Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250 T, R
Spring Semester 2022 February 13, 2022

Name \qquad KEY Lab TA/time \qquad

1. (4 pts) The work done when a gas is compressed in a cylinder is 580.7 J . A heat transfer of 85.68 kJ occurs from the gas to the surroundings. Calculate $\Delta \mathrm{E}$ of the gas in kJ .
$\mathrm{w}>0$ (positive): work done $\underline{\mathbf{O N}}$ system by the surroundings
$\mathrm{w}<0$ (negative): \quad work done $\underline{\mathbf{B Y}}$ system on the surroundings
$\mathrm{q}>0$ (positive): \quad system gains heat (heat goes into the system from the surroundings)

- endothermic
$\mathrm{q}<0$ (negative): \quad system loses heat (heat leaves the system to the surroundings)
- exothermic

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=\mathrm{q}-\mathrm{P} \Delta \mathrm{~V} \quad \text { (for pressure-volume work at constant volume) }
$$

If the piston is pushed down on the system (compressed) the surroundings is doing work on the system.

This means $\mathbf{w}>\mathbf{0}$, positive (energy is entering the system).
The process in exothermic, energy is leaving the system and therefore $\mathrm{q}<0$.

$$
\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=-85.6 \underline{\mathbf{8}} \mathrm{~kJ}+0.580 \underline{7} \mathrm{~kJ}=-85.0 \underline{9} 93 \mathrm{~kJ}=-85.10 \mathrm{~kJ}
$$

2. $(4 \mathrm{pts}) \mathrm{A}$ piston is pushed down on a reaction vessel containing a gas phase reaction.
$\mathrm{w}>0$ (positive): work done $\underline{\mathbf{O N}}$ system by the surroundings
$\mathrm{w}<0$ (negative): \quad work done $\underline{\mathbf{B Y}}$ system on the surroundings
$\mathrm{q}>0$ (positive): \quad system gains heat (heat goes into the system from the surroundings)

- endothermic
$\mathrm{q}<0$ (negative): system loses heat (heat leaves the system to the surroundings) - exothermic
$\Delta \mathrm{E}=\mathrm{q}+\mathrm{w}=\mathrm{q}-\mathrm{P} \Delta \mathrm{V} \quad$ (for pressure-volume work at constant volume)
a) Does the system do work on the surroundings or is work done on the system by the surroundings?

If the piston is pushed down on the system the surroundings is doing work on the system.
***** continued on next page ${ }^{* * * * *}$

Copyright R. J. Zellmer, February 13, 2022
2) (cont.)
b) What would be the sign of the work, w?

If a surroundings does work $\mathbf{O N}$ the system energy is entering the system. Anytime energy enters the system it's positive.
$\mathbf{w}>\mathbf{0}$, positive (energy is entering the system)
c) If the process is also endothermic is heat being added to or removed from the system?

Since the process is endothermic, energy is entering the system and therefore $\mathrm{q}>0$.
d) What would be the sign of $\Delta \mathrm{E}$ or can that not be determined based on the information given? Explain!

What is the sign of $\Delta \mathrm{E}$ if $\mathrm{w}>0$ and $\mathrm{q}>0$?

$$
\begin{aligned}
& \Delta \mathrm{E}=\underset{(+)}{\Delta \mathrm{q}} \mathrm{f}+\mathrm{w} \\
& (+)+(+)
\end{aligned}
$$

$\Delta \mathrm{E}>0(+)$ if both $\mathrm{w}>0(+)$ and $\mathrm{q}>0(+)$.
3. (3 pts) The reaction below was carried out in a bomb calorimeter.

$$
4 \mathrm{Al}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \longrightarrow \quad 2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})
$$

A thermometer in the calorimeter registered an increase in temperature. Choose words correctly to complete the following statements for this system.

The reaction is \qquad . (exothermic, endothermic)
The products have \qquad (lower, higher) heat content than the reactants. The quantity of heat determined is a measure of \qquad . $(\Delta \mathrm{H}, \Delta \mathrm{E})$
a) exothermic
lower
ΔH
b) exothermic
higher
$\Delta \mathrm{E}$
c)* exothermic
d) endothermic
lower
ΔE
e) endothermic
lower
$\Delta \mathrm{H}$
higher
$\Delta \mathrm{E}$
$\Delta \mathrm{H}_{\mathrm{rxn}}>0$ endothermic, energy is absorbed from the surroundings (required) Think of heat as a reactant (required). It might feel cold to the touch.
$\Delta \mathrm{H}_{\mathrm{rxn}}<0$ exothermic, energy is released to the surroundings (given off) Think of heat as a product (produced or given off). It might feel hot to the touch.

A thermometer in the calorimeter registered an iucrease in temperature. That means the surroundings gained heat. That means the system lost heat. Thus, the process (rxn) is exothermic.

For the above reaction, $\Delta \mathrm{H}_{\mathrm{rxn}}<0$ since the reaction is exothermic and heat is released.
$\Delta \mathrm{H}_{\mathrm{rxn}}=\mathrm{H}_{\text {final }}-\mathrm{H}_{\mathrm{initial}}$
Since $\Delta \mathrm{H}_{\mathrm{rxn}}<0, \quad \mathrm{H}_{\text {products }}<\mathrm{H}_{\text {reactants }}$
Thus, products have lower enthalpy (heat content) than the reactants

The rxn. is carried out in a bomb calorimeter at constant volume so the heat is equal to internal energy. The above explanation about $\Delta \mathrm{H}$ applies to $\Delta \mathrm{E}$ as well.

$$
\begin{array}{ll}
\Delta H=q_{p} & \text { enthalpy is heat at constant pressure } \\
\Delta \mathbf{E}=\mathbf{q}_{\mathbf{v}} & \text { internal energy is heat at constant volume }
\end{array}
$$

4. (5 pts) Given the following equation, how many grams of acetylene gas are required to produce 1208 kcal of heat energy by combustion with oxygen? (Atomic weights: $\mathrm{C}=12.01, \mathrm{H}=1.008, \mathrm{O}=16.00$; Mol. Wts.: $\mathrm{C}_{2} \mathrm{H}_{2}=26.04, \mathrm{O}_{2}=32.00, \mathrm{CO}_{2}=44.01, \mathrm{H}_{2} \mathrm{O}=18.02$)

$$
2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}=-302 \mathrm{kcal}
$$

This is an exothermic $\mathrm{rx}(\Delta \mathrm{H}<0)$ and 302 kcal of heat are released (as product) per mole of rxn (i.e. for eqn. with quantities as written)

$$
\begin{aligned}
& 2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}=302 \mathrm{kcal} \text { released } \\
& 5 \mathrm{~mol} \mathrm{O}_{2}=302 \mathrm{kcal} \text { released } \\
& 4 \mathrm{~mol} \mathrm{CO}_{2}=302 \mathrm{kcal} \text { released } \\
& 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=302 \mathrm{kcal} \text { released } \\
& ? \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}=1208 \mathrm{kcal} \times \frac{2 \mathrm{~mol} \mathrm{C}}{2} \mathrm{H}_{2} \\
& 302 \mathrm{kcal}
\end{aligned} \frac{26.04 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}} .
$$

$208 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{2}$ will produce 1208 kcal
5. (6 pts) A 28.2 g sample of a metal was heated to $99.81^{\circ} \mathrm{C}$. It was placed in 150.0 g of water at 23.50 ${ }^{\circ} \mathrm{C}$. After the metal cools, the final temperature of the metal and water is $25.011^{\circ} \mathrm{C}$. Calculate the specific heat of the metal (in $\mathrm{J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$), assuming no heat was lost to the calorimeter. Specific heat of water $=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

For calorimetry problems you should know what heat capacity, C , is and how molar heat capacity, C_{m}, and specific heat, C_{s}, are related to it and how they all related to heat transfer and temperature change.

Heat Capacity: The amount of heat required to raise the temperature of a substance by $1{ }^{\circ} \mathrm{C}$. Often used when you don't have pure or uniform substances (such as a styrofoam cup in calorimetry lab). This is an extensive property (depends on how much is present, how big the cup is).

$$
C=q / \Delta T
$$

Molar Heat Capacity: Heat Capacity of one mole of a substance (heat cap. per mol). The amount of heat required to raise the temp. of 1 g of a substance by $1^{\circ} \mathrm{C}$. This is most often used for a pure substance and is an intensive property (while the heat added is extensive).

$$
\mathrm{C}_{\mathrm{m}}=\mathrm{C} / \mathrm{mol}
$$

Specific Heat: Heat Capacity of one gram of a substance (heat cap. per gram). The amount of heat required to raise the temp. of 1 g of a substance by $1^{\circ} \mathrm{C}$. This is most often used for a pure substance and is an intensive property (while the heat added is extensive).

$$
\mathrm{C}_{\mathrm{s}}=\mathrm{C} / \mathrm{gram}
$$

This problem is very similar to what you do in the calorimetry lab except the problem assumes no heat is lost to the calorimeter (it has a heat capacity of zero). Heat was gained by the $\mathrm{H}_{2} \mathrm{O}$ since it's temp. increased (from $23.5{ }^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$) and heat was lost by the Ni since it's temp. decreases (from $99.8^{\circ} \mathrm{C}$ to $25.0^{\circ} \mathrm{C}$).

$$
\begin{aligned}
& \mathrm{q}=\mathrm{m} \times \mathrm{C}_{\mathrm{s}} \times \Delta \mathrm{T} \quad \text { Heat }=(\text { mass }) \cdot(\text { specific heat }) \cdot(\text { temperature change }) \\
& \mathrm{q}_{\text {gained by }} \mathrm{H} 2 \mathrm{O}=-\mathrm{q}_{\text {lost by metal }} \\
& \left.\mathrm{C}_{\mathrm{s}}=4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad \text { (the specific heat of } \mathrm{H}_{2} \mathrm{O} \text { to } 4 \text { s.f. }- \text { from the first sentence }\right) \\
& \mathrm{q}_{\mathrm{H} 2 \mathrm{O}}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{s}} \cdot \Delta \mathrm{~T}=150.0 \mathrm{~g} \times\left(4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right) \times\left(25.01{ }^{\circ} \mathrm{C}-23.51{ }^{\circ} \mathrm{C}\right) \\
& \mathrm{q}_{\mathrm{H} 2 \mathrm{O}}=94 \underline{1} .4 \mathrm{~J} \quad(2 \text { s.f. since } 25.01-23.51=1.54,3 \mathrm{~s} . f \text {. }) \\
& \mathrm{q}_{\text {metal }}=-94 \underline{\mathbf{1}} .4 \mathrm{~J} \quad \& \quad \mathrm{q}_{\text {metal }}=\mathrm{m} \cdot \mathrm{C}_{\mathrm{s}} \cdot \Delta \mathrm{~T} \\
& -94 \underline{1} .4 \mathrm{~J}=(28.2 \mathrm{~g}) \cdot \mathrm{C}_{\mathrm{s}, \text { metal }} \cdot\left(25.01{ }^{\circ} \mathrm{C}-99.81{ }^{\circ} \mathrm{C}\right)=\left(-21 \underline{0} 9.36 \mathrm{~g} \cdot{ }^{\circ} \mathrm{C}\right) \cdot \mathrm{C}_{\mathrm{s}, \text { metal }} \\
& \mathrm{C}_{\mathrm{s}, \text { metal }}=-94 \underline{1} .4 \mathrm{~J} /\left(-21 \underline{\mathbf{0}} 9.36 \mathrm{~g} \cdot{ }^{\circ} \mathrm{C}\right)=0.44 \underline{\mathbf{6}} 2 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \quad(\text { technically only } 3 \text { s.f. }) \\
& \mathrm{C}_{\mathrm{s}, \text { metal }}=0.446 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

6. (6 pts) Using reactions (1) and (2) calculate the $\Delta \mathrm{H}_{\mathrm{rxn}}$ for reaction (3). $\underline{\mathbf{A L S O}}$ is reaction (3) endothermic or exothermic? Show your work.
(1) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
$\Delta \mathrm{H}_{1}=-221.0 \mathrm{~kJ}$
(2) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
$\Delta \mathrm{H}_{2}=-402.4 \mathrm{~kJ}$
(3) $3 / 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow 3 / 2 \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=$?

When you reverse an eqn. the $\Delta \mathrm{H}$ changes sign. Reversing an eqn. is the same as multiplying the original eqn by -1 . When you multiply by some factor the $\Delta \mathrm{H}$ gets multiplied by that factor.

Need $3 / 2 \mathrm{CO}$ on the right and multiply eqn (1) by $3 / 4$ (multiply by $3 / 4$).
(1a) $3 / 2 \mathrm{C}(\mathrm{s})+3 / 4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 / 2 \mathrm{CO}(\mathrm{g})$

$$
\Delta \mathrm{H}_{1 \mathrm{a}}=3 / 4 \Delta \mathrm{H}_{1}=3 / 4(-221.0 \mathrm{~kJ})=-165 . \underline{7} \mathrm{~kJ}
$$

Need $3 / 2 \mathrm{C}(\mathrm{s})$ on the right so multiply eqn (2) by $-3 / 4$. This also then gives the proper numbers of O_{2} on the right to cancel those in (1a) and the proper number of H_{2} and $\mathrm{CH}_{3} \mathrm{OH}$ molecules in the correct locations (right and left, respectively).
(2a) $3 / 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow 3 / 2 \mathrm{C}(\mathrm{s})+3 / 4 \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

$$
\Delta \mathrm{H}_{2 \mathrm{a}}=-3 / 4 \Delta \mathrm{H}_{2}=-3 / 4(-402.4 \mathrm{~kJ})=+301 . \underline{8} \mathrm{~kJ}
$$

Now add eqns 1a and 2 a to get eqn 3. The $\Delta \mathrm{H}_{\mathrm{rxn}}$ values are also added.
(3) $3 / 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \rightarrow 3 / 2 \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$

$$
\Delta \mathrm{H}_{\mathrm{rxn}}=\Delta \mathrm{H}_{1 \mathrm{a}}+\Delta \mathrm{H}_{2 \mathrm{a}}=(-165 . \underline{7} 5 \mathrm{~kJ})+(+301 . \underline{8} \mathrm{~kJ})=+136 . \underline{0} 5 \mathrm{~kJ}=+136 . \underline{0} 5 \mathrm{~kJ}
$$

Endothermic (a positive $\Delta \mathrm{H}$; energy is required, as a reactant)
7. (2 pts) Which of the following reactions corresponds to a heat of formation, $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$?
a)* $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+5 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{NH}_{4} \mathrm{HCO}_{3}(\mathrm{~s})$
b) $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
c) $6 \mathrm{C}(\mathrm{s})+12 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}(\mathrm{l})$
d) $\mathrm{N}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})+\mathrm{Br}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Br}(\mathrm{l})$
e) $6 \mathrm{C}(\mathrm{g})+11 \mathrm{H}_{2}(\mathrm{~g})+11 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$

Standard Enthalpy (heat) of Formation: Change in enthalpy for a reaction which forms ONE mole of a compound from its elements with all substances in their standard states.

$\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$

Standard state: pure form at atmospheric pressure (and some temperature of interest). A specific temp. is NOT part of the definition. Thus for $\mathrm{H}_{2} \mathrm{O}$ at 1 atm and $25^{\circ} \mathrm{C}$ it's standard state would be a liquid. For $\mathrm{H}_{2} \mathrm{O}$ at 1 atm and $110{ }^{\circ} \mathrm{C}$ it's standard state would be a gas.

The only reaction given which produces 1 mole of a substance in its standard state from it's elements is a) $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+5 / 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s})+3 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{HCO}_{3}(\mathrm{~s})$

Note: You may see fractions in these balanced eqns. for $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ since this is for molar quantitites.
8. (4 pts) Determine $\Delta \mathrm{H}^{\circ}(\mathrm{kJ})$ for the following reaction using the listed heats of formation. Use $\Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ to determine the $\Delta \mathrm{H}_{\mathrm{rxn}}$. Based on Hess's Law.

$$
\begin{aligned}
& \Delta \mathrm{H}^{\mathrm{o}}=\sum_{\text {products }} \mathbf{n} \boldsymbol{H}_{\mathrm{f}, \text { products }}^{0}-\sum_{\text {reactants }} \mathbf{m} \boldsymbol{H}_{\mathrm{f}, \text { reactants }}^{0} \\
& 3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+2 \mathrm{HNO}_{3}(\ell) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\ell)+3 \mathrm{~S}(\mathrm{~s}) \\
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-20.6 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{HNO}_{3}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}=-174.1 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{NO}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=90.25 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}=-285.6 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta \mathrm{H}^{\circ}=[(2 \mathrm{~mol})(90.25 \mathrm{~kJ} / \mathrm{mol})+(4 \mathrm{~mol})(-285.6 \mathrm{~kJ} / \mathrm{mol})+(3 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})]- \\
& {[(3 \mathrm{~mol})(-20.6 \mathrm{~kJ} / \mathrm{mol})+(2 \mathrm{~mol})(-174.1 \mathrm{~kJ} / \mathrm{mol})]} \\
& =[-961.9 \mathrm{~kJ}]-[-410 \mathrm{~kJ}] \\
& =-551.9 \mathrm{~kJ}
\end{aligned}
$$

9. (3 pts) What is the wavelength of a photon with an energy of $2.69 \times 10^{-19} \mathrm{~J}$?

The energy of a photon is related to it's frequency (which is related to wavelength):

$$
\mathrm{E}_{\text {photon }}=\mathrm{h} v=\frac{\mathrm{hc}}{\lambda} \quad \mathrm{~h}=\text { Planck's constant }=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

What is the energy of a photon with a wavelength of 740 nm ?

$$
\begin{aligned}
& \lambda=\frac{\mathrm{hc}}{\mathrm{E}_{\text {photon }}}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \bullet \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.69 \times 10^{-19} \mathrm{~J}}=739 \times 10^{-9} \mathrm{~m} \\
& \lambda=739 \mathrm{~nm}
\end{aligned}
$$

10. (4 pts) What is the energy $(\mathrm{kJ} / \mathrm{mol})$ of one mole of photons which have a wavelength of 250 nm ? The energy of a photon is related to it's frequency (which is related to wavelength):

$$
\mathrm{E}_{\text {photon }}=\mathrm{h} v=-\frac{\mathrm{hc}}{\lambda} \quad \mathrm{~h}=\text { Planck's constant }=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

What is the energy of a single photon with a wavelength of 250 nm ?

Want energy of a mole of photons:

