Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1250 Spring Semester 2022 Quiz VI

T, R February 27, 2022

Name ______ Rec. TA/time _____ Show **ALL** your work or **EXPLAIN** to receive full credit. (5 pts) Show the relationship between lattice energy (LE), charge and distance between the 1. charges and use it to explain which compound in each pair should have the greater LE. a) show the equation for lattice energy, LE. b) FeBr₃ or FeBr₂ c) CaO or MgO (3 pts) The dipole moment of ClF(g) is 0.88 D. The bond length is 1.63 Å. (Show work and explain!) 2. What magnitude of the effective charge (i.e. the partial charge), in units of e, on the Cl and F atoms leads to this dipole moment?

3.	(5 pts) Draw the Lewis structure of the selenite ion, SeO ₃ ²⁻ , conforming to the Lewis octet (noble gas) rule, <u>and</u> put the formal charges on each atom. (Must show work or explain what you are doing and show and account for all valence electrons and formal charges.)
4.	(5 pts) Draw the Lewis structure of the selenite ion, SeO ₃ ²⁻ , conforming to the Formal Charge rules, <u>and</u> put the formal charges on each atom. (Must show work or explain what you are doing and show and account for all valence electrons and formal charges.)

5.	(5 pts) Draw the Lewis structure for ICl ₂ ⁻ . How many lone pair(s) of electrons are there in the valence shell of the central atom?
6.	(8 pts) Draw the all the possible resonance structures of the cyanate ion, NCO ⁻ , conforming to the Lewis octet rule <u>and</u> put the formal charges on each atom. Also , indicate which would likely be the dominate structure . (Must show work or explain what you are doing and show and account for all valence electrons and formal charges. Also, explain your reasoning for your choice of the dominate structure.)

- 7. (3 pts) Of the possible bonds between nitrogen atoms (single, double, and triple), this of the following are ture? Multiple answers possible.
- a) a triple bond is longer than a single bond
- b) a double bond is stronger than a triple bond
- c) a single bond is stronger than a triple bond
- d) a double bond is longer than a triple bond
- e) a single bond is stronger than a double bond
- f) a triple bond is stronger than a double bond

(4 pts) Use the given bond enthalpy data to estimate the ΔH° (kJ) for the following gas phase reaction 8.

$$C - H = 413 \text{ kJ}, \qquad H - F = 567 \text{ kJ}, \qquad F - F = 155 \text{ kJ}, \qquad C - F = 485 \text{ kJ}$$

$$H - F = 567 \text{ kJ}$$

$$F - F = 155 \text{ kJ}$$

$$C - F = 485 \text{ k}.$$

$$CH_4\left(g\right) \ + \ 4\ F_2\left(g\right) \ \rightarrow \ CF_4\left(g\right) \ + \ 4\ HF\left(g\right)$$

(6 pts) Consideration domain geometric structure and	der the following etries), bond ang la short explana	molecules and les and wheth ation for your	d list their <u>moder</u> er they are <u>pol</u> er choices.)	<u>lecular</u> shape lar or nonpol	s (NOT the ele ar. (Provide	ectron the Lew
AsH_3						
AlF_3						
H_2S						
CH E						
SiH ₂ F ₂						

9.

10.	(6 pts) Draw the Lewis structure of IF ₄ ⁺ . What is its electron-domain geometry? What is its molecular geometry? What are the bond angles? (Show work or explain.)
11.	(6 pts) Consider the following molecules and select those that are non polar.
	1) PBr_3 2) BH_3 3) H_2S 4) CH_2Cl_2 5) CS_2
	a) 1, 2 b) 1, 3 c) 2, 4 d) 2, 5 e) 2, 4, 5

USEFUL INFORMATION

$$1 \text{ amu} = 1.661 \text{ x } 10^{-24} \text{ g}$$
 Avogadro's number, N_A, = 6.02 x 10^{23} particles/mole

$$1 A = 10^{-10} m$$

electron charge, $e = 1.602 \times 10^{-19} \text{ C}$ $1D = 3.34 \times 10^{-30} \text{ C} \cdot \text{m}$ $\mu = Q \cdot \text{r}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)