Dr. Zellmer
Time: 6 PM Mon.
40 min

Chemistry 1250
Spring Semester 2022
Quiz XI

Name $\qquad$ Rec. TA/time

Show ALL your work or EXPLAIN to receive full credit.

1. (3 pts) For the following reaction $\mathrm{K}_{\mathrm{C}}=25.8$. The reaction is started with 1.000 mole of $\mathrm{AB}_{3}, 2.000$ moles of $\mathrm{AB}_{2}$ and 1.000 mole of $\mathrm{B}_{2}$ in a $2.000-\mathrm{L}$ container. Determine if the reaction is at equilibrium or not? If not, which direction will it proceed to reach equilibrium? Show work and explain!

$$
2 \mathrm{AB}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \quad \rightleftarrows \quad 2 \mathrm{AB}_{3}(\mathrm{~g})
$$

2. (9 pts) For the following reaction $\mathrm{K}_{\mathrm{C}}$ equals $7.10 \times 10^{-4}$, at $25^{\circ} \mathrm{C}$.

$$
\mathrm{CaCrO}_{4}(\mathrm{~s}) \quad \rightleftarrows \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CrO}_{4}^{2-}(\mathrm{aq})
$$

a) (4 pts) What are the equilibrium concentrations of $\mathrm{Ca}^{2+}$ and $\mathrm{CrO}_{4}{ }^{2-}$ if solid $\mathrm{CaCrO}_{4}$ is placed in water to form a saturated solution at $25^{\circ} \mathrm{C}$ ? (Show the ICE table. State any assumptions made and check your percent error.)
2. (Cont.)
b) (1 pts) For the system at equilibrium, what happens when $\mathrm{CaCl}_{2}(\mathrm{~s})$, a soluble compound, is added?? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
c) ( 1 pts ) For the system at equilibrium, what happens when water is added to the system? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
d) (1 pts) For the system at equilibrium, what happens when part of the $\mathrm{CaCrO}_{4}$ is removed? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
e) ( 2 pts) Assuming the above reaction is endothermic, what happens when the temperature increases? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) Also, what happens to the value of K? EXPLAIN!
3. (9 pts) For the following reaction $\mathrm{K}_{\mathrm{C}}$ equals $5.35 \times 10^{2}$ at $80^{\circ} \mathrm{C}$.

$$
\mathrm{PH}_{3}(\mathrm{~g}) \quad+\mathrm{BCl}_{3}(\mathrm{~g}) \quad \rightleftarrows \quad \mathrm{PH}_{3} \mathrm{BCl}_{3}(\mathrm{~s})
$$

a) (4pts) What are the equilibrium concentrations of $\mathrm{PH}_{3}$ and $\mathrm{BCl}_{3}$ if 1.000 mole of each is placed in a $0.500-\mathrm{L}$ vessel and allowed to react until equilibrium is reached? (Show the ICE table. When appropriate, state any assumptions made and check your percent error.)

NOT on Carmen quiz - just for practice
b) ( 1 pt ) For the system at equilibrium, what happens to the reaction when the pressure is increased by adding Ne (an inert gas) at constant temperature and volume? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
c) ( 1 pt ) For the system at equilibrium, what happens to the reaction when $\mathrm{PH}_{3}$ is added? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
d) $(1 \mathrm{pt})$ For the system at equilibrium, what happens to the reaction when all the $\mathrm{PH}_{3} \mathrm{BCl}_{3}$ is removed? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) EXPLAIN!
3. (Cont.)
e) ( 2 pts ) Assuming the above reaction is exothermic, what happens when the temperature decreases? (i.e. does the equilibrium shift and if so in what direction? If no shift then why not.) Also, what happens to the value of K ? EXPLAIN!
4. (2 pts) What is(are) the difference(s) between the Arrhenius and Bronsted-Lowry definitions of a base? Not on quiz - just for practice.
5. (3 pts) What is the conjugate acid of $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}$ ?
6. (2 pts) Which of the following are strong acids or strong bases? (Circle all that apply.)

| $\mathrm{HNO}_{3}$ | $\mathrm{HClO}_{2}$ | $\mathrm{HClO}_{4}$ | RbOH | $\mathrm{NH}_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{HBrO}_{3}$ | $\mathrm{~N}^{3-}$ | $\mathrm{HSO}_{4}^{-}$ | HF | $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ |

7. ( 5 pts$) \mathrm{A}$ saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ has a $\left[\mathrm{Ca}^{2+}\right]$ of 0.15 M . What is the pH of the solution? (atomic weights: $\mathrm{Ca}=40.08, \mathrm{O}=16.00, \mathrm{H}=1.008$ )
8. ( 6 pts) A 0.0100 M solution of an acid is $19.0 \%$ ionized at $25^{\circ} \mathrm{C}$. Show all work or explain! a) What are the $\left[\mathbf{H}^{+}\right]$and $\mathbf{p H}$ of this solution?
b) What is the $\mathbf{K}_{\mathbf{a}}$ for the acid? Show the ICE table.
9. ( 11 pts ) You have a solution of 0.0942 M aniline, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, with $\mathrm{K}_{\mathrm{b}}=4.3 \times 10^{-10}$, at $25^{\circ} \mathrm{C}$. (Show the ICE table, state any assumptions made and check your percent error.) Show all work or explain!
a) What are $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ and pOH in this solution?
b) What is the percent ionization for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ in this solution?
10. (3 pts) Given the following $\mathrm{K}_{\mathrm{a}}$ values, determine which species is the strongest base. Explain!
$\mathrm{HSO}_{3}^{-} \quad 6.3 \times 10^{-8}$
$\mathrm{HPO}_{4}{ }^{2-} 4.8 \times 10^{-13}$
$\mathrm{HCO}_{3}{ }^{-} \quad 4.7 \times 10^{-11}$

## USEFUL INFORMATION

$$
\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.3145 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

$$
\begin{gathered}
K_{p}=K_{c}(R T)^{\Delta n} \\
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left(\text { at } 25^{\circ} \mathrm{C}\right) \\
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] ; \quad p O H=-\log \left[\mathrm{OH}^{-}\right] ; \quad p K_{w}=-\log \left[K_{w}\right] \\
\text { for } a x^{2}+b x+c=0, \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$



| Lanthanide Series | $\begin{array}{\|c\|} \hline 140.12 \\ \mathrm{Ce} \end{array}$ |  |  | ${ }_{61}$145 <br> $\mathbf{P m}$ | $\begin{array}{\|c\|} \hline 150.36 \\ \mathbf{S m} \\ 62 \end{array}$ | $\begin{array}{\|c\|} \hline 151.96 \\ \mathbf{E u} \end{array}$ |  | $\begin{array}{\|c\|} \hline 158.93 \\ \mathbf{T b} \end{array}$ |  | $\begin{array}{\|c\|} \hline 164.93 \\ \mathbf{H o} \\ 67 \end{array}$ | $\begin{array}{\|c\|} \hline 167.26 \\ \mathbf{E r} \end{array}$ | $\begin{aligned} & \begin{array}{l} 168.93 \\ \mathbf{T m} \\ 69 \end{array}, ~ \end{aligned}$ | $\begin{array}{\|l} \hline 173.04 \\ \mathbf{Y b} \\ 70 \end{array}$ | $\begin{array}{\|l} \hline 173.04 \\ \mathbf{L u} \\ 71 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Actinide Series | $\begin{array}{\|l\|} \hline 232.04 \\ \mathbf{T h} \\ 90 \end{array}$ | $\begin{array}{\|c\|} \hline 231.04 \\ \mathbf{P a} \\ 91 \end{array}$ | ${ }_{92}^{238.03}$ | $\begin{array}{\|l\|} \hline 237.05 \\ \mathbf{N p} \\ 93 \end{array}$ | $94^{\mathbf{P u}}$ | ${ }_{95} \mathbf{A m}$ | ${ }_{96} \mathrm{Cm}$ | $97^{\text {Bk }}$ | ${ }_{98} \mathbf{C f}$ | ${ }_{99} \mathbf{E s}$ | $\underset{100}{\mathbf{F m}}$ | $\begin{array}{\|l\|l} \mathbf{M d} \\ 101 \end{array}$ | ${ }_{102}^{\text {No }}$ | ${ }_{103}^{\mathbf{L r}}$ |

A PERIODIC CHART OF THE ELEMENTS (Based on ${ }^{12} \mathrm{C}$ )

