Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250
Spring Semester 2022
Quiz XII

Name \qquad Rec. TA/time

Show ALL your work or EXPLAIN to receive full credit.

1. (3 pts) Given the following K_{a} values, determine which species is the strongest base. Explain!
$\mathrm{HSO}_{3}{ }^{-} 6.3 \times 10^{-8}$
$\mathrm{HPO}_{4}{ }^{2-} 4.8 \times 10^{-13}$
$\mathrm{HCO}_{3}{ }^{-} \quad 4.7 \times 10^{-11}$
2. (2 pts) Would you expect the following solutions to be acidic, neutral, or basic? Explain or show work!
a) KBrO_{4}
b) PbCl_{2}
3. (8 pts) What is the $\mathbf{p H}$ of a $0.30 \mathrm{M} \mathrm{NaCHO}_{2}$ solution at $25^{\circ} \mathrm{C} ?\left(\mathrm{HCHO}_{2}: \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}\right.$, at $\left.25^{\circ} \mathrm{C}\right)$ (Show the ICE table, state any assumptions made and check your percent error.) Explain or show work!
4. (2 pts) Identify the Lewis acid and Lewis base in the following reactions. Explain!
a) $\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
b) $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})$
5. (3 pts) Calculate the $\Delta \mathrm{S}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{K})$ of fusion for a compound which melts at $-183.0^{\circ} \mathrm{C}$. The heat of fusion is $2.86 \mathrm{~kJ} / \mathrm{mole}$.
6. (4 pts) Predict the sign of $\Delta \mathrm{S}$ of the system or if it's approximately zero for the following reactions and explain your choices.
a) $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
b) $\quad \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Al}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
7. (5 pts) Determine the entropy of reaction $\left(\Delta \mathrm{S}^{\circ}\right)$ (in $\left.\mathrm{J} / \mathrm{mol}-\mathrm{K}\right)$ for the following reaction at $25^{\circ} \mathrm{C}$.

$$
2 \mathrm{CH}_{3} \mathrm{OH}(\ell)+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

$$
\begin{array}{lllll}
\mathrm{S}^{\circ}(\mathrm{J} / \mathrm{mol} \cdot \mathrm{~K}) & 126.8 & 205.0 & 213.6 & 69.91
\end{array}
$$

8. (3 pts) Write the reaction for the formation of $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ which corresponds to $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ and $\Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ and explain why you've written it the way you have.
9. (3 pts) Given $\Delta \mathrm{G}^{\circ}=-3217.4 \mathrm{~kJ} / \mathrm{mol}$ and the listed $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$ values calculate $\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}$ for $\mathrm{SO}_{2}(\mathrm{~g})$..

$$
4 \mathrm{FeS}_{2}(\mathrm{~s})+11 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+8 \mathrm{SO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{G}^{\circ}{ }_{\mathrm{f}}(\mathrm{kJ} /$ mole $) \quad-166.7 \quad 0.0 \quad-740.9 \quad ?$
10. (5 pts) For the following reaction $\Delta \mathrm{H}^{\circ}$ is $-150.5 \mathrm{~kJ} / \mathrm{mol}, \Delta \mathrm{S}^{\circ}$ is $-293.1 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. Assuming these don't change with temperature what is the value of $\Delta \mathrm{G}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ at $141.0^{\circ} \mathrm{C}$?

$$
\mathrm{A}_{2}(\mathrm{~g})+2 \mathrm{~B}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{AB}_{2}(\mathrm{~g})
$$

11. (13 pts) Given $\Delta \mathrm{H}^{\circ}=-71.75 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=-268.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ for the following reaction at $25^{\circ} \mathrm{C}$,

$$
3 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow 2 \mathrm{HNO}_{3}(\ell)+\mathrm{NO}(\mathrm{~g})
$$

a) (2 pts) Calculate the $\Delta \mathrm{G}^{\circ}$ of the reaction at $25^{\circ} \mathrm{C}$. Is the reaction spontaneous or nonspontaneous at this temperature under standard state conditions? Show all work and explain.
b) (4 pts) If the reaction is nonspontaneous, at what temperature would it be spontaneous. If the reaction is spontaneous, at what temperature would it be nonspontaneous. If the reaction will always be spontaneous at all temperatures or never be spontaneous at any temperature state that. Show ALL work $\boldsymbol{\&}$ explain!
c) (2 pts) What is the equilibrium constant at $25^{\circ} \mathrm{C}$? Show all work and explain.
d) $(1 \mathrm{pt})$ This $\Delta \mathrm{G}^{\circ}$ and K corresponds to an equilibrium that is: (choose one from below \& explain)

1) closer to products
2) closer to reactants
3) midway between reactants and products (significant amounts of both at equilibrium)
e) (4 pts) Is the reaction spontaneous or nonspontaneous at $25^{\circ} \mathrm{C}$ when the pressures of NO_{2} and NO are 2.50 atm and 0.50 atm , respectively? Show all work and explain.

USEFUL INFORMATION

$$
\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.3145 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

$$
\begin{gathered}
K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \quad\left(a t 25^{\circ} \mathrm{C}\right) \\
p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] ; \quad p O H=-\log \left[\mathrm{OH}^{-}\right] ; \quad p K_{w}=-\log \left[K_{w}\right] \\
\text { for } a x^{2}+b x+c=0, \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
S=k \bullet \ln W
\end{gathered}
$$

Lanthanide Series	${ }_{58}^{140.12}{ }^{\text {Ce }}$	$\begin{array}{\|l} \begin{array}{l} 140.91 \\ \mathbf{P r} \\ 59 \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} 144.24 \\ \mathrm{Nd} \\ 60 \end{array}$	$\left.\begin{array}{r}145 \\ \mathbf{P m}\end{array}\right]$	${ }_{62}^{150.36} \mathbf{S m}$	$\begin{array}{\|l} 151.96 \\ \mathbf{E u} \\ 63 \end{array}$	$\begin{aligned} & 157.25 \\ & 64 \end{aligned}$	$\underbrace{158.93}_{65} \mathbf{T b}$	$\begin{aligned} & 162.50 \\ & \mathbf{D y} \\ & 66 \end{aligned}$	$\begin{aligned} & 164.93 \\ & \text { Ho } \\ & 67 \end{aligned}$	$\begin{aligned} & 167.26 \\ & \mathbf{E r}^{168} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 168.93 \\ \text { Tm } \\ 69 \end{array}, ~ \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} 173.04 \\ \mathbf{Y b} \\ 70 \end{array}, ~ \end{aligned}$	$\begin{aligned} & 173.04 \\ & \mathbf{L u}^{\mathbf{L u}} \end{aligned}$
Actinide Series	$\begin{aligned} & \text { 232.04 } \\ & 90 \end{aligned}$	$\begin{array}{\|l} \hline 231.04 \\ \mathbf{P a} \\ 91 \end{array}$	${ }_{92}^{238.03} \mathbf{U}$	$\begin{array}{\|l} \hline 237.05 \\ \mathbf{N p} \\ 93 \end{array}$	${ }_{94}{ }^{\mathbf{P u}}$	${ }_{95} \mathbf{A m}$	${ }_{96} \mathrm{Cm}$	${ }_{97}{ }^{\text {Bk }}$	${ }_{98} \mathbf{C f}$	${ }_{99}{ }^{\text {Es }}$	${ }_{100}^{\text {Fm }}$	${ }_{101}^{\mathbf{M d}}$	${ }_{102}^{\text {No }}$	${ }_{103}^{\mathbf{L r}}$

A PERIODIC CHART OF THE ELEMENTS (Based on ${ }^{12} \mathrm{C}$)

