Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250
Spring Semester 2022
Quiz III

T, R
February 6, 2022

Name \qquad Lab TA/time \qquad

1. (3 pts) Cisplatin, an anticancer drug, has the molecular formula $\operatorname{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$. How many moles of hydrogen atoms are in $2.8 \times 10^{-4} \mathrm{~g}$ of cisplatin?
(At. Wts.: $\mathrm{H}=1.008, \mathrm{~N}=14.01, \mathrm{Cl}=35.45, \mathrm{Pt}=195.1$; Mol. wt: 300.07)
$1 \mathrm{~mol} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}=6.02 \times 10^{23} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$ molecules $=300.07 \mathrm{~g} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$
Also, $1 \mathrm{~mol} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}=6 \mathrm{~mol} \mathrm{H}$ atoms
$?$ mol H atoms $=2.8 \times 10^{-4} \mathrm{~g} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}}{300.07 \mathrm{~g} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}} \times \frac{6 \mathrm{~mol} \mathrm{H} \text { atoms }}{1 \mathrm{~mol} \mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}}$
$=5.5986 \times 10^{-6}$ moles H atoms
$=5.6 \times 10^{-6}$ moles H atoms
2. (3 pts) Sodium carbonate has the formula, $\mathrm{Na}_{2} \mathrm{CO}_{3}$. How many sodium ions are present in 0.10

1 mole $\mathrm{Na}_{2} \mathrm{CO}_{3}=6.02 \times 10^{23} \mathrm{Na}_{2} \mathrm{CO}_{3}$ f.u. $=105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}$
Also, 1 mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ f.u. $=2 \mathrm{~mol} \mathrm{Na}$ ions $\& 1 \mathrm{Na}_{2} \mathrm{CO}_{3}$ f.u. $=2 \mathrm{Na}^{+}$ions
$? \mathrm{Na}^{+}$ions $=0.10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{6.02 \times 10^{23} \mathrm{Na}_{2} \mathrm{CO}_{3} \text { f.u. }}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{Na}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}$
$=1.135 \times 10^{21} \mathrm{Na}^{+}$ions
$=1.1 \times 10^{21} \mathrm{Na}^{+}$ions
Or
$? \mathrm{Na}^{+}$ions $=0.10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}}{105.99 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{Na}^{+} \text {ions }}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{6.02 \times 10^{23} \mathrm{Na}^{+} \text {ions }}{1 \mathrm{molNa}^{+} \text {ions }}$ $=1.1 \times 10^{21} \mathrm{Na}^{+}$ions
3. (7 pts) An analysis of a compound containing only carbon and fluorine gives a mass percent composition of $21.32 \% \mathrm{C}$ and $78.68 \% \mathrm{~F}$. The experimentally determined molecular weight is 507 amu . (At. Wt.: $\mathrm{C}=12.011, \mathrm{~F}=18.998$)

Must determine empirical formula first
Assume a 100 g sample

$$
21.32 \mathrm{~g} \mathrm{C} \quad 78.68 \mathrm{~g} \mathrm{~F}
$$

Step 1: convert to moles

$$
\begin{aligned}
& \text { C: } 21.32 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mole} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=1.77 \mathbf{5} 0 \mathrm{~mol} \mathrm{C}(4 \text { s.f. }) \\
& \text { F: } 78.68 \mathrm{~g} \mathrm{~F} \times \frac{1 \mathrm{~mole} \mathrm{~F}}{18.998 \mathrm{~g} \mathrm{~F}}=4.14 \mathbf{1} 4 \mathrm{~mol} \mathrm{~F}(4 \text { s.f. })
\end{aligned}
$$

Step 2: find mole ratio (divide each by smallest \# moles)- this is also atom ratio in empirical formula.
$\mathrm{C}: \frac{1.7750}{1.77 \underline{5} 0}=1.000$
F: $\frac{4.1414 \mathrm{~mol} \mathrm{~F}}{1.77 \underline{5} 0 \mathrm{~mol} \mathrm{C}}=2.333$
$\mathrm{C}_{1} \mathrm{~F}_{2.333} \quad$ can't have fractional subscripts, so multiply subscripts by 3 (if you try multiplying by 2 you are not close enough to a whole number - you get 4.666 F atoms)
$E F$ is $\quad C_{3} F_{7}$
$\mathrm{EFW}=169.02 \mathrm{amu}$ (empirical formula weight)
b) (2 pts) What is the molecular formula? Not asked for on the quiz.

Step 3: determine the molecular formula. The MF is always an integer multiple of the empirical formula, EF. Thus the MW is the same multiple of the EFW.

$$
\begin{aligned}
& \mathrm{MW}=\mathrm{n} \times \mathrm{EFW} \\
& \mathrm{n}=\frac{\mathrm{MW}}{\mathrm{EFW}}=\frac{507 \mathrm{amu}}{169.02 \mathrm{amu}}=2.99=3 \\
& \mathrm{MF}=(\mathrm{EF})_{\mathrm{n}}=\left(\mathrm{C}_{3} \mathrm{~F}_{7}\right)_{3}=\mathrm{C}_{9} \mathrm{~F}_{21}
\end{aligned}
$$

4. (7 pts) A 0.589 g sample of an organic compound containing only carbon, hydrogen and oxygen was burned completely in air to produce $0.733 \mathrm{~g} \mathrm{of} \mathrm{CO}_{2}$ and $0.299{\mathrm{~g} \text { of } \mathrm{H}_{2} \mathrm{O} \text {. What is the empirical formula }{ }^{\text {a }} \text {. }}^{\text {a }}$ of the compound? (Atomic weights: $\mathrm{C}=12.01, \mathrm{H}=1.008, \mathrm{O}=16.00$)

This is an empirical formula problem using combustion analysis. In CA the sample undergoes complete combustion. All the Carbon winds up in the CO_{2} and the Hydrogen winds up in the $\mathrm{H}_{2} \mathrm{O}$. If there is one other atom its mass can be determined by remembering the conservation of mass, in this case oxygen.

In this problem a 0.589 g sample produces 0.733 g of CO_{2} and $0.299 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
Can do this in a couple of ways. In lecture I converted the masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ into the masses of C and H atoms present in the original sample by using mass fractions. Then I got the mass of the third atom (in this case oxygen) by using the Law of Conservation of mass. Then I converted all the masses to moles.

Here I'm converting the masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ into the moles of C and H atoms present in the original sample since we need that anyway and then converting that to the masses of C and H atoms present in the original sample. Then those are used to obtain the mass of oxygen which is then converted to moles of oxygen.

Determine moles and mass of C and H in the sample:

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{C}=0.733 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.016 \underline{6} 5 \mathrm{~mol} \mathrm{C} \mathrm{(3} \mathrm{s.f.)} \\
& \text { ? } \mathrm{mol} \mathrm{H}=0.299 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.033 \underline{19 \mathrm{~mol} \mathrm{H}}(3 \text { s.f. })
\end{aligned}
$$

Need moles of oxygen but have to get mass first. Need to calculate mass of C and H and subtract from the total mass of sample to get the mass of oxygen.

$$
\begin{aligned}
& ? \mathrm{~g} \mathrm{C}=0.016 \underline{6} 5 \mathrm{~mol} \mathrm{C} \times \frac{12.01 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=0.20 \underline{0} 0 \mathrm{~g} \mathrm{C}(3 \mathrm{~s} . \mathrm{f}) \\
& ? \mathrm{~g} \mathrm{H}=0.033 \underline{1} 9 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=0.033 \underline{4} 5 \mathrm{~g} \mathrm{H}(3 \mathrm{~s} . f .)
\end{aligned}
$$

Find moles of O :

$$
? \mathrm{~mol} \mathrm{O}=0.35 \underline{5} 5 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.022 \underline{2} 1 \mathrm{~mol} \mathrm{O}(3 \mathrm{~s} . \mathrm{f} .)
$$

***** continued on next page $* * * * *$
4. (Cont.)

Empirical Formula calculations:
Divide each of the moles by the smallest number of moles (in this case O).

Can't have non-integer ratios (subscripts). Have to multiply by a factor to get integers. Must multiply each one by 3 (multiplying by 2 won't give a number close enough to an integer for oxygen).

$$
\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{4}
$$

5. (4 pts) Given the balanced equation below, how many moles of hydrogen can be produced from the complete reaction of $3.860 \times 10^{-1} \mathrm{~mol}$ of Fe with excess water? (At. Wts.: $\mathrm{H}=1.008, \mathrm{O}=16.00, \mathrm{Fe}=$ 55.85)

$$
3 \mathrm{Fe}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{aq})+4 \mathrm{H}_{2}(\mathrm{~g})
$$

mole-to-mole stoichiometry problem
$? \mathrm{~mol} \mathrm{H}_{2}=0.386 \underline{\mathbf{0}} \mathrm{~mol} \mathrm{Fex} \frac{4 \mathrm{~mol} \mathrm{H}_{2}}{3 \mathrm{~mol} \mathrm{Fe}}=0.514666=0.5147 \mathrm{~mole} \mathrm{H}_{2}$.
6. (5 pts) How many grams of oxygen $\left(\mathrm{O}_{2}\right)$, reacting with excess $\mathrm{C}_{2} \mathrm{H}_{6}$, are required to form 35.0 g of carbon dioxide $\left(\mathrm{CO}_{2}\right)$, according to the following equation? (At. Wt.: $\mathrm{H}=1.01$ $\mathrm{O}=16.00, \mathrm{C}=12.01 ; \mathrm{Mol}$. Wt: $\mathrm{C}_{2} \mathrm{H}_{6}=30.08, \mathrm{O}_{2}=32.00, \mathrm{CO}_{2}=44.01, \mathrm{H}_{2} \mathrm{O}=18.02$)

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

gram \rightarrow gram stoich

$\begin{aligned} ? \mathrm{~g} \mathrm{O}_{2}=35.0 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{7 \mathrm{~mol} \mathrm{O}_{2}}{4 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}} & =44.535 \mathrm{~g} \mathrm{O}_{2} \\ & =44.5 \mathrm{~g} \mathrm{O}_{2}\end{aligned}$ $=44.5 \mathrm{~g} \mathrm{O}_{2}$
(3 s.f.)
$\underset{\text { desired }}{\text { grams }}=\underset{\text { given }}{\text { grams }} \times \frac{\text { moles given }}{\text { grams given }} \times \frac{\text { moles desired }}{\text { moles given }} \times \frac{\text { grams desired }}{\text { moles desired }}$
grams given \Rightarrow mol given \Rightarrow mol desired \Rightarrow grams desired
7. (6 pts) Calcium hydroxide reacts with phosphoric acid according to the following equation. Which substance is the limiting reagent when 1.00 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ reacts with $0.50 \mathrm{~mol}^{2}$ of $\mathrm{H}_{3} \mathrm{PO}_{4}$? How many moles of the excess reagent remain after completion of the reaction?

$$
3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})+6 \mathrm{H}_{2} \mathrm{O}(\ell)
$$

This is a limiting reactant problem. These are just stoichiometry problems. There is more than one way to do a LR problem. In this case since it's asking for the limiting reactant and the mass of excess reactant remaining after completion of the reaction.

1) Method 1: Calculate which reactant gives the smallest number of moles of product, and then use to determine how much of the excess reactant would be used (and remains).

Calculate $\mathrm{mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ from $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$:

$$
\begin{aligned}
& ? \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=1.00 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}=0.33 \underline{3} 3 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(3 \text { s.f.) } \\
& ? \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}=0.50 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.2500 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(3 \mathrm{~s} . \text { f.) LR }
\end{aligned}
$$

Fewer moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ obtained from the $\mathrm{H}_{3} \mathrm{PO}_{4}$ so the $\mathbf{H}_{3} \mathbf{P O}_{4}$ is the $\mathbf{L R}$ and only $0.2 \underline{5} 00$ moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are formed. Calculate the moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ required to produce $0.2 \underline{5} 00 \mathrm{~mol}$ of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
\begin{aligned}
& ? \underset{\text { used }}{\mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}}=0.2 \underline{\mathbf{5}} 00 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \times \frac{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{-\cdots-\cdots \mathrm{mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=0.7 \underline{\mathbf{5}} 0 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \text { used (2 s.f.) } \\
& ? \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}=1.00 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}-0.7 \underline{\mathbf{5}} 0 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}=0.2 \underline{\mathbf{5}} 0 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \text { remaining }
\end{aligned}
$$

$\mathrm{H}_{3} \mathrm{PO}_{4}$ is LR $\quad 0.25 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$ remaining

2) Method 2: Determine mole ratio of the two reactants \& compare it to the mole ratio in the bal. eqn.

$1.00 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$	$3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$
$0.50 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$	$2 \mathrm{~mol} \mathrm{H} \mathrm{PO}_{4}$

Since the actual ratio of $\mathrm{Ca}(\mathrm{OH})_{2}$ to $\mathrm{H}_{3} \mathrm{PO}_{4}($ ratio $=2)$ is greater than that from the bal. eqn. (ratio $\left.=1.5\right)$ this means $\mathrm{Ca}(\mathrm{OH})_{2}$ is in excess and $\mathrm{H}_{3} \mathrm{PO}_{4}$ is the LR. Can then calculate the moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ required to react with the $\mathrm{H}_{3} \mathrm{PO}_{4}$.

$$
? \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}=0.50 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4} \times \frac{3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}}=0.7 \underline{\mathbf{5}} 0 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2} \text { used (3 s.f.) }
$$

8. (3 pts) Which of the following are strong electrolytes?
$\begin{array}{lllll}\mathrm{HF} & \mathrm{HCl} & \mathbf{C u}\left(\mathrm{ClO}_{3}\right)_{2} & \mathbf{C a}(\mathbf{O H})_{2} & \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\end{array}$
All soluble ionic substances (salts) are strong electrolytes. All strong acids and bases are strong electrolytes. You need to memorize these. All other molecular substances that dissolve are either weak or non-electrolytes.

The 7 strong acids are: $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}$ binary acids

$$
\mathrm{HNO}_{3}, \mathrm{HClO}_{3}, \mathrm{HClO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}\left(1^{\text {st }} \mathrm{H}^{+}\right. \text {only) oxyacids (ternary) }
$$

Strong bases are group 1 A and 2 A hydroxides are the most common. We will learn others in Ch 16.

The following are strong electrolytes:
HCl
$\mathrm{Cu}\left(\mathrm{ClO}_{3}\right)_{2} \quad$ soluble ionic cmpd.
$\mathrm{Ca}(\mathrm{OH})_{2} \quad$ strong base (ionic as well)

The following are weak electrolytes:
HF weak acid
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \quad$ molecular (nonelectrolyte)
9. (4 pts) Predict the products of the following reaction. Complete and balance the equation. Indicate the physical state of reactants and products (i.e. (s), (g), (l), (aq)). (Show all work.)

A solution of nitric acid, HNO_{3}, is combined with a solution of $\mathrm{Ca}(\mathrm{OH})_{2}$.
Neutralization Rxn: Treat as an exchange rxn. - switch partners
$\underset{\text { acid }}{\mathrm{HNO}_{3}(\mathrm{aq})}+\underset{\text { hydroxide base }}{\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})} \rightarrow \underset{\text { ionic (salt) }}{\mathrm{Ca}^{2+}\left(\mathrm{NO}_{3}\right)^{1-}(\mathrm{aq})}+\underset{\text { water }}{\mathrm{H}^{+} \mathrm{OH}^{-}(\ell)}$
charges on ions do not change when they switch partners in double replacement rxns
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$

Bal : (start w. $\mathrm{NO}_{3}{ }^{-}$- there's two of them on the right and it's on the left like a poly atomic ion. You generally want to balance polyatomic ions as a unit after balancing other things, but before H and O)

```
\(2 \underset{\text { acid }}{\mathrm{HNO}_{3}(\mathrm{aq})}+\underset{\text { hydroxide base }}{\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})} \rightarrow \underset{\text { ionic (salt) }}{\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})}+\underset{\text { water }}{2 \mathrm{H}_{2} \mathrm{O}(\ell)}\)
    (soluble) (soluble) (soluble)
```

Look in solubility table to see if substances are soluble (aq) or a precipitate (solid) or determine if one of the products breaks down to give a gas $\left(\mathrm{CO}_{2}, \mathrm{SO}_{2}\right.$ or $\left.\mathrm{H}_{2} \mathrm{~S}\right)$.
10. (3 pts) What are the expected products of the following reaction?

$$
\begin{aligned}
& \mathrm{CaSO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \\
& \mathrm{CaSO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq})
\end{aligned}
$$

Sulfurous acid is unstable and decomposes

$$
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{SO}_{2}(\mathrm{~g})
$$

Overall final equation:

$$
\mathrm{CaSO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{SO}_{2}(\mathrm{~g})
$$

Exchange (double-replacement) with the formation of a gas.
Carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and bicarbonates $\left(\mathrm{HCO}_{3}{ }^{-}\right)$react with acids to give $\mathbf{C O}_{2}(\mathrm{~g})$.
Sulfites $\left(\mathrm{SO}_{3}{ }^{2-}\right)$ and bisulfites $\left(\mathrm{HSO}_{3}{ }^{-}\right)$react with acids to give $\mathbf{S O}_{\mathbf{2}}(\mathrm{g})$.
Sulfides $\left(\mathrm{S}^{2-}\right)$ react with acids to give $\mathbf{H}_{2} \mathbf{S}(\mathrm{~g})$.
11. (4 pts) Determine the oxidation number of the underlined element in the following compound. (Must show all work.)

$$
\text { Chg. on } \underline{\mathbf{C r}}_{2} \mathrm{O}_{7}^{2-} \text { is }-2
$$

a) (2 pts) $\underline{C r}_{2} \mathrm{O}_{7}^{2-} 2 \mathrm{X}_{\mathrm{Cr}}+7(-2)_{\mathrm{O}}=-2 ; 2 \mathrm{X}_{\mathrm{Cr}}-14=-2 ; 2 \mathrm{X}_{\mathrm{Cr}}=+12 ; \mathrm{X}_{\mathrm{Cr}}=+6$

The ox. no. on chromium is $\mathbf{+ 6}$.

> Chg. on $\mathrm{P}_{4} \mathrm{O}_{6}$ is 0
> b) $(2 \mathrm{pts}) \underline{\mathbf{P}}_{4} \mathrm{O}_{6} \quad 4 \mathrm{X}_{\mathrm{P}}+6(-2)_{\mathrm{O}}=0 ; 4 \mathrm{X}_{\mathrm{P}}-12=0 ; 4 \mathrm{X}_{\mathrm{P}}=+12 ; \mathrm{X}_{\mathrm{P}}=+3$

The ox. no. on phosphorous is $+\mathbf{3}$.
12. (5 pts) Which of the following is (are) an example(s) of a redox reaction (assume all reactions occur to give products)?

1) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{NaBr}(\mathrm{aq}) \rightarrow$ exchange reaction
2) $\mathrm{CaSO}_{4}(\mathrm{aq})+\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightarrow$ exchange reaction
3) $\mathrm{NaI}(\mathrm{aq})+\mathrm{Br}_{2}(\ell) \rightarrow$ redox
4) $\mathrm{Fe}(\mathrm{s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow$ redox
5) $\mathrm{Ba}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ redox
a) 3,5
b) 1,2
c) 4,5
d) 2, 3, 4
e)* $3,4,5$

Oxidation-Reduction (Redox) reactions involve the transfer of electrons (and associated change in oxidation numbers)..

Remember (OIL RIG):
oxidation: loss of e-, inc. in oxidation \#
reduction: gain of e-, dec. in oxidation \#
See above answers in \#8. Displacement (single-replacement) and combination rxns are some examples of redox rxns.
$\begin{array}{ccccc}\text { 3) } \mathrm{NaI}(\mathrm{aq}) \\ -1 & \mathrm{Br}_{2}(\ell) & 0 & \mathrm{NaBr}(\mathrm{aq}) & +\underset{2}{\mathrm{I}_{2}(\mathrm{~s})} \\ \begin{array}{c}\text { ionic } \\ \text { halide }\end{array} & \text { element } & & -1 & 0 \\ \text { halogen } & & \text { ionic } & \text { halide } & \text { element } \\ \text { halogen } & \text { single replacement }\end{array}$
I oxidized $\quad \mathrm{Br}$ reduced
(NaI reducing agent $) \quad\left(\mathrm{Br}_{2}\right.$ oxidizing agent)
4) $\mathrm{Fe}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{FeCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \quad$ single replacement $0+1 \quad+2$ element acid ionic element
(Acts like ionic in solution)

Fe oxidized
(Fe reducing agent)

H reduced
(HCl oxidizing agent)
5) $2 \begin{array}{cc}2 \mathrm{Ba}(\mathrm{s}) & +\mathrm{O}_{2}(\mathrm{~g}) \\ 0 & 0 \\ \text { element } & \quad \text { element }\end{array}$

Ba oxidized (reducing agent)
$2 \mathrm{BaO}(\mathrm{s})$
+2-2
ionic cmpd
combination
(2 reactants $\rightarrow 1$ product)
O reduced
(O_{2} oxidizing agent)
$(3,4,5)$

