\cup \Delta$	11016691011	101 uic	TOIL	JWILLE	reaction	as wi	111011	10

$$NiCO_3(s) + 2 H^+(aq) \rightleftharpoons Ni^{2+}(aq) + CO_2(g) + H_2O(l)$$

- 8. (5 pts) Given the following two equilibrium reactions,
 - (1) $2 \text{ NO (g)} + \text{Br}_2(g) \neq 2 \text{ NOBr (g)} \quad K_1 = 2.00$
 - (2) NO (g) \rightleftharpoons $\frac{1}{2} N_2$ (g) + $\frac{1}{2} O_2$ (g) $K_2 = 1.45 \times 10^{15}$

What is the equilibrium constant, K_3 , for the reaction below?

$$N_2(g) + O_2(g) + Br_2(g) \rightleftharpoons 2 NOBr(g)$$
 K_3

9.	(4 pts) The equilibrium consta	ant K, for the following 1	reaction at 1100°C is 6.80	0×10^{51} . What is K. 3
<i>)</i> .	(1 pts) The equilibrium consu	and it to the following i	.caction at 1100 C is 0.00	$N_{\rm L} = 0$. What is $1 \times_{\rm p}$.

$$B(s) + 3/2 F_2(g) \rightleftharpoons BF_3(g)$$

10. (5 pts) The following reaction is started with 2.000 moles of SO_3 in a 2.000-L container. When equilibrium is reached there are 1.645 moles of SO_3 in the container. What is the value of the equilibrium constant, K_C ? (Show the ICE table. You can use numbers or variables in your ICE table.)

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

1.	(3 pts) A plot of $\ln(r)$ vs. $\ln[A]$ has a slope of -2.5 and an intercept of -10.55. constant and order of the reaction for the rate law, $r = k[A]^n$.	Determine the rate

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	Er	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)