Topological Quillen completion and localization of structured ring spectra

Yu Zhang

The Ohio State University

July 29, 2019
Structured ring spectra are symmetric spectra with algebraic structures described as algebras over an operad \mathcal{O}, where $\mathcal{O}[0] = \ast$; such \mathcal{O}-algebras are non-unital. Topological Quillen homology (TQ-homology) naturally arises as the topological analog of Quillen homology. The canonical truncation of operad map $\mathcal{O} \to \tau_1 \mathcal{O}$ induces change of operads adjunction

$$\begin{array}{c}
\text{Alg}_\mathcal{O} \\ Q
\end{array} \leftrightarrow \begin{array}{c}
\text{Alg}_{\tau_1 \mathcal{O}} = \text{Mod}_{\mathcal{O}[1]}
\end{array} \quad U$$

with left adjoint on top, where $Q(X) := \tau_1 \mathcal{O} \circ \mathcal{O} (X)$ and U is the forgetful functor.

Definition

Let X be a cofibrant \mathcal{O}-algebra, its TQ-homology is $TQ(X) := UQ(X)$. The unit of the adjunction (Q, U) is the TQ-Hurewicz map $X \to UQX = TQ(X)$.

For example, if \mathcal{O} is the operad whose algebras are the non-unital commutative ring spectra, then $TQ(X) \simeq X/X^2$.

Yu Zhang (OSU)
Question

Is it possible to recover an \mathcal{O}-algebra X from its TQ-homology $TQ(X)$?

One can iterate the TQ-Hurewicz map to form a cosimplicial resolution of X

$$
X \rightarrow TQX \rightarrow TQ^2X \rightarrow TQ^3X \rightarrow \cdots
$$

Taking homotopy limit gives the TQ-completion map

$$
c: X \rightarrow X_{TQ}^\wedge
$$

Conjecture (Francis-Gaitsgory, 2012)

If X is a homotopy pro-nilpotent \mathcal{O}-algebra, then the TQ-completion map $c: X \rightarrow X_{TQ}^\wedge$ is a weak equivalence.
Conjecture (Francis-Gaitsgory, 2012)

If X is a homotopy pro-nilpotent O-algebra, then the TQ-completion map $c : X \rightarrow X^\wedge_{TQ}$ is a weak equivalence.

Definition

Let X be an O-algebra and $n \geq 2$. We say that X is n-nilpotent if all the n-ary and higher operations $O[t] \wedge X^\wedge t \rightarrow X$ are trivial (i.e., if these maps factor through \ast for each $t \geq n$). We say that X is nilpotent if there exists some $n \geq 2$ so that X is n-nilpotent. We say that X is homotopy pro-nilpotent if X is the homotopy limit of a tower of nilpotent O-algebras.

For example, if X is a non-unital commutative ring spectra, then X/X^n is n-nilpotent. Nilpotent O-algebras are obviously homotopy pro-nilpotent.

Theorem

Assume that O is (-1)-connected and X is a 0-connected O-algebra.

Ching-Harper (2019): $c : X \rightarrow X^\wedge_{TQ}$ is a weak equivalence.
Definition

A fibrant \mathcal{O}-algebra X is TQ-local if every TQ-homology equivalence $f : A \to B$ between cofibrant objects induces a weak equivalence $\text{Hom}(B, X) \to \text{Hom}(A, X)$ on mapping spaces in sSet.

Proposition

Let X, Y be TQ-local \mathcal{O}-algebras. Then a map $X \to Y$ in $\text{Alg}_{\mathcal{O}}$ is a weak equivalence if and only if it is a TQ-homology equivalence.

Theorem (Harper-Z, 2019)

Let X be a cofibrant \mathcal{O}-algebra, then there is a natural TQ-homology equivalence of the form $l : X \to L_{TQ}X$ with TQ-local codomain.
Proposition

Let X be a cofibrant O-algebra. Then the TQ-completion map $c: X \to X_{TQ}^\wedge$ factors through the TQ-localization map $l: X \to L_{TQ}X$ in Alg_O

Furthermore, if c is a weak equivalence, then l, ξ are both weak equivalences.

Theorem (Z)

Let X be a homotopy pro-nilpotent O-algebra. Then the TQ-localization map $l: X \to L_{TQ}X$ is a weak equivalence.

Theorem (Z)

A map $X \to Y$ between homotopy pro-nilpotent O-algebras is a weak equivalence if and only if it is a TQ-homology equivalence.