Dr. Zellmer Time: 7 PM Sun. 40 min

Chemistry 1250 Spring Semester 2022 Quiz VIII

T, R March 27, 2022

Name

_____ Rec. TA/time _____

Show <u>ALL</u> your work or <u>EXPLAIN</u> to receive full credit.

1. Recall the van der Waal's equation and the significance of the constants a and b.

$$(P + \frac{n^2a}{V^2})(V - nb) = nRT$$

Values of the van der Waal's constants are determined for two gases and given in the table below.

gas	a (atm·L/mol²)	b (L/mol)
A	30.53	0.102
B	0.134	0.143

Which of the following statements is **FALSE**?

- a) Ideal gases conform to the postulates of the Kinetic Molecular Theory and follow the Ideal Gas Law.
- b) Deviations from ideal behavior of gases are most likely at high pressures and low temperatures.
- c) At high pressures gas A will exhibit larger positive deviations from ideality than gas B.
- d) Gas A has stronger intermolecular forces than gas B.
- 2. (3 pts) Which of the following compounds is **INCORRECTLY** paired with the intermolecular forces that exist between neighboring molecules?
 - a) PF₅ London forces only
 - b) AsCl₃ London forces, dipole-dipole forces
 - c) SiCl₄ London forces only
 - d) CH₃CH₂F London forces, dipole-dipole forces

e) CH₃CCH₃ London forces, dipole-dipole forces, hydrogen bonding

O

3. (8 pts) Examine the following compounds and then answer the questions below which refer to these compounds, as pure substances. (Give a short explanation for your choices, i.e, types of attractive forces, whether polar or nonpolar, etc.)

(At. no.: H = 1, B = 5, C = 6, N = 7, F = 9, Al = 13, Si=14, P = 15, S = 16, Cl = 17) (Group no.: H = 1A, B,Al = 3A, C,Si = 4A, N,P = 5A, O,S = 6A, F,Cl,Br,I = 7A) (At. Wts.: H = 1.01, B = 10.81, C = 12.01, N = 14.01, O = 16.00, F = 19.00, Al = 26.98, Si = 28.09,

P = 30.97, S = 32.07, C1 = 35.45)

 C_3H_8 $CH_3CH_2 - \overset{\cdots}{O} - H$ $CH_3 - \overset{\cdots}{O} - CH_3$ CH_2F_2

- Which compound(s) has(have) <u>only</u> London forces? a)
- Which compound(s) has(have) **Dipole-Dipole** forces? b)
- Which compound(s) can form **H-bonds** between molecules (as a pure substance)? c)

Which compound should have the <u>highest</u> heat of vaporization, ΔH_{vap} ? d)

- 4. Which of the following statements is **FALSE**?
 - a) NF₃ has a permanent **dipole moment**.
 - b) PCl₅ has a **lower surface tension** than CCl₄ at the same temperature.
 - c) CH₃F has stronger total intermolecular forces than BH₃.
 - d) O₂ has a greater vapor pressure at a specified temperature than CH₃F.
 - e) HF has a higher boiling point than PH₃.

5.	(5 pts) Calculate the amount of heat (kJ) required to heat 125 g of mercury (Hg) from 25.0 °C to its
	boiling point (357 °C) and then vaporize it? (specific heat of liquid Hg = 0.138 J/g•°C, ΔH_{vap} = 292 J/g)

- a) 42.2 kJ
- b) 47.4 kJ
- c) 30.8 kJ
- d) 36.5 kJ
- e) 5.73 kJ

6. (6 pts) A substance has a $\Delta H_v = 20.0$ kJ/mol. It has a vapor pressure of 0.800 atm at -2.00 °C. What is it's **normal boiling point**?

7. (5 pts) The following is a phase diagram for an unknown substance. **Label** the regions (**phases**) **AND** write what points **A-D** represent (1 or 2 sentences next to the letters listed below). For letter **E** answer the question given there and give a brief explanation.

A.

В.

C.

D.

E. Which phase is **MORE** dense (circle answer and **explain**)? solid or liquid

8. (5 pts) It would be helpful to sketch a phase diagram for an imaginary compound (the points are already plotted for you):

vapor pressure of solid at -15 $^{\circ}$ C = 0.15 atm

Which of the following statements is **INCORRECT** about the compound?

- a) Increasing the temperature from 0°C to 60°C at 0.7 atm will cause fusion to occur.
- b) The solid is **less** dense than the liquid.
- c) The solid can melt at temperatures below 49°C when the pressure is increased.
- d) Condensation occurs if the pressure is increased from 0.1 atm to 0.5 atm at 0°C.
- e) The solid will **sublime** rather than melt when the temperature is **raised** if the **pressure** is **0.3** atm.

9.	(7 pts) A metal crystalizes in a body-centered-cubic unit cell with an atomic radius of 2.20 Å and a density of 3.48 g/cm ³ . (1 Å = 1 x 10^{-8} cm, $N_A = 6.02 \times 10^{23}$)
	(a) What is the atomic weight of the metal?

(b) What is the coordination number of the metal atom in this structure?

10. Choose the member of each of the following pairs that are expected to have the **HIGHER** normal melting point.

```
W or Bi
                                                                                           Al<sub>2</sub>O<sub>3</sub> or NaCl
     SiC or NaCl
                                     HF or Na
                                            Al<sub>2</sub>O<sub>3</sub>
NaCl
NaCl
                      HF
a) NaCl
                                 Bi
b) NaCl
                      Na
                                 W
c) SiC
                      HF
                                 W
                                            \begin{array}{c} Al_2O_3\\Al_2O_3\end{array}
d) SiC
                      Na
                                 Bi
e) SiC
                      Na
                                 W
```

USEFUL INFORMATION

R = 0.08206 L-atm/mol-K = 8.3145 J/mol-K

Avogadro's number = 6.02×10^{23} particles/mole

$$1 \text{ Å} = 1 \text{ x } 10^{-10} \text{ m} = 1 \text{ x } 10^{-8} \text{ cm}$$

molar volume at STP = 22.41L

 $KE = \frac{1}{2} \text{ mv}^2$, $KE_{avg} = \frac{1}{2} \text{ mu}^2$, total average KE per mole = 3/2 RT

$$(P + \frac{n^2 a}{V^2}) (V - nb) = nRT$$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	1.008 H 1																	4.003 He 2
2	6.941 Li 3	9.012 Be 4											10.811 B 5	12.011 C	14.007 N 7	15.999 O 8	18.998 F 9	20.179 Ne 10
3	22.990 Na 11	24.305 Mg 12											26.98 Al 13	28.09 Si 14	30.974 P 15	32.06 S 16	35.453 Cl 17	39.948 Ar 18
4	39.098 K 19	40.08 Ca 20	44.96 Sc 21	47.88 Ti 22	50.94 V 23	52.00 Cr 24	54.94 Mn 25	55.85 Fe 26	58.93 Co 27	58.69 Ni 28	63.546 Cu 29	65.38 Zn 30	69.72 Ga 31	72.59 Ge 32	74.92 As 33	78.96 Se 34	79.904 Br 35	83.80 Kr 36
5	85.47 Rb 37	87.62 Sr 38	88.91 Y 39	91.22 Z r 40	92.91 Nb 41	95.94 Mo 42	98 Tc 43	101.07 Ru 44	102.91 Rh 45	106.42 Pd 46	107.87 Ag 47	112.41 Cd 48	114.82 In 49	118.69 Sn 50	121.75 Sb 51	127.60 Te 52	126.90 I 53	131.39 Xe 54
6	132.91 Cs 55	137.33 Ba 56	138.91 La 57	178.39 Hf 72	180.95 Ta 73	183.85 W 74	186.21 Re 75	190.23 Os 76	192.22 Ir 77	195.08 Pt 78	196.97 Au 79	200.59 Hg 80	204.38 Tl 81	207.2 Pb 82	208.98 Bi 83	209 Po 84	210 At 85	222 Rn 86
7	223 Fr 87	226.03 Ra 88	227.03 Ac 89	261 Rf 104	262 Ha 105	263 Sg 106	262 Ns 107	265 Hs 108	266 Mt 109	269 110	272 111	277 112						

Lanthanide Series	140.12 Ce 58	140.91 Pr 59	144.24 Nd 60	145 Pm 61	150.36 Sm 62	151.96 Eu 63	157.25 Gd 64	158.93 Tb 65	162.50 Dy 66	164.93 Ho 67	167.26 Er 68	168.93 Tm 69	173.04 Yb 70	173.04 Lu 71
Actinide Series	232.04 Th 90	231.04 Pa 91	238.03 U 92	237.05 Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103

A PERIODIC CHART OF THE ELEMENTS (Based on ¹²C)