Dr. Zellmer
Time: 7 PM Sun.
40 min

Chemistry 1250
T, R
Spring Semester 2022
Quiz VIII

Name \qquad Rec. TA/time

Show ALL your work or EXPLAIN to receive full credit.

1. Recall the van der Waal's equation and the significance of the constants a and b.

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

Values of the van der Waal's constants are determined for two gases and given in the table below.

gas	$\mathrm{a}\left(\mathrm{atm} \cdot \mathrm{L} / \mathrm{mol}^{2}\right)$	$\mathrm{b}(\mathrm{L} / \mathrm{mol})$
A	30.53	0.102
B	0.134	0.143

Which of the following statements is FALSE?
a) Ideal gases conform to the postulates of the Kinetic Molecular Theory and follow the Ideal Gas Law.
b) Deviations from ideal behavior of gases are most likely at high pressures and low temperatures.
c) At high pressures gas A will exhibit larger positive deviations from ideality than gas B .
d) Gas A has stronger intermolecular forces than gas B.
2. (3 pts) Which of the following compounds is INCORRECTLY paired with the intermolecular forces that exist between neighboring molecules?
a) $\mathrm{PF}_{5} \quad$ London forces only
b) $\mathrm{AsCl}_{3} \quad$ London forces, dipole-dipole forces
c) $\mathrm{SiCl}_{4} \quad$ London forces only
d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}$ London forces, dipole-dipole forces
e) $\mathrm{CH}_{3} \stackrel{\mathrm{O}}{\mathrm{C}} \mathrm{CH}_{3}$ London forces, dipole-dipole forces, hydrogen bonding
3. (8 pts) Examine the following compounds and then answer the questions below which refer to these compounds, as pure substances. (Give a short explanation for your choices, i.e, types of attractive forces, whether polar or nonpolar, etc.)
(At. no.: $\mathrm{H}=1, \mathrm{~B}=5, \mathrm{C}=6, \mathrm{~N}=7, \mathrm{~F}=9, \mathrm{Al}=13, \mathrm{Si}=14, \mathrm{P}=15, \mathrm{~S}=16, \mathrm{Cl}=17$)
(Group no.: $\mathrm{H}=1 \mathrm{~A}, \mathrm{~B}, \mathrm{Al}=3 \mathrm{~A}, \mathrm{C}, \mathrm{Si}=4 \mathrm{~A}, \mathrm{~N}, \mathrm{P}=5 \mathrm{~A}, \mathrm{O}, \mathrm{S}=6 \mathrm{~A}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}=7 \mathrm{~A}$)
(At. Wts.: $\mathrm{H}=1.01, \mathrm{~B}=10.81, \mathrm{C}=12.01, \mathrm{~N}=14.01, \mathrm{O}=16.00, \mathrm{~F}=19.00, \mathrm{Al}=26.98, \mathrm{Si}=28.09$, $\mathrm{P}=30.97, \mathrm{~S}=32.07, \mathrm{Cl}=35.45)$
$\mathrm{C}_{3} \mathrm{H}_{8}$
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\ddot{\mathrm{O}}-\mathrm{H}$
$\mathrm{CH}_{3}-\ddot{\mathrm{O}}-\mathrm{CH}_{3}$
$\mathrm{CH}_{2} \mathrm{~F}_{2}$
a) Which compound(s) has(have) only London forces?
b) Which compound(s) has(have) Dipole-Dipole forces?
c) Which compound(s) can form H-bonds between molecules (as a pure substance)?
d) Which compound should have the highest heat of vaporization, $\Delta \mathrm{H}_{\text {vap }}$?
4. Which of the following statements is FALSE?
a) NF_{3} has a permanent dipole moment.
b) PCl_{5} has a lower surface tension than CCl_{4} at the same temperature.
c) $\mathrm{CH}_{3} \mathrm{~F}$ has stronger total intermolecular forces than BH_{3}.
d) O_{2} has a greater vapor pressure at a specified temperature than $\mathrm{CH}_{3} \mathrm{~F}$.
e) HF has a higher boiling point than PH_{3}.
5. (5 pts) Calculate the amount of heat (kJ) required to heat 125 g of mercury (Hg) from $25.0^{\circ} \mathrm{C}$ to its boiling point $\left(357{ }^{\circ} \mathrm{C}\right)$ and then vaporize it? (specific heat of liquid $\mathrm{Hg}=0.138 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}, \Delta \mathrm{H}_{\text {vap }}=292 \mathrm{~J} / \mathrm{g}$)
a) 42.2 kJ
b) 47.4 kJ
c) 30.8 kJ
d) 36.5 kJ
e) 5.73 kJ
6. (6 pts) A substance has a $\Delta \mathrm{H}_{\mathrm{v}}=20.0 \mathrm{~kJ} / \mathrm{mol}$. It has a vapor pressure of 0.800 atm at $-2.00^{\circ} \mathrm{C}$. What is it's normal boiling point?
7. (5 pts) The following is a phase diagram for an unknown substance. Label the regions (phases) AND write what points A-D represent (1 or 2 sentences next to the letters listed below). For letter \mathbf{E} answer the question given there and give a brief explanation.

A.
B.
C.
D.
E. Which phase is MORE dense (circle answer and explain)? solid or liquid
8. (5 pts) It would be helpful to sketch a phase diagram for an imaginary compound (the points are already plotted for you):
triple point $=52^{\circ} \mathrm{C}, 0.5 \mathrm{~atm}$
normal melting point $=49^{\circ} \mathrm{C}$
vapor pressure of solid at $-15^{\circ} \mathrm{C}=0.15 \mathrm{~atm}$
critical point $=329^{\circ} \mathrm{C}, 5.8 \mathrm{~atm}$ (not shown)
normal boiling point $=118{ }^{\circ} \mathrm{C}$

Which of the following statements is INCORRECT about the compound?
a) Increasing the temperature from $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ at 0.7 atm will cause fusion to occur.
b) The solid is less dense than the liquid.
c) The solid can melt at temperatures below $49^{\circ} \mathrm{C}$ when the pressure is increased.
d) Condensation occurs if the pressure is increased from 0.1 atm to 0.5 atm at $0^{\circ} \mathrm{C}$.
e) The solid will sublime rather than melt when the temperature is raised if the pressure is $\mathbf{0 . 3} \mathrm{atm}$.
9. (7 pts) A metal crystalizes in a body-centered-cubic unit cell with an atomic radius of $2.20 \AA$ and a density of $3.48 \mathrm{~g} / \mathrm{cm}^{3} .\left(1 \AA=1 \times 10^{-8} \mathrm{~cm}, \mathrm{~N}_{\mathrm{A}}=6.02 \times 10^{23}\right)$
(a) What is the atomic weight of the metal?
(b) What is the coordination number of the metal atom in this structure?
10. Choose the member of each of the following pairs that are expected to have the HIGHER normal melting point.

$$
\mathrm{SiC} \text { or } \mathrm{NaCl} \quad \mathrm{HF} \text { or } \mathrm{Na} \quad \mathrm{~W} \text { or } \mathrm{Bi} \quad \mathrm{Al}_{2} \mathrm{O}_{3} \text { or } \mathrm{NaCl}
$$

a)	NaCl	HF	Bi
b)	$\mathrm{Al}_{2} \mathrm{O}_{3}$		
NaCl	Na	W	NaCl
c)	SiC	HF	W
d)	NaCl		
e)	NiC	Na	Bi
$\mathrm{Al}_{2} \mathrm{O}_{3}$			
e	Na	W	$\mathrm{Al}_{2} \mathrm{O}_{3}$

USEFUL INFORMATION

$$
\mathrm{R}=0.08206 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}=8.3145 \mathrm{~J} / \mathrm{mol}-\mathrm{K}
$$

Avogadro's number $=6.02 \times 10^{23}$ particles $/ \mathrm{mole}$

$$
1 \AA=1 \times 10^{-10} \mathrm{~m}=1 \times 10^{-8} \mathrm{~cm}
$$

molar volume at $\mathrm{STP}=22.41 \mathrm{~L}$
$\mathrm{KE}=1 / 2 \mathrm{mv}^{2}, \quad \mathrm{KE}_{\text {avg }}=1 / 2 \mathrm{mu}^{2}, \quad$ total average KE per mole $=3 / 2 \mathrm{RT}$

$$
\left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
$$

	IA	IIA	IIIB	IVB	VB	VIB	VIIB	VIIIB			IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
1	$\begin{aligned} & { }_{1}^{1.008} \\ & \mathbf{H} \end{aligned}$																	$\begin{aligned} & \text { 4.003 } \\ & \mathbf{H e}^{2} \end{aligned}$
2	$\begin{aligned} & 6.941 \\ & \mathbf{L i}^{6.94} \end{aligned}$	$\begin{array}{\|l} \hline 9.012 \\ \mathbf{B e}^{2} \end{array}$											$\begin{array}{\|l} \hline 10.811 \\ { }_{5} \mathbf{B} \end{array}$	${ }_{6}^{12.011} \mathrm{C}$	${ }_{7}^{14.007} \mathbf{N}$	$\begin{array}{\|l} 15.999 \\ \mathbf{O} \end{array}$	$\begin{aligned} & 18.998 \\ & \mathbf{F} \end{aligned}$	$\begin{aligned} & \hline 20.179 \\ & \mathbf{N e} \\ & 10 \end{aligned}$
3	$\begin{aligned} & 22.990 \\ & \mathbf{N a} \\ & 11 \end{aligned}$	$\begin{array}{\|l} 24.305 \\ \mathbf{M g} \\ 12 \end{array}$											${\underset{13}{26.98}}^{\text {Al }}$	${ }_{14}^{28.09}$	${ }_{15}^{30.974} \mathbf{P}$	${ }_{16}{ }^{32.06}$	$\begin{aligned} & 35.453 \\ & { }_{17}^{\text {Cl }} \end{aligned}$	$\begin{aligned} & 39.948 \\ & \mathbf{A r} \\ & 18 \end{aligned}$
4	$\begin{aligned} & 39.098 \\ & { }_{19} \mathbf{K} \end{aligned}$	$\begin{array}{\|c} \hline 40.08 \\ \mathbf{C a} \end{array}$	$\begin{array}{\|c} \hline 44.96 \\ \text { Sc } \end{array}$	${ }_{22}{ }^{\mathbf{T i} \mathbf{i}^{48}}$	${ }_{23}^{50.94} \mathbf{V}$	${ }_{24}^{\mathbf{C r}}$	$\mathbf{5}^{54.94}$ $\mathbf{M n}$	${ }_{26}{ }^{56.85}{ }^{\mathbf{F e}}$	$\begin{array}{\|c\|} \hline 58.93 \\ \mathbf{C o} \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{N i} \\ \mathbf{N i} \end{array}$	$\begin{aligned} & 63.546 \\ & { }_{29} \mathbf{C u} \end{aligned}$	$\mathbf{Z n}$ $\mathbf{Z n}$	${ }_{31}^{\mathbf{6 9 . 7 2}}$	$\begin{aligned} & \hline \mathbf{G e} .59 \\ & 32 \end{aligned}$	$\begin{array}{\|c} \hline 74.92 \\ \mathbf{A s} \end{array}$	${ }_{34}{ }^{78.96}$	$\begin{array}{\|l} \hline 79.904 \\ \mathbf{B r} \\ 35 \end{array}$	$\begin{array}{\|l} \hline 83.80 \\ \mathbf{K r} \\ 36 \end{array}$
5	${ }_{37}$85.47 $\mathbf{R b}$	${ }_{38}^{87.62}{ }^{8 r}$	${ }_{39}^{88.91} \mathbf{Y}$	${ }_{40}{ }^{91.22}$	$\mathbf{N b}_{41}^{92.91} \mathbf{N b}$	95.94 42	${ }_{43}{ }^{98}$	$\begin{array}{\|c\|} \hline 101.07 \\ \mathbf{R u} \\ 44 \end{array}$	$\begin{aligned} & 102.91 \\ & \mathbf{R h} \\ & 45 \end{aligned}$	$\begin{array}{\|l\|} \hline 106.42 \\ \text { Pd } \\ 46 \end{array}$	$\begin{array}{\|c} \hline 107.87 \\ { }_{47} \mathrm{Ag} \end{array}$	$\begin{array}{\|c\|} \hline 112.41 \\ \mathbf{C d} \end{array}$	$\begin{aligned} & 114.82 \\ & \text { In }^{19} \end{aligned}$	$\begin{array}{\|l} \hline 118.69 \\ \mathbf{S n}_{50} \end{array}$	$\begin{aligned} & 121.75 \\ & \mathbf{S b} \end{aligned}$	$\begin{aligned} & \hline 127.60 \\ & \mathrm{Te}^{2} \end{aligned}$	$\begin{array}{\|l} \hline 126.90 \\ 53 \end{array}$	$\begin{array}{\|l} \hline 131.39 \\ \mathbf{X e} \\ 54 \end{array}$
6	$\begin{gathered} 132.91 \\ { }_{55} \mathrm{Cs} \end{gathered}$	$\begin{array}{\|l} \hline 137.33 \\ \mathbf{B a}^{\mathbf{B a}} \end{array}$	$\begin{array}{\|l} \hline 138.91 \\ \mathbf{L a}^{\mathbf{L a}} \end{array}$	$\begin{aligned} & 178.39 \\ & \mathbf{H f} \\ & 72 \end{aligned}$	$\begin{aligned} & \hline 180.95 \\ & 73 \end{aligned}$	$\begin{aligned} & 183.85 \\ & 74 \end{aligned}$	$\begin{array}{\|c\|} \hline 186.21 \\ \operatorname{Re}^{2} \end{array}$	$\begin{array}{\|l\|} \hline 190.23 \\ \mathbf{O s} \end{array}$	$\begin{aligned} & 192.22 \\ & \mathbf{I r}^{12} \end{aligned}$	$\begin{array}{\|c\|} \hline 195.08 \\ \mathbf{P t} \\ 78 \end{array}$	$\begin{aligned} & \hline 196.97 \\ & \mathbf{A u} \\ & 79 \end{aligned}$	$\begin{aligned} & 200.59 \\ & \mathbf{H g} \\ & 80 \end{aligned}$	$\begin{aligned} & \hline 204.38 \\ & \mathbf{T l} \\ & 81 \end{aligned}$	$\begin{array}{\|l} \hline 207.2 \\ \mathbf{P b} \\ 82 \end{array}$	$\begin{aligned} & 208.98 \\ & \mathbf{B i}^{23} \end{aligned}$	$\begin{gathered} \begin{array}{c} 209 \\ \mathbf{P o} \\ 84 \end{array} \end{gathered}$	$\begin{array}{r} 210 \\ 85^{\mathbf{A t}} \end{array}$	$\begin{array}{r} 222 \\ \mathbf{R n} \\ 86 \end{array}$
7	${ }_{87}{ }_{87}^{223}$	$\begin{array}{\|l} \hline 226.03 \\ \mathbf{R a} \\ 88 \end{array}$	$\begin{array}{\|l} \hline 227.03 \\ \mathbf{A c} \\ 89 \end{array}$	261 $\mathbf{R f}$ 104	$\begin{gathered} 262 \\ \mathbf{H a} \\ 105 \end{gathered}$	$\begin{gathered} 263 \\ \mathbf{S g} \\ 106 \end{gathered}$	$\begin{gathered} 262 \\ \mathbf{N s} \\ 107 \end{gathered}$	$\begin{gathered} 265 \\ \mathbf{H s} \\ 108 \end{gathered}$	$\begin{gathered} 266 \\ \mathbf{M t} \\ 109 \end{gathered}$	$\begin{gathered} \hline 269 \\ 110 \end{gathered}$	$\begin{aligned} & \hline 272 \\ & 111 \end{aligned}$	$\begin{gathered} 277 \\ 112 \end{gathered}$						

Lanthanide Series	${ }_{58}^{140.12}{ }^{\text {Ce }}$	$\begin{aligned} & \left.\begin{array}{l} 140.91 \\ \text { Pr } \\ 59 \end{array}\right) . \end{aligned}$	$\begin{aligned} & 144.24 \\ & \mathrm{Nd} \\ & 60 \end{aligned}$	$\left.\quad \begin{array}{r}145 \\ \mathbf{P m}\end{array}\right]$	$\begin{aligned} & 150.36 \\ & { }_{62} \mathrm{Sm} \end{aligned}$	$\begin{array}{\|l} 151.96 \\ \mathbf{E u} \\ 63 \end{array}$	$\begin{gathered} 157.25 \\ \text { Gd } \\ 64 \end{gathered}$	$\begin{aligned} & 158.93 \\ & \mathbf{T b} \\ & 65 \end{aligned}$	$\begin{aligned} & 162.50 \\ & { }_{66} \mathbf{D y} \end{aligned}$	$\begin{aligned} & 164.93 \\ & \text { Ho } \\ & 67 \end{aligned}$	$\begin{aligned} & 167.26 \\ & \mathbf{E r}^{188} \end{aligned}$	$\begin{aligned} & \frac{168.93}{\mathbf{T m}} \\ & 69 \end{aligned}$	$\begin{aligned} & \hline 173.04 \\ & \mathbf{Y b} \\ & 70 \end{aligned}$	$\begin{array}{\|c} \hline 173.04 \\ \mathbf{L u} \\ 71 \end{array}$
Actinide Series	$\begin{array}{\|l} \hline 232.04 \\ \text { Th } \\ 90 \end{array}$	$\begin{aligned} & 231.04 \\ & 91 \end{aligned}$	${ }_{92}^{238.03}$	$\begin{aligned} & 237.05 \\ & \mathbf{N p} \\ & 93 \end{aligned}$	${ }_{94}{ }^{\mathbf{P u}}$	$959^{\text {Am }}$	${ }_{96} \mathbf{C m}$	${ }_{97}{ }^{\text {Bk }}$	${ }_{98} \mathbf{C f}$	${ }_{99}{ }^{\text {Es }}$	$\underset{100}{\text { Fm }}$	$\begin{gathered} \text { Md } \\ 101 \end{gathered}$	$\begin{gathered} \text { No } \\ 102 \end{gathered}$	${ }_{103}^{\mathbf{L r}}$

A PERIODIC CHART OF THE ELEMENTS
(Based on ${ }^{12} \mathrm{C}$)

