Dr. Zellmer	Chemistry 1250	T, R
Time: 7 PM Sun. 40 min	Spring Semester 2022 Quiz V	Febr
Name	Rec. TA/time	

Show ALL your work or EXPLAIN to receive full credit.

(5 pts) For the Hydrogen atom, calculate the <u>wavelength</u> (in nm) of a photon for a transition from the 7^{st} shell to the 2^{nd} shell? Is this photon being <u>emitted</u> or <u>absorbed</u> by the atom? Is this 1. in the visible portion of the electromagnetic spectrum (and how do you know)? (Show work and explain your answers.)

- (3 pts) Which of the following electron transitions requires the smallest energy to be absorbed by the 2. hydrogen atom?
 - a) from n = 1 to n = 2
 - b) from n = 2 to n = 4
 - c) from n = 2 to n = 6
 - d) from n = 3 to n = 6
 - e) from n = 4 10 n = 6
- (5 pts) Calculate the de Broglie wavelength for a Ne molecule moving at 0.850 m/s? If this wavelength 3. corresponded to a photon of light would we be able to see it in the visible portion of the electromagnetic spectrum (and how do you know)?

The uncertainty principle states that 4.

- a) matter and energy are really the same thing
- b) it is impossible to know how many electrons there are in an atom
- c) there can only be one unknown digit in a number
- d) it is impossible to know what orbitals the electrons occupy.
- e) it is impossible to know exactly both the position and momentum of an electron.
- 5. (2 pts) Which of the following sets of quantum numbers are **not** allowed for an electron in an atom?
 - 1) n = 2 $\ell = 2$ $m_{e} = -1$ $m_{c} = +1/2$

 - 2) n=3 $\ell=1$ $m_{\ell}=+2$ $m_{s}=+1$ 3) n=4 $\ell=3$ $m_{\ell}=-2$ $m_{s}=-1/2$ 4) n=8 $\ell=6$ $m_{\ell}=0$ $m_{s}=+1/2$

- 6. Select an answer which includes all of the **CORRECT** statements given below.
 - 1) There are **nine f** orbitals in an f subshell.
 - 2) A **10p subshell** can have a maximum of **6 electrons**.
 - 3) Each **p** orbital within a subshell consists of four lobes along the axes.
 - 4) There are 11 subshells in the 11th shell.
 - 5) For the ground state of an atom, within a shell, all the orbitals of a subshell are filled prior to putting electrons in the next subshell.

The electron configuration for an excited state of Gd is $[Xe]6s^{1}4f^{7}5d^{2}$. How many **unpaired** electrons 7. are in this excited atom? (Be careful!)

- 8. Which of the following electron configurations corresponds to an element in the same group as an element with a $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^2$ electron configuration?
 - a) $1s^22s^22p^63s^23p^64s^23d^{10}4p^4$ b) $1s^22s^22p^63s^23p^4$
 - c) $1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^2$ d) $1s^22s^22p^3$
 - e) $1s^22s^22p^63s^23p^64s^23d^{10}4p^2$
- 9. (4 pts) Fill in the blanks with the correct answer to each of the following.
 - (a) Which has the <u>smaller</u> ionization energy, $_{32}$ Ge or $_{15}$ P?
 - (b) Which is <u>largest</u> (size): ${}_{35}Br^-$, ${}_{34}Se^{2-}$ or ${}_{33}As^{3-}$?
 - (c) Which reacts <u>more</u> readily with sulfur, ₃₇Rb or ₅₅Cs? (i.e. lose an e⁻ more easily)
 - (d) Which has the **more** negative electron affinity, ${}_{34}$ Se or ${}_{17}$ Cl?
- 10. (3 pts) Explain how the effective nuclear charge, Z_{eff} , changes going across a row from left to right in the periodic table and why?

11. (3 pts) Explain why the electron affinity for Beryllium is positive while that for Boron is negative.

12. (2 pts) Write the equation corresponding to the first electron affinity of Oxygen.

13. (2 pts) Write the equation corresponding to the second ionization energy of Ca.

14. (3 pts) Write the electron configuration for the following ion by starting with the electron configuration for the neutral atom and then the ion given. **Show work.**

 Fe^{2^+}

15. (3 pts) The electrons that are removed from $_{48}$ Cd to form the Cd²⁺ ion are from the _____ subshell and the electrons that are removed from $_{83}$ Bi to form the Bi²⁺ ion are from the _____ subshell.

a) 5s; 6p b) 5s; 5s c) 4d; 4f d) 5d; 6p e) 4s; 5d

USEFUL INFORMATION

$$\begin{split} 1 \mbox{ anu } &= 1.661 \ x \ 10^{-24} \ g \\ Avogadro's \ number, \ N_A, &= 6.02 \ x \ 10^{23} \ particles/mole \\ &= 1 \ A = 10^{-10} \ m \\ h &= 6.626 \ x \ 10^{-34} \ J \bullet s \quad c = 3.00 \ x \ 10^8 \ m/s \quad R_H = 1.097 \ x \ 10^7 \ m^{-1} \quad 1 \ J = 1 \ kg \bullet m^2/s^2 \\ E &= h\nu \quad c = \lambda\nu \quad E_{Hydrogen} = (-hcR_H)(1/n^2) \quad \Delta \ E_{Hydrogen} = -(2.18 \ x \ 10^{-18} \ J)(1/n_f^2 - 1/n_i^2) \\ &= 1/\lambda = \ R_H \ (1/n_f^2 - 1/n_i^2) \quad \lambda = h/(mv) \quad p = mv \quad \Delta x \bullet \Delta p \ge h/4\pi, \end{split}$$

electron charge,
$$e = 1.602 \text{ x } 10^{-19} \text{ C}$$
 $1\text{D} = 3.34 \text{ x } 10^{-30} \text{ C} \cdot \text{m}$ $\mu = \text{Q} \cdot \text{r}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 0 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	С т 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ^{12}C)