Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250
Spring Semester 2022
Quiz III

T, R
February 6, 2022

Rec. TA/time \qquad
Show ALL your work or EXPLAIN to receive full credit.

1. (3 pts) Cisplatin, an anticancer drug, has the molecular formula $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. How many moles of hydrogen atoms are in $2.8 \times 10^{-4} \mathrm{~g}$ of cisplatin?
(At. Wts.: $\mathrm{H}=1.008, \mathrm{~N}=14.01, \mathrm{Cl}=35.45, \mathrm{Pt}=195.1$; Mol. wt: 300.07)
2. (3 pts) Sodium carbonate has the formula, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many sodium ions are present in 0.10

3. (7 pts) An analysis of a compound containing only carbon and fluorine gives a mass percent composition of $21.32 \% \mathrm{C}$ and $78.68 \% \mathrm{~F}$. The experimentally determined molecular weight is 507 amu. (At. Wt.: $\mathrm{C}=12.011, \mathrm{~F}=18.998$)
a) (5 pts) What is the empirical formula?
b) (2 pts) What is the molecular formula? Not asked for on the quiz.
4. (7 pts) A 0.589 g sample of an organic compound containing only carbon, hydrogen and oxygen was burned completely in air to produce $0.733 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$ and $0.299{\mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \text {. What is the empirical formula }{ }^{\text {a }} \text {. }}^{\text {a }}$ of the compound? (Atomic weights: $\mathrm{C}=12.01, \mathrm{H}=1.008, \mathrm{O}=16.00$)
5. (4 pts) Given the balanced equation below, how many moles of hydrogen can be produced from the complete reaction of $3.860 \times 10^{-1} \mathrm{~mol}$ of Fe with excess water? (At. Wts.: $\mathrm{H}=1.008, \mathrm{O}=16.00, \mathrm{Fe}=$ 55.85)

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{aq})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

6. (5 pts) How many grams of oxygen $\left(\mathrm{O}_{2}\right)$, reacting with excess $\mathrm{C}_{2} \mathrm{H}_{6}$, are required to form 35.0 g of carbon dioxide $\left(\mathrm{CO}_{2}\right)$, according to the following equation? (At. Wt.: $\mathrm{H}=1.01$ $\mathrm{O}=16.00, \mathrm{C}=12.01 ;$ Mol. Wt: $\mathrm{C}_{2} \mathrm{H}_{6}=30.08, \mathrm{O}_{2}=32.00, \mathrm{CO}_{2}=44.01, \mathrm{H}_{2} \mathrm{O}=18.02$)

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

7. (6 pts) Calcium hydroxide reacts with phosphoric acid according to the following equation. Which substance is the limiting reagent when 1.00 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ reacts with 0.50 mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$? How many moles of the excess reagent remain after completion of the reaction?

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

8. (3 pts) Which of the following are strong electrolytes?

$$
\begin{array}{lllll}
\mathrm{HF} & \mathrm{HCl} & \mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2} & \mathrm{Ca}(\mathrm{OH})_{2} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
\end{array}
$$

9. (4 pts) Predict the products of the following reaction. Complete and balance the equation. Indicate the physical state of reactants and products (i.e. (s), (g), (l), (aq)). (Show all work.)

A solution of nitric acid, HNO_{3}, is combined with a solution of $\mathrm{Ca}(\mathrm{OH})_{2}$.
10. (3 pts) What are the expected products of the following reaction?
$\mathrm{CaSO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow$
11. (4 pts) Determine the oxidation number of the underlined element in the following compound. (Must show all work.)
a) (2 pts) $\mathbf{C r}_{2} \mathrm{O}_{7}{ }^{2-}$
b) (2 pts) $\underline{\mathbf{P}}_{4} \mathrm{O}_{6}$
12. (5 pts) Which of the following is (are) an example(s) of a redox reaction (assume all reactions occur to give products)?

1) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{NaBr}(\mathrm{aq}) \rightarrow$
2) $\mathrm{CaSO}_{4}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$
3) $\mathrm{NaI}(\mathrm{aq})+\mathrm{Br}_{2}(\ell) \rightarrow$
4) $\mathrm{Fe}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow$
5) $\mathrm{Ba}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$

USEFUL INFORMATION

$1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}$
Avogadro's number $=6.02 \times 10^{23}$ particles $/ \mathrm{mole}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{aligned} & 1.008 \\ & { }_{1} \end{aligned}$																	$\begin{gathered} 4_{2}^{4.003} \\ \mathbf{H e} \end{gathered}$
2	$3^{6.941}$	$\begin{aligned} & 9.012 \\ & \mathbf{B e}^{9} \end{aligned}$											$\begin{aligned} & 10.811 \\ & { }_{5} \end{aligned}$	$\begin{array}{\|l\|} \hline 12.011 \\ 6 \end{array}$		$\begin{aligned} & 15.999 \\ & 8_{0} \end{aligned}$	$\begin{aligned} & 18.998 \\ & \mathbf{F} \end{aligned}$	$\begin{array}{\|l\|} \hline 20.179 \\ \mathbf{N e} \\ 10 \end{array}$
3	${\underset{11}{22.990}}^{\mathbf{N a}}$	$\begin{array}{\|l} \hline 24.305 \\ \mathbf{M g} \end{array}$											26.98 Al 13	${ }_{14}^{28.09}$	${ }_{15}^{30.974} \mathbf{P}$	$\begin{array}{\|l\|} \hline 16 \\ \hline \mathbf{S} \end{array}$	$\begin{array}{\|c\|} \hline 35.453 \\ 17 \end{array}$	39.948 $\mathbf{A r}$
4	$\begin{aligned} & \hline 39.098 \\ & { }_{19} \mathbf{K} \end{aligned}$	${ }_{20}^{40.08} \mathbf{C a}$	${\underset{21}{ } \mathbf{4 4 . 9 6}}^{\mathbf{S c}}$	$\int_{22}{ }^{47.88}$		${ }_{24}^{\mathbf{C r}}$	$\begin{array}{\|c\|} \hline 54.94 \\ \mathbf{M n} \\ 25 \end{array}$	$\mathbf{F e}$ 26	${\underset{27}{\text { Co }}}^{58.93}$	${\underset{28}{\mathbf{N i}}{ }^{58.69}}^{2}$	$\underbrace{63.546}_{29}$	$\mathbf{6 5 . 3 8}$ $\mathbf{Z n}$	${\underset{31}{ } \mathbf{G a}^{69.72}}^{1}$	72.59 $\mathbf{G e}$	$\mathbf{3 3}^{74.92} \mathbf{A s}$	${ }_{34}{ }^{78.96}$	$\begin{array}{\|l\|} \hline 79.904 \\ \mathbf{B r} \\ 35 \end{array}$	${ }_{36}{ }_{\mathbf{K r}}^{\mathbf{K r}}$
5	${ }_{37}^{85.47} \mathbf{R b}$	$\stackrel{87}{\mathbf{S r}}_{38}$	${\underset{39}{ }}_{\substack{88.91 \\ \mathbf{Y}}}$	${ }_{40}{ }^{81.22} \mathbf{Z r}$	$\mathbf{c}_{41}^{92.91} \mathbf{N b}$	95.94 Mo 42	${ }_{43}{ }^{98}$	$\begin{array}{\|c\|} \hline 101.07 \\ \mathbf{R u} \\ 44 \end{array}$	$\underbrace{102.91}_{45}$	$\begin{array}{\|l\|} \hline 106.42 \\ \text { Pd } \\ 46 \end{array}$	${\underset{47}{107.87}}^{\mathbf{A g}}$	${\underset{48}{112.41}}_{\mathbf{C d}}$	$\begin{array}{\|l\|} \hline 114.82 \\ \text { In } \\ 49 \end{array}$	$\begin{array}{\|l\|} \hline 118.69 \\ \mathbf{S n} \\ 50 \end{array}$	$\begin{array}{\|c\|} \hline 121.75 \\ 51 \end{array}$	$\begin{array}{\|c\|} \hline 127.60 \\ \mathrm{Te} \end{array}$	$\begin{array}{\|l\|} \hline 126.90 \\ 53 \end{array}$	$\begin{array}{\|l\|} \hline 131.39 \\ \mathbf{X e} \end{array}$
6	$\begin{gathered} 132.91 \\ { }_{55} \mathrm{Cs} \end{gathered}$	$\begin{aligned} & 137.33 \\ & { }_{56}{ }^{\mathbf{B a}} \end{aligned}$	$\begin{array}{\|l\|} \hline 138.91 \\ { }_{57} \mathbf{L a} \end{array}$	$\begin{aligned} & \hline 178.39 \\ & \mathbf{H f} \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 180.95 \\ & 73 \end{aligned}$	$\begin{array}{\|c\|} \hline 183.85 \\ 74 \end{array}$	$\begin{array}{\|c\|} \hline 186.21 \\ \boldsymbol{R e}^{2} \end{array}$	$\begin{array}{\|l\|} \hline 190.23 \\ \mathbf{O s} \end{array}$	$\begin{aligned} & \mathbf{I r}^{192.22} \\ & 77 \end{aligned}$	$\begin{array}{\|l\|} \hline 195.08 \\ \mathbf{P t} \\ 78 \end{array}$	$\begin{aligned} & \left.\begin{array}{l} 196.97 \\ { }_{79} \mathbf{A u} \end{array}\right] \end{aligned}$	$\begin{array}{\|l\|} \hline 200.59 \\ \mathbf{H g} \\ 80 \end{array}$	$\begin{array}{\|l\|} \hline 204.38 \\ \mathbf{T l} \\ \hline 81 \end{array}$	$\begin{array}{\|l} \hline \mathbf{2 0 7 . 2} \\ 82 \end{array}$	$\begin{array}{\|l\|} \hline 208.98 \\ \mathbf{B i} \end{array}$	$\begin{array}{\|c} 209 \\ \mathbf{P o} \\ 84 \end{array}$	$\underbrace{210}_{85} \mathbf{A t}$	$\underbrace{222}_{86}$
7	${ }_{87}^{223}$	$\begin{array}{\|l} \hline 226.03 \\ \mathbf{R a} \\ 88 \end{array}$		$\underset{104}{\mathbf{R}} \mathbf{2 6 1}$	$\begin{array}{r} 262 \\ \mathbf{H a} \\ \hline 105 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 263 \\ \mathbf{S g} \\ 106 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 262 \\ \mathbf{N s} \\ 107 \end{array}$	$\begin{array}{\|r} 265 \\ \mathbf{H s} \\ 108 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 266 \\ \mathbf{M t} \\ 109 \\ \hline \end{array}$	$\begin{gathered} 269 \\ 110 \\ \hline \end{gathered}$	$\begin{aligned} & 272 \\ & 111 \end{aligned}$	277 112						

Lanthanide Series	${ }_{58}^{140.12} \mathrm{Ce}^{12}$	$\begin{aligned} & \begin{array}{l} 140.91 \\ \mathbf{P r} \\ 59 \end{array}, ~ \end{aligned}$	$\begin{array}{\|l} \hline 144.24 \\ \text { Nd } \\ 60 \end{array}$	$\left.\begin{array}{r}145 \\ \mathbf{P m}\end{array}\right]$	$\begin{array}{\|l} \hline 150.36 \\ 62 \end{array}$	$\begin{array}{\|c\|} \hline 151.96 \\ \mathbf{E u} \end{array}$	$\begin{aligned} & 157.25 \\ & \text { Gd } \\ & 64 \end{aligned}$	$\begin{array}{\|c\|} \hline 158.93 \\ \mathbf{T b} \end{array}$	$\begin{aligned} & 162.50 \\ & \mathbf{D y} \\ & 66 \end{aligned}$	$\begin{array}{\|c\|} \hline 164.93 \\ \text { Ho } \\ 67 \end{array}$	$\begin{aligned} & 167.26 \\ & \mathbf{E r}^{18} \end{aligned}$	$\begin{aligned} & 168.93 \\ & \mathbf{T m} \\ & 69 \end{aligned}$	$\begin{array}{\|l} \hline 173.04 \\ 70 \end{array}$	$\begin{array}{\|c} 173.04 \\ \mathbf{L u} \\ 71 \end{array}$
Actinide Series	$\begin{array}{\|l} \hline 232.04 \\ { }_{90} \end{array}$	$\begin{aligned} & 231.04 \\ & { }_{91} \mathbf{P a} \end{aligned}$	${\underset{92}{238.03}}^{\mathbf{U}}$	$\begin{array}{\|l} 237.05 \\ \mathbf{N p} \\ 93 \end{array}$	${ }_{94} \mathrm{Pu}$	${ }_{95}{ }^{\text {Am }}$	${ }_{96} \mathrm{Cm}$	$97^{\text {Bk }}$	${ }_{98} \mathbf{C f}$	${ }_{99}{ }^{\text {Es }}$	${ }_{100}^{\text {Fm }}$	$\begin{array}{\|c\|} \mathbf{M d} \\ 101 \end{array}$	${ }_{102}^{\text {No }}$	${ }_{103}^{\mathbf{L r}}$

A PERIODIC CHART OF THE ELEMENTS (Based on ${ }^{12} \mathrm{C}$)

