Dr. Zellmer Time: 7 PM Sun. 40 min			Sp	Chemistry 1250 ring Semester 20 Quiz VII) 022	T, R March 6, 2022					
Name	e			Rec. TA/tir	me						
Show	ALL your v	vork or <u>EXPL</u> A	IN to receive	full credit.							
1. (3 pts) Which hybrid orbitals lead to a <u>bent</u> shape with bond angles of about 105°?											
	a) sp	b) sp ²	c) sp^3	d) sp ³ d	e) sp^3d^2						

2. (3 pts) Describe what a sigma, σ , bond is and what a pi, π , bond is in terms of their electron density. Sketch what a pi bond between two atoms looks like (use two large dots to represent the nucleus of each atom).

3. (3 pts) How many **sp** hybridized carbon atoms are contained in the following compound?

$$H - C \equiv C - CH_2 - C \equiv C - CH_2 - C \equiv C - CH = CH - CH_2 - CH = CH - CH_3$$

4. (7 pts) For the following molecule (draw in any lone-pair electrons not shown), what are the total number of σ and π bonds in the molecule? Explain your answers.

$$\begin{array}{cccc} H & O & H & O \\ & & \parallel & \parallel & \parallel \\ H - C - C - C - C - O - C - H \\ & \parallel & H \\ H & H \end{array}$$

5. (6 pts) For the following molecule (draw in any lone-pair electrons not shown) answer the questions below. **Explain your answers.**

a) What are the hybridizations of all the central atoms left to right?

- CH₃ carbon atom on the far left:
- C = O carbon atom:
- C N C nitrogen atom:
- N C O carbon atom:
- C O C oxygen atom:
- CH₃ carbon atom on the far right:
- b) What are the bond angles around all the central atoms from left to right?
- $H C C (1^{st} C atom on the left)$
- C C N (2nd C atom from left)
- C N C (the N atom)
- N C O (C atom between N and O atoms)
- C O C (O atom between the two C atoms on the right)
- O C H (C atom on the far right)

6. (5 pts) Two flasks are connected by a stopcock. Both flasks are held at the same temperature. The 2.00 L flask is filled with N_2 at a pressure of 1456 mm Hg. The flask with an unknown volume, V, was evacuated (contains no gas). The stopcock is opened and the N_2 fills both flasks. The resulting pressure after the N_2 fills both flasks is 416 mm Hg? What is the volume, V, of the flask on the right (in liters, L)?

7. (4 pts) Consider three one-liter flasks labeled A, B, and C filled with the gases NO, NO₂, and N₂O, respectively, each at STP. What can be said about the number of molecules of each gas? (atomic weights: N = 14.01, O = 16.00)

a)	flask A	b)	flask B	c)	flask C	d)) none	e)	all are the same
----	---------	----	---------	----	---------	----	--------	----	------------------

8. (5 pts) What volume (L) of NO at 500 °C and 0.5 atm will be produced in the following reaction if 10.0 L of oxygen reacts with excess NH_3 and the volume of NO is measured under the same conditions of temperature and pressure? (atomic weights: N = 14.01, H = 1.008, O = 16.00)

 $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \longrightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$

9. (6 pts) A 1.50 L container of Ar at 740.0 torr and 25.0 °C is connected to a 2.50 L container of O_2 at 765.0 torr and 25.0 °C. What is the <u>total pressure</u> (torr) after the gases have mixed if the temperature remains at 25.0 °C? (Atomic weights: O = 16.00, Ar = 39.95)

- 10. (3 pts) Which of the following is the ordering of **average kinetic energies** of 1 mole each of the following gases; H_2S at 900 K, Ne at 750 K and O_2 at 400 K? (Assuming ideal gas behavior.) (atomic weights: H = 1.008, O = 16.00, Ne = 20.18, S = 32.07)
 - a) $O_2 < Ne < H_2S$ b) $Ne < H_2S < O_2$ c) $H_2S < O_2 < Ne$ d) $O_2 < H_2S < Ne$ e) $Ne = O_2 = H_2S$

USEFUL INFORMATION

Avogadro's number = 6.02×10^{23} particles/mole

$$1 \text{ Å} = 1 \text{ x } 10^{-10} \text{ m} = 1 \text{ x } 10^{-8} \text{ cm}$$

molar volume at STP = 22.41L

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1			-		<u>.</u>								-	-			4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C 6	14.007 N 7	15.999 0 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Zr 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 TI 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						
	Lanthanide Series		140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71		
	Actinide Series		232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	98 ^{Cf}	Es 99	Fm 100	Md 101	No 102	Lr 103		

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)