Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250 T, R
Spring Semester 2022 February 13, 2022
Quiz IV

Name \qquad Rec. TA/time \qquad
Show ALL your work or EXPLAIN to receive full credit.

1. (4 pts) The work done when a gas is compressed in a cylinder is 580.7 J . A heat transfer of 85.68 kJ occurs from the gas to the surroundings. Calculate $\Delta \mathrm{E}$ of the gas in kJ .
2. (4 pts) A piston is pushed down on a reaction vessel containing a gas phase reaction.
a) Does the system do work on the surroundings or is work done on the system by the surroundings?
b) What would be the sign of the work, w?
c) If the process is also endothermic is heat being added to or removed from the system?
d) What would be the sign of $\Delta \mathrm{E}$ or can that not be determined based on the information given? Explain!
3. (3 pts) The reaction below was carried out in a bomb calorimeter.

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \longrightarrow \quad 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

A thermometer in the calorimeter registered an increase in temperature. Choose words correctly to complete the following statements for this system.

The reaction is \qquad . (exothermic, endothermic)
The products have \qquad (lower, higher) heat content than the reactants. The quantity of heat determined is a measure of \qquad . $(\Delta \mathrm{H}, \Delta \mathrm{E})$

a) exothermic	lower	$\Delta \mathrm{H}$
b) exothermic	higher	$\Delta \mathrm{E}$
c) exothermic	lower	$\Delta \mathrm{E}$
d) endothermic	lower	$\Delta \mathrm{H}$
e) endothermic	higher	$\Delta \mathrm{E}$

4. (5 pts) Given the following equation, how many grams of acetylene gas are required to produce 1208 kcal of heat energy by combustion with oxygen? (Atomic weights: $\mathrm{C}=12.01, \mathrm{H}=1.008, \mathrm{O}=16.00$; Mol. Wts.: $\mathrm{C}_{2} \mathrm{H}_{2}=26.04, \mathrm{O}_{2}=32.00, \mathrm{CO}_{2}=44.01, \mathrm{H}_{2} \mathrm{O}=18.02$)
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}=-302 \mathrm{kcal}$
5. (6 pts) A 28.2 g sample of a metal was heated to $99.81^{\circ} \mathrm{C}$. It was placed in 150.0 g of water at 23.50 ${ }^{\circ} \mathrm{C}$. After the metal cools, the final temperature of the metal and water is $25.011^{\circ} \mathrm{C}$. Calculate the specific heat of the metal (in $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$), assuming no heat was lost to the calorimeter. Specific heat of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
6. (6 pts) Using reactions (1) and (2) calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for reaction (3). 至SO is reaction (3) endothermic or exothermic? Show your work.
(1) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{H}_{1}=-221.0 \mathrm{~kJ}$
(2) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
$\Delta \mathrm{H}_{2}=-402.4 \mathrm{~kJ}$
(3) $3 / 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow 3 / 2 \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=$?
7. (2 pts) Which of the following reactions corresponds to a heat of formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$?
a) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+5 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{HCO}_{3}(\mathrm{~s})$
b) $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
c) $6 \mathrm{C}(\mathrm{s})+12 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{l})$
d) $\mathrm{N}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Br}(\ell)$
e) $6 \mathrm{C}(\mathrm{g})+11 \mathrm{H}_{2}(\mathrm{~g})+11 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$
8. (4 pts) Determine $\Delta \mathrm{H}^{\circ}(\mathrm{kJ})$ for the following reaction using the listed heats of formation.

$$
\begin{array}{ll}
3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{HNO}_{3}(\ell) \longrightarrow 2 \mathrm{NO}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)+3 \mathrm{~S}(\mathrm{~s}) \\
\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}= \\
\mathrm{HNO}_{3}(\ell) & \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}= \\
\mathrm{NO}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}= \\
\mathrm{NO} & -174.1 \mathrm{~kJ} / \mathrm{mol} / \mathrm{mol} \\
\mathrm{H}_{2} \mathrm{O}(\ell) & \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}= \\
\hline
\end{array}
$$

9. (3 pts) What is the wavelength of a photon with an energy of $2.69 \times 10^{-19} \mathrm{~J}$?
10. (4 pts) What is the energy $(\mathrm{kJ} / \mathrm{mol})$ of one mole of photons which have a wavelength of 250 nm ?

USEFUL INFORMATION

$$
1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}
$$

Avogadro's number, $\mathrm{N}_{\mathrm{A}},=6.02 \times 10^{23}$ particles $/ \mathrm{mole}$

$$
1 \mathrm{~A}=10^{-10} \mathrm{~m}
$$

$$
\begin{gathered}
\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \bullet \mathrm{~s} \quad \mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \mathrm{R}_{\mathrm{H}}=1.097 \times 10^{7} \mathrm{~m}^{-1} \quad 1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \\
\mathrm{E}=\mathrm{h} v \quad \mathrm{c}=\lambda v \quad \mathrm{E}_{\text {Hydrogen }}=\left(-\mathrm{hcR}_{\mathrm{H}}\right)\left(1 / \mathrm{n}^{2}\right) \quad \Delta \mathrm{E}_{\text {Hydrogen }}=-\left(2.18 \times 10^{-18} \mathrm{~J}\right)\left(1 / \mathrm{n}_{\mathrm{f}}^{2}-1 / \mathrm{n}_{\mathrm{i}}^{2}\right) \\
1 / \lambda=\mathrm{R}_{\mathrm{H}}\left(1 / \mathrm{n}_{\mathrm{f}}^{2}-1 / \mathrm{n}_{\mathrm{i}}^{2}\right) \quad \lambda=\mathrm{h} /(\mathrm{mv}) \quad \mathrm{p}=\mathrm{mv} \quad \Delta \mathrm{x} \bullet \Delta \mathrm{p} \geq \mathrm{h} / 4 \pi
\end{gathered}
$$

$$
\text { electron charge, } e=1.602 \times 10^{-19} \mathrm{C} \quad 1 \mathrm{D}=3.34 \times 10^{-30} \mathrm{C} \cdot \mathrm{~m} \quad \mu=\mathrm{Q} \bullet \mathrm{r}
$$

$\underset{\text { Series }}{\text { Lanthanide }}$	${ }_{58}^{140.12}{ }^{142}$	${ }_{59}^{140.91}{ }^{\mathbf{P r}}$	$\begin{array}{\|c\|} \hline 144.24 \\ \mathrm{Nd}^{24} \end{array}$	$\begin{gathered} \begin{array}{c} 145 \\ \mathbf{P m} \\ 61 \end{array} \end{gathered}$	${ }_{62}^{150.36} \mathbf{S m}$	${\underset{63}{\mathbf{E u}}}^{151.96}$	${\underset{\text { Gd }}{ } 157.25}^{154}$	${ }^{158.93}{ }_{65}^{\mathbf{T b}}$	$\begin{gathered} 162.50 \\ { }_{66} \mathbf{D y} \end{gathered}$	$\begin{gathered} 164.93 \\ { }_{67} \mathbf{H o}^{23} \end{gathered}$	$\begin{array}{\|c} 167.26 \\ 68 \end{array}$	$\begin{gathered} 168.93 \\ { }_{69}{ }^{168} .9 \end{gathered}$	$\begin{aligned} & \mathbf{C}^{173.04} \mathbf{Y b} \\ & 70 \end{aligned}$	
Actinide Series	$\begin{aligned} & \text { 232.04 } \\ & 90 \end{aligned}$	$\begin{aligned} & \hline{ }_{91}^{231.04} \\ & 9 \mathbf{P a}^{2} \end{aligned}$	${ }_{92}^{238.03} \mathbf{U}^{23}$	$\begin{array}{\|c} 237.05 \\ \mathbf{N p} \\ 93 \end{array}$	$9_{94}{ }^{\mathrm{Pu}}$	${ }_{95}{ }^{\mathbf{A m}}$	${ }_{96} \text { Cm }$	${ }_{97}{ }^{\mathbf{B k}}$	$98{ }_{98}$	$99{ }^{\text {Es }}$	$\underset{100}{\mathbf{F m}}$	$\begin{aligned} & \text { Md } \\ & 101 \end{aligned}$	${ }_{102}^{\text {No }}$	${ }_{10}^{\mathbf{L r}}$

A PERIODIC $\underset{\text { (Based on }}{ }{ }^{\text {Ch2 }} \mathrm{C}$)

