Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1250 Spring Semester 2022 Quiz XII

T, R April 24, 2022

_____ Rec. TA/time _____

Show ALL your work or EXPLAIN to receive full credit.

(3 pts) Given the following K_a values, determine which species is the strongest base. Explain!

 HSO_3^- 6.3 x 10^{-8} HPO_4^{2-} 4.8 x 10^{-13} HCO_3^- 4.7 x 10^{-11}

- (2 pts) Would you expect the following solutions to be acidic, neutral, or basic? Explain or show 2. work!
 - a) KBrO₄

b) PbCl₂

3.	(8 pts) What is the pH of a 0.30 M NaCHO ₂ solution at 25° C? (HCHO ₂ : $K_a = 1.8 \times 10^{-4}$, at 25° C) (Show the ICE table, state any assumptions made and check your percent error.) Explain or show work!

4. (2 pts) Identify the Lewis acid and Lewis base in the following reactions. **Explain!**

a)
$$CN^{-}(aq) + H_2O(l) \longrightarrow HCN(aq) + OH^{-}(aq)$$

b)
$$SO_2(g) + H_2O(l) \longrightarrow H_2SO_3(aq)$$

5. (3 pts) Calculate the ΔS (J/mol•K) of fusion for a compound which melts at -183.0 °C. The heat of fusion is 2.86 kJ/mole.

6. (4 pts) Predict the **sign** of ΔS of the system **or** if it's **approximately zero** for the following reactions and **explain** your choices.

a)
$$CaCO_3(s) + 2HCl(g) \rightarrow CaCl_2(s) + CO_2(g) + H_2O(\ell)$$

$$b) \qquad Al_2O_3(s) \quad + \quad 3 \; H_2\left(g\right) \quad \rightarrow \quad 2 \; Al\left(s\right) \quad + \quad 3 \; H_2O\left(g\right)$$

7. (5 pts) Determine the entropy of reaction (ΔS°) (in J/mol-K) for the following reaction at 25°C.

$$2 \text{ CH}_3\text{OH} (\ell) + 3 \text{ O}_2 (g) \rightarrow 2 \text{ CO}_2 (g) + 4 \text{ H}_2\text{O} (\ell)$$

(3 pts) Write the reaction for the formation of NH_4NO_3 (s) which corresponds to ΔH_f° and ΔG_f° and
explain why you've written it the way you have.

9. (3 pts) Given
$$\Delta G^{\circ} = -3217.4 \text{ kJ/mol}$$
 and the listed ΔG°_{f} values calculate ΔG°_{f} for $SO_{2}(g)$..

$$4 \text{ FeS}_2(s) + 11 \text{ O}_2(g) \rightarrow 2 \text{ Fe}_2 \text{ O}_3(s) + 8 \text{ SO}_2(g)$$

$$\Delta G_{f}^{\circ}(kJ/mole)$$
 -166.7 0.0 -740.9 ?

10. (5 pts) For the following reaction ΔH° is -150.5 kJ/mol, ΔS° is -293.1 J/K•mol at 25 °C. Assuming these don't change with temperature what is the value of ΔG° (kJ/mol) at 141.0 °C?

$$A_2\left(g\right) \; + \; 2\; B_2\left(g\right) \; \; \longrightarrow \; \; 2\; AB_2\left(g\right)$$

11.	(13 pts) Given $\Delta H^{\circ} = -71.75$ kJ and $\Delta S^{\circ} =$	-268.0 J/mol•K for the following	ng reaction at 25°C.
11.	(15 pts) Given ΔII 71:75 ks and Δ5	200.0 37 mor ik for the followin	ig reaction at 25°C,

$$3\;NO_{2}\left(g\right)\quad+\quad H_{2}O\left(\ell\right)\quad\rightarrow\quad 2\;HNO_{3}\left(\ell\right)\quad+\quad NO\left(g\right)$$

a) (2 pts) Calculate the ΔG° of the reaction at 25°C. Is the reaction spontaneous or nonspontaneous at this temperature under standard state conditions? **Show all work and explain.**

b) (4 pts) If the reaction is nonspontaneous, at what temperature would it be spontaneous. If the reaction is spontaneous, at what temperature would it be nonspontaneous. If the reaction will always be spontaneous at all temperatures or never be spontaneous at any temperature state that. Show ALL work & explain!

c) (2 pts) What is the equilibrium constant at 25°C? Show all work and explain.

- d) (1 pt) This ΔG° and K corresponds to an equilibrium that is: (choose one from below & explain)
 - 1) closer to products
 - 2) closer to reactants
 - 3) midway between reactants and products (significant amounts of both at equilibrium)
- e) (4 pts) Is the reaction spontaneous or nonspontaneous at 25 $^{\circ}$ C when the pressures of NO₂ and NO are 2.50 atm and 0.50 atm, respectively? **Show all work and explain.**

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

$$K_{W} = [H_{3}O^{+}][OH^{-}] = 1.0 \times 10^{-14}$$
 (at 25°C)
 $pH = -\log[H_{3}O^{+}]$; $pOH = -\log[OH^{-}]$; $pK_{W} = -\log[K_{W}]$
for $ax^{2} + bx + c = 0$, $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
 $S = k \bullet \ln W$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	Er	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on $^{12}\mathrm{C}$)