Dr. Zellmer Time: 7 PM Sun. 40 min Chemistry 1250 Spring Semester 2022 Quiz III T, R February 6, 2022

Name ______ Rec. TA/time _____

Show <u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit.

1. (3 pts) Cisplatin, an anticancer drug, has the molecular formula Pt(NH₃)₂Cl₂. How many moles of hydrogen atoms are in 2.8 x 10⁻⁴ g of cisplatin? (At. Wts.: H = 1.008, N = 14.01, Cl = 35.45, Pt = 195.1; Mol. wt: 300.07)

2. (3 pts) Sodium carbonate has the formula, Na_2CO_3 . How <u>many</u> sodium <u>ions</u> are present in 0.10 g of Na_2CO_3 ? (At. Wts.: C = 12.01, O = 16.00, Na = 22.99; Form. Wt.: $Na_2CO_3 = 105.99$)

composit 507 amu.	ion of 21.32% C and 78.68% F. The (At. Wt.: C = 12.011, F = 18.998)	g only carbon and fluorine gives a mass perce e experimentally determined molecular weigh
a) (5 pts)	What is the empirical formula ?	
b) (2 pts)	What is the molecular formula ?	Not asked for on the quiz.

4.	(7 pts) A 0.589 g sample of burned completely in air to of the compound? (Atom:	of an organic compound o produce 0.733 g of Co ic weights: C = 12.01,	d containing only carbo O_2 and 0.299 g of H_2O . $H = 1.008$, $O = 16.00$)	n, hydrogen and oxygen was What is the empirical formula

5.	(4 pts) Given the balanced equation below, how many moles of hydrogen can be produced from the
	complete reaction of 3.860 x 10^{-1} mol of Fe with excess water? (At. Wts.: H = 1.008, O = 16.00, Fe =
	55.85)

$$3 \text{ Fe(s)} + 4 \text{ H}_2\text{O(g)} \rightarrow \text{Fe}_3\text{O}_4(\text{aq}) + 4 \text{ H}_2(\text{g})$$

6. (5 pts) How many **grams** of oxygen (O_2) , reacting with excess C_2H_6 , are required to form 35.0 g of carbon dioxide (CO_2) , according to the following equation? (At. Wt.: H = 1.01 O = 16.00, C = 12.01; Mol. Wt: C_2H_6 = 30.08, O_2 = 32.00, CO_2 = 44.01, H_2O = 18.02)

$$2 \; C_2 H_6 \quad + \quad 7 \; O_2 \quad \rightarrow \quad 4 \; CO_2 \quad + \quad 6 \; H_2 O$$

7. (6 pts) Calcium hydroxide reacts with phosphoric acid according to the following equation. Which substance is the limiting reagent when 1.00 mol of Ca(OH)₂ reacts with 0.50 mol of H₃PO₄? How many moles of the excess reagent remain after completion of the reaction?

$$3 \text{ Ca(OH)}_2(s) + 2 \text{ H}_3 \text{PO}_4(aq) \rightarrow \text{Ca}_3(\text{PO}_4)_2(aq) + 6 \text{ H}_2 \text{O}(\ell)$$

8.	(3 nts)	Which o	of the fol	lowing a	re strong	electrolyt	tes?
0.	(J DW)	WW III CII C	n uic ioi	nowing a	ic surving		LUS

HF HCl Cu(ClO₃)₂ Ca(OH)₂ C₂H₅OH

9. (4 pts) <u>Predict the products</u> of the following reaction. <u>Complete and balance</u> the equation. <u>Indicate</u> the physical state of reactants and products (i.e. (s), (g), (l), (aq)). (Show all work.)

A solution of nitric acid, HNO₃, is combined with a solution of Ca(OH)₂.

10. (3 pts) What are the expected products of the following reaction?

$$CaSO_3(s) + 2 HNO_3(aq) \rightarrow$$

11. (4 pts) Determine the oxidation number of the <u>underlined</u> element in the following compound. (**Must show all work.**)

a) (2 pts)
$$\underline{Cr}_2O_7^{2-}$$

b) (2 pts)
$$\underline{\mathbf{P}}_4 O_6$$

12. (5 pts) Which of the following is (are) an example(s) of a **redox** reaction (assume all reactions occur to give products)?

1)
$$Pb(NO_3)_2$$
 (aq) + NaBr (aq) \rightarrow

2)
$$CaSO_4(aq) + (NH_4)_3PO_4(aq) \rightarrow$$

3) NaI (aq) + Br₂ (
$$\ell$$
) \rightarrow

4) Fe (s) + HCl (aq)
$$\rightarrow$$

5) Ba (s) +
$$O_2$$
 (g) \rightarrow

USEFUL INFORMATION

$1 \text{ amu} = 1.66 \times 10^{-24} \text{ g}$ Avogadro's number = 6.02×10^{23} particles/mole

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	81.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)