Dr. Zellmer Time: 7 PM Sun. 40 min Chemistry 1250 Spring Semester 2022 Quiz III T, R February 6, 2022 Name ______ Rec. TA/time _____ Show <u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit. 1. (3 pts) Cisplatin, an anticancer drug, has the molecular formula Pt(NH₃)₂Cl₂. How many moles of hydrogen atoms are in 2.8 x 10⁻⁴ g of cisplatin? (At. Wts.: H = 1.008, N = 14.01, Cl = 35.45, Pt = 195.1; Mol. wt: 300.07) 2. (3 pts) Sodium carbonate has the formula, Na_2CO_3 . How <u>many</u> sodium <u>ions</u> are present in 0.10 g of Na_2CO_3 ? (At. Wts.: C = 12.01, O = 16.00, Na = 22.99; Form. Wt.: $Na_2CO_3 = 105.99$) | composit 507 amu. | ion of 21.32% C and 78.68% F. The (At. Wt.: C = 12.011, F = 18.998) | g only carbon and fluorine gives a mass perce
e experimentally determined molecular weigh | |-------------------|---|--| | a) (5 pts) | What is the empirical formula ? | b) (2 pts) | What is the molecular formula ? | Not asked for on the quiz. | 4. | (7 pts) A 0.589 g sample of burned completely in air to of the compound? (Atom: | of an organic compound
o produce 0.733 g of Co
ic weights: C = 12.01, | d containing only carbo O_2 and 0.299 g of H_2O . $H = 1.008$, $O = 16.00$) | n, hydrogen and oxygen was What is the empirical formula | |----|---|---|---|--| 5. | (4 pts) Given the balanced equation below, how many moles of hydrogen can be produced from the | |----|---| | | complete reaction of 3.860 x 10^{-1} mol of Fe with excess water? (At. Wts.: H = 1.008, O = 16.00, Fe = | | | 55.85) | $$3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \rightarrow \text{Fe}_3\text{O}_4(\text{aq}) + 4 \text{ H}_2(\text{g})$$ 6. (5 pts) How many **grams** of oxygen (O_2) , reacting with excess C_2H_6 , are required to form 35.0 g of carbon dioxide (CO_2) , according to the following equation? (At. Wt.: H = 1.01 O = 16.00, C = 12.01; Mol. Wt: C_2H_6 = 30.08, O_2 = 32.00, CO_2 = 44.01, H_2O = 18.02) $$2 \; C_2 H_6 \quad + \quad 7 \; O_2 \quad \rightarrow \quad 4 \; CO_2 \quad + \quad 6 \; H_2 O$$ 7. (6 pts) Calcium hydroxide reacts with phosphoric acid according to the following equation. Which substance is the limiting reagent when 1.00 mol of Ca(OH)₂ reacts with 0.50 mol of H₃PO₄? How many moles of the excess reagent remain after completion of the reaction? $$3 \text{ Ca(OH)}_2(s) + 2 \text{ H}_3 \text{PO}_4(aq) \rightarrow \text{Ca}_3(\text{PO}_4)_2(aq) + 6 \text{ H}_2 \text{O}(\ell)$$ | 8. | (3 nts) | Which o | of the fol | lowing a | re strong | electrolyt | tes? | |----|----------|--------------|------------|----------|------------|------------|------| | 0. | (J DW) | WW III CII C | n uic ioi | nowing a | ic surving | | LUS | HF HCl Cu(ClO₃)₂ Ca(OH)₂ C₂H₅OH 9. (4 pts) <u>Predict the products</u> of the following reaction. <u>Complete and balance</u> the equation. <u>Indicate</u> the physical state of reactants and products (i.e. (s), (g), (l), (aq)). (Show all work.) A solution of nitric acid, HNO₃, is combined with a solution of Ca(OH)₂. 10. (3 pts) What are the expected products of the following reaction? $$CaSO_3(s) + 2 HNO_3(aq) \rightarrow$$ 11. (4 pts) Determine the oxidation number of the <u>underlined</u> element in the following compound. (**Must show all work.**) a) (2 pts) $$\underline{Cr}_2O_7^{2-}$$ b) (2 pts) $$\underline{\mathbf{P}}_4 O_6$$ 12. (5 pts) Which of the following is (are) an example(s) of a **redox** reaction (assume all reactions occur to give products)? 1) $$Pb(NO_3)_2$$ (aq) + NaBr (aq) \rightarrow 2) $$CaSO_4(aq) + (NH_4)_3PO_4(aq) \rightarrow$$ 3) NaI (aq) + Br₂ ($$\ell$$) \rightarrow 4) Fe (s) + HCl (aq) $$\rightarrow$$ 5) Ba (s) + $$O_2$$ (g) \rightarrow ## **USEFUL INFORMATION** ## $1 \text{ amu} = 1.66 \times 10^{-24} \text{ g}$ Avogadro's number = 6.02×10^{23} particles/mole | | IA | IIA | IIIB | IVB | VB | VIB | VIIB | | VIIIB | | IB | IIB | IIIA | IVA | VA | VIA | VIIA | VIIIA | |---|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | 1 | 1.008
H
1 | | | | | | | | | | | | | | | | | 4.003
He
2 | | 2 | 6.941
Li
3 | 9.012
Be
4 | | | | | | | | | | | 10.811
B
5 | 12.011
C
6 | 14.007
N
7 | 15.999
O
8 | 18.998
F
9 | 20.179
Ne
10 | | 3 | 22.990
Na
11 | 24.305
Mg
12 | | | | | | | | | | | 26.98
Al
13 | 28.09
Si
14 | 30.974
P
15 | 32.06
S
16 | 35.453
Cl
17 | 39.948
Ar
18 | | 4 | 39.098
K
19 | 40.08
Ca
20 | 44.96
Sc
21 | 47.88
Ti
22 | 50.94
V
23 | 52.00
Cr
24 | 54.94
Mn
25 | 55.85
Fe
26 | 58.93
Co
27 | 58.69
Ni
28 | 63.546
Cu
29 | 65.38
Zn
30 | 69.72
Ga
31 | 72.59
Ge
32 | 74.92
As
33 | 78.96
Se
34 | 79.904
Br
35 | 83.80
Kr
36 | | 5 | 85.47
Rb
37 | 87.62
Sr
38 | 88.91
Y
39 | 81.22
Z r
40 | 92.91
Nb
41 | 95.94
Mo
42 | 98
Tc
43 | 101.07
Ru
44 | 102.91
Rh
45 | 106.42
Pd
46 | 107.87
Ag
47 | 112.41
Cd
48 | 114.82
In
49 | 118.69
Sn
50 | 121.75
Sb
51 | 127.60
Te
52 | 126.90
I
53 | 131.39
Xe
54 | | 6 | 132.91
Cs
55 | 137.33
Ba
56 | 138.91
La
57 | 178.39
Hf
72 | 180.95
Ta
73 | 183.85
W
74 | 186.21
Re
75 | 190.23
Os
76 | 192.22
Ir
77 | 195.08
Pt
78 | 196.97
Au
79 | 200.59
Hg
80 | 204.38
TI
81 | 207.2
Pb
82 | 208.98
Bi
83 | 209
Po
84 | 210
At
85 | 222
Rn
86 | | 7 | 223
Fr
87 | 226.03
Ra
88 | 227.03
Ac
89 | 261
Rf
104 | 262
Ha
105 | 263
Sg
106 | 262
Ns
107 | 265
Hs
108 | 266
Mt
109 | 269
110 | 272
111 | 277
112 | | | | | | | | Lanthanide
Series | 140.12
Ce
58 | 140.91
Pr
59 | 144.24
Nd
60 | 145
Pm
61 | 150.36
Sm
62 | 151.96
Eu
63 | 157.25
Gd
64 | 158.93
Tb
65 | 162.50
Dy
66 | 164.93
Ho
67 | 167.26
Er
68 | 168.93
Tm
69 | 173.04
Yb
70 | 173.04
Lu
71 | |----------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------|---------------------------|---------------------------|---------------------------| | Actinide
Series | 232.04
Th
90 | 231.04
Pa
91 | 238.03
U
92 | 237.05
Np
93 | Pu
94 | Am
95 | Cm
96 | Bk
97 | Cf
98 | Es | Fm
100 | Md
101 | No
102 | Lr
103 | A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)