Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250
T, R
Spring Semester 2022
Quiz VII

Name \qquad Rec. TA/time \qquad
Show ALL your work or EXPLAIN to receive full credit.

1. (3 pts) Which hybrid orbitals lead to a bent shape with bond angles of about 105° ?
a) sp
b) sp^{2}
c) sp^{3}
d) $\mathrm{sp}^{3} d$
e) $\operatorname{sp}^{3} d^{2}$
2. (3 pts) Describe what a sigma, σ, bond is and what a pi, π, bond is in terms of their electron density. Sketch what a pi bond between two atoms looks like (use two large dots to represent the nucleus of each atom).
3. (3 pts) How many $\mathbf{s p}$ hybridized carbon atoms are contained in the following compound?

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}
$$

4. (7 pts) For the following molecule (draw in any lone-pair electrons not shown), what are the total number of σ and π bonds in the molecule? Explain your answers.

5. (6 pts) For the following molecule (draw in any lone-pair electrons not shown) answer the questions below. Explain your answers.

a) What are the hybridizations of all the central atoms left to right?
CH_{3} carbon atom on the far left:
$\mathrm{C}=\mathrm{O}$ carbon atom:
$\mathrm{C}-\mathrm{N}-\mathrm{C}$ nitrogen atom:
$\mathrm{N}-\mathrm{C}-\mathrm{O}$ carbon atom:
$\mathrm{C}-\mathrm{O}-\mathrm{C}$ oxygen atom:
CH_{3} carbon atom on the far right:
b) What are the bond angles around all the central atoms from left to right?
$\mathrm{H}-\mathbf{C}-\mathrm{C}\left(1^{\text {st }} \mathrm{C}\right.$ atom on the left $)$
$\mathrm{C}-\mathbf{C}-\mathrm{N}\left(2^{\text {nd }} \mathrm{C}\right.$ atom from left $)$
$\mathrm{C}-\mathbf{N}-\mathrm{C}$ (the N atom)
$\mathrm{N}-\mathbf{C}-\mathrm{O}$ (C atom between N and O atoms)
$\mathrm{C}-\mathbf{O}-\mathrm{C}(\mathrm{O}$ atom between the two C atoms on the right)
$\mathrm{O}-\mathbf{C}-\mathrm{H}(\mathrm{C}$ atom on the far right $)$
6. (5 pts) Two flasks are connected by a stopcock. Both flasks are held at the same temperature. The 2.00 L flask is filled with N_{2} at a pressure of 1456 mm Hg . The flask with an unknown volume, V , was evacuated (contains no gas). The stopcock is opened and the N_{2} fills both flasks. The resulting pressure after the N_{2} fills both flasks is 416 mm Hg ? What is the volume, V , of the flask on the right (in liters, L)?

7. (4 pts) Consider three one-liter flasks labeled A, B, and C filled with the gases $\mathrm{NO}, \mathrm{NO}_{2}$, and $\mathrm{N}_{2} \mathrm{O}$, respectively, each at STP. What can be said about the number of molecules of each gas? (atomic weights: $\mathrm{N}=14.01, \mathrm{O}=16.00$)
a) flask A
b) flask B
c) flask C
d) none
e) all are the same
8. (5 pts) What volume (L) of NO at $500^{\circ} \mathrm{C}$ and 0.5 atm will be produced in the following reaction if 10.0 L of oxygen reacts with excess NH_{3} and the volume of NO is measured under the same conditions of temperature and pressure? (atomic weights: $\mathrm{N}=14.01, \mathrm{H}=1.008, \mathrm{O}=16.00$)

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

9. (6 pts) A 1.50 L container of Ar at 740.0 torr and $25.0^{\circ} \mathrm{C}$ is connected to a 2.50 L container of O_{2} at 765.0 torr and $25.0^{\circ} \mathrm{C}$. What is the total pressure (torr) after the gases have mixed if the temperature remains at $25.0^{\circ} \mathrm{C}$? (Atomic weights: $\mathrm{O}=16.00, \mathrm{Ar}=39.95$)
10. (3 pts) Which of the following is the ordering of average kinetic energies of 1 mole each of the following gases; $\mathrm{H}_{2} \mathrm{~S}$ at $900 \mathrm{~K}, \mathrm{Ne}$ at 750 K and O_{2} at 400 K ? (Assuming ideal gas behavior.) (atomic weights: $\mathrm{H}=1.008, \mathrm{O}=16.00, \mathrm{Ne}=20.18, \mathrm{~S}=32.07$)
a) $\mathrm{O}_{2}<\mathrm{Ne}<\mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{Ne}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{O}_{2}$
c) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{O}_{2}<\mathrm{Ne}$
d) $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{Ne}$
e) $\mathrm{Ne}=\mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{~S}$

USEFUL INFORMATION

$$
\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.3145 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

Avogadro's number $=6.02 \times 10^{23}$ particles $/ \mathrm{mole}$

$$
1 \AA=1 \times 10^{-10} \mathrm{~m}=1 \times 10^{-8} \mathrm{~cm}
$$

molar volume at $\mathrm{STP}=22.41 \mathrm{~L}$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{aligned} & 1.008 \\ & \mathbf{H}^{1} \end{aligned}$																	$\begin{gathered} 4.003 \\ \mathbf{H e}^{2} \end{gathered}$
2	$3^{6.941}$	$\begin{aligned} & 9.012 \\ & \mathbf{B e} \end{aligned}$											$\begin{aligned} & 10.811 \\ & { }_{5} \end{aligned}$	$\begin{array}{\|l\|} \hline 12.011 \\ 6 \end{array}$	${ }_{7}^{14.007} \mathbf{N}$	$\begin{aligned} & 15.999 \\ & 8_{0} \end{aligned}$	$\begin{aligned} & 18.998 \\ & \mathbf{F}^{1} \end{aligned}$	$\begin{array}{\|l\|} \hline 20.179 \\ \mathbf{N e} \\ 10 \end{array}$
3	$\begin{aligned} & 22.990 \\ & \mathbf{N a} \\ & 11 \end{aligned}$	$\begin{aligned} & 24.305 \\ & 12 \end{aligned}$											$\begin{array}{\|c\|} \hline 26.98 \\ \mathbf{A l} \\ 13 \end{array}$	${ }_{14}^{28.09}$	${ }_{15}{ }^{30.974}$	${ }_{16}^{32.06}$	$\begin{array}{\|c\|} \hline 35.453 \\ { }_{17} \mathrm{Cl} \end{array}$	$\begin{array}{\|l\|} \hline 39.948 \\ \mathbf{A r} \\ 18 \end{array}$
4	$\begin{aligned} & \hline 39.098 \\ & { }_{19} \mathbf{K} \end{aligned}$	$\underbrace{40.08}_{20}{ }^{\mathbf{C a}}$	${ }_{21}{ }^{44.96} \mathrm{Sc}$	$2_{22}^{\mathbf{T i}}{ }^{47.88}$	${ }_{23}^{\stackrel{50.94}{V}}$	$\left\|\begin{array}{c}52.00 \\ \mathbf{C r}\end{array}\right\|$	54.94 $\mathbf{M n}$	$\underbrace{55.85}_{26}$	58.93 $\mathbf{C o}$	${\underset{28}{\mathbf{N i}}}^{58.69}$	$\begin{array}{\|c\|} \hline 63.546 \\ \mathbf{C u} \end{array}$	$\|$65.38 $\mathbf{Z n}$	${\underset{31}{ } \mathbf{G a}^{69.72}}^{\mathbf{G a}}$	$\begin{array}{\|c} \hline 72.59 \\ \mathbf{G e} \end{array}$	$\mathbf{3 3}^{74.92} \mathbf{A s}$	${ }_{34}{ }^{78.96} \mathbf{S e}$	$\begin{array}{\|c\|} \hline 79.904 \\ \mathbf{B r} \\ 35 \end{array}$	$\mathbf{8 3 . 8 0}$ $\mathbf{K r}$
5	$\begin{aligned} & 85.47 \\ & \mathbf{R b} \\ & 37 \end{aligned}$	${ }_{38}^{87.62} \mathbf{S r}$	${ }_{39}^{88.91} \mathbf{Y}$	$\begin{aligned} & 91.22 \\ & \mathbf{Z r} \\ & \hline 0 \end{aligned}$	$\begin{array}{\|c\|} \hline 92.91 \\ \mathbf{N b} \end{array}$	95.94 $\mathbf{M o}^{2}$	${ }_{43}$98 $\mathbf{T c}$	$\begin{array}{\|c\|} \hline 101.07 \\ \mathbf{R u} \\ 44 \end{array}$	$\begin{array}{\|l\|} \hline 102.91 \\ \mathbf{R h} \\ 45 \end{array}$	$\begin{array}{\|l\|} \hline 106.42 \\ \mathbf{P d} \\ 46 \end{array}$	$\begin{array}{\|c\|} \hline 107.87 \\ \mathbf{A g} \end{array}$	$\begin{array}{\|c\|} \hline 112.41 \\ \mathbf{C d} \end{array}$	$\begin{array}{\|l\|} \hline 114.82 \\ \text { In } \\ 49 \end{array}$	$\begin{array}{\|c\|} \hline 118.69 \\ \mathbf{S n} \\ 50 \end{array}$	${\underset{51}{121.75}}^{\mathbf{S b}}$	$\begin{aligned} & 127.60 \\ & \mathrm{Te} \end{aligned}$	$\begin{aligned} & 126.90 \\ & \text { I } \\ & 53 \end{aligned}$	$\begin{array}{\|c\|} \hline 131.39 \\ \mathbf{X e} \end{array}$
6	$\begin{aligned} & \hline 132.91 \\ & { }_{55} \mathrm{Cs} \end{aligned}$	$\begin{aligned} & 137.33 \\ & { }_{56} \mathbf{B a} \end{aligned}$	$\begin{array}{\|l} \hline 138.91 \\ \mathbf{L a}^{\mathbf{L a}} \end{array}$	$\begin{aligned} & \hline 178.39 \\ & \mathbf{H f} \\ & 72 \end{aligned}$	${ }_{73}{ }^{180.95}$	$\begin{gathered} 183.85 \\ 74 \end{gathered}$	$\begin{array}{\|c\|} \hline 186.21 \\ \boldsymbol{R e}^{2} \end{array}$	$\underset{76}{190.23}$	$\begin{array}{\|l\|} \hline 192.22 \\ \text { Ir } \\ 77 \end{array}$	$\begin{array}{\|c\|} \hline 195.08 \\ \mathbf{P t} \\ 78 \end{array}$	$\begin{array}{\|c\|} \hline 196.97 \\ \mathbf{A u} \\ 79 \end{array}$	$\begin{aligned} & 200.59 \\ & \mathbf{H g} \\ & 80 \end{aligned}$	$\begin{array}{\|l\|} \hline 204.38 \\ \mathbf{T l} \\ 81 \end{array}$	$\begin{array}{\|l} \hline 207.2 \\ \mathbf{P b} \end{array}$	$\begin{array}{\|l\|} \hline 208.98 \\ 83 \end{array}$	$\begin{array}{\|c} \begin{array}{c} 209 \\ \mathbf{P o} \\ 84 \end{array} \end{array}$	$\underbrace{210}_{85} \begin{gathered} \text { At } \end{gathered}$	$\underbrace{}_{86}$222 $\mathbf{R n}$
7	${ }_{87}{ }_{87}^{223}$	$\begin{aligned} & 226.03 \\ & \mathbf{R a}_{88} \end{aligned}$	$\begin{array}{\|l} \hline 227.03 \\ \mathbf{A c} \\ 89 \end{array}$	$\begin{gathered} 261 \\ \mathbf{R f} \\ 104 \end{gathered}$	$\begin{gathered} 262 \\ \mathbf{H a} \\ 105 \end{gathered}$	$\begin{array}{\|c} 263 \\ \mathbf{S g} \\ 106 \end{array}$	$\begin{gathered} 262 \\ \mathbf{N s} \\ 107 \end{gathered}$	$\begin{gathered} 265 \\ \mathbf{H s} \\ 108 \end{gathered}$	$\begin{gathered} 266 \\ \mathbf{M t} \\ 109 \end{gathered}$	$\begin{gathered} 269 \\ 110 \end{gathered}$	$\begin{aligned} & \hline 272 \\ & 111 \end{aligned}$	$\begin{array}{r} 277 \\ 112 \end{array}$						

Lanthanide Series	$\begin{aligned} & 140.12 \\ & { }_{58} \mathrm{Ce}^{2} \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 140.91 \\ \text { Pr } \\ 59 \end{array}\right) . \end{aligned}$	$\begin{aligned} & 144.24 \\ & \mathbf{N d} \\ & 60 \end{aligned}$	$\begin{array}{r} 145 \\ \mathbf{P m}^{\mathbf{P m}} \end{array}$	$\begin{aligned} & 150.36 \\ & 62 \end{aligned}$	$\begin{array}{\|l} 151.96 \\ \mathbf{E u} \\ 63 \end{array}$	$\begin{aligned} & 157.25 \\ & \text { Gd } \\ & 64 \end{aligned}$	$\begin{aligned} & 158.93 \\ & \mathbf{T b} \\ & 65 \end{aligned}$	$\begin{aligned} & 162.50 \\ & \mathbf{D y} \\ & 66 \end{aligned}$	$\begin{aligned} & 164.93 \\ & \text { Ho } \\ & 67 \end{aligned}$	$\begin{aligned} & 167.26 \\ & \mathbf{E r}^{188} \end{aligned}$	$\begin{array}{\|c\|} \hline 168.93 \\ \mathbf{T m} \\ 69 \end{array}$	$\begin{array}{\|l} \hline 173.04 \\ \mathbf{Y b} \\ 70 \end{array}$	$\begin{array}{\|l} \hline 173.04 \\ \mathbf{L u} \\ 71 \end{array}$
Actinide Series	$\begin{array}{\|l} \hline 232.04 \\ \text { Th } \\ 90 \end{array}$	$\begin{aligned} & 231.04 \\ & \mathbf{P a} \\ & 91 \end{aligned}$	${ }_{92}^{238.03}$	$\begin{aligned} & 237.05 \\ & \mathbf{N p} \\ & 93 \end{aligned}$	${ }_{94} \mathbf{P u}$	${ }_{95} \mathbf{A m}$	${ }_{96} \mathrm{Cm}$	${ }_{97}{ }^{\text {Bk }}$	${ }_{98} \mathbf{C f}$	${ }_{99}{ }^{\text {Es }}$	$\underset{100}{\mathbf{F m}}$	$\begin{array}{\|l\|l} \text { Md } \\ 101 \end{array}$	$\mathbf{1 0 2}^{\text {No }}$	${ }_{103}^{\mathbf{L r}}$

A PERIODIC
(Based on ${ }^{12} \mathrm{C}$)

