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5

Network method of moments [20] is an important tool for nonparametric6

network inference. However, there has been little investigation on accurate7

descriptions of the sampling distributions of network moment statistics. In8

this paper, we present the first higher-order accurate approximation to the9

sampling CDF of a studentized network moment by Edgeworth expansion. In10

sharp contrast to classical literature on noiseless U-statistics, we show that the11

Edgeworth expansion of a network moment statistic as a noisy U-statistic can12

achieve higher-order accuracy without non-lattice or smoothness assumptions13

but just requiring weak regularity conditions. Behind this result is our surpris-14

ing discovery that the two typically-hated factors in network analysis, namely,15

sparsity and edge-wise observational errors, jointly play a blessing role, con-16

tributing a crucial self-smoothing effect in the network moment statistic and17

making it analytically tractable. Our assumptions match the minimum re-18

quirements in related literature. For sparse networks, our theory shows that19

our empirical Edgeworth expansion and a simple normal approximation both20

achieve the same gradually depreciating Berry-Esseen type bound as the net-21

work becomes sparser. This result also significantly refines the best previous22

theoretical result.23

For practitioners, our empirical Edgeworth expansion is highly accurate24

and computationally efficient. It is also easy to implement and convenient for25

parallel computing. We demonstrate the clear advantage of our method by26

several comprehensive simulation studies. As a byproduct, we also provide a27

finite-sample analysis of the network jackknife.28

We showcase three applications of our results in network inference. We29

prove, to our knowledge, the first theoretical guarantee of higher-order accu-30

racy for some network bootstrap schemes, and moreover, the first theoreti-31

cal guidance for selecting the sub-sample size for network sub-sampling. We32

also derive a one-sample test and the Cornish-Fisher confidence interval for33

a given moment with higher-order accurate controls of confidence level and34

type I error, respectively.35

1. Introduction.36

1.1. Overview. Network moments are the frequencies of particular patterns, called motifs,37

that repeatedly occur in networks [102, 7, 114]. Examples include triangles, stars and wheels.38

They provide succinct and informative sketches of potentially very high-dimensional network39

population distributions. Pioneered by [20, 95], the method of moments for network data has40

become a powerful tool for frequentist nonparametric network inferences [8, 101, 131, 6, 99].41

Compared to model-based network inference methods [91, 128, 94], moment method enjoys42

several unique advantages.43

First, network moments play important roles in network modeling. They are the build-44

ing blocks of the well-known exponential random graph models (ERGM) [78, 135]. More45

generally, under an exchangeable network assumption, the deep theory by [20] (Theorem46

3) and [26] (Theorem 2.1) show that knowing all population moments can uniquely deter-47

mine the network model up to weak isomorphism, despite no explicit inversion formula is48

yet available. From the perspective of statistical inference, evaluation of network moments49
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is completely model-free, making them objective evidences for specification, validation and50

comparison of network models [27, 117, 125, 106]. Second, network moments can be very51

efficiently computed, easily allowing parallel computing. This is a crucial advantage in a big52

data era, where business and industry networks could contain 105 „ 107 or even more nodes53

[43, 92] and computation efficiency becomes a substantive practicality concern. Model-fitting54

based network inference methods might face challenges in handling huge networks, while55

moment method equipped with proper sampling techniques [112, 46] will scale more com-56

fortably (also see our comment in Section 6). Third, many network moments and their derived57

functionals are important structural features of great practical interest. Examples include clus-58

tering coefficient [76, 130], degree distribution [109, 122], transitivity [113], and more listed59

in Table A.1 in [114].60

Despite the importance and raising interest in network moment method, the answer to the61

following core question remains under-explored:62

What is the sampling distribution of a network moment?63

For a given network motif R1, let pUn denote its sample relative frequency (see (2.3) for a64

formal definition) with expectation µn :“ ErpUns. Let pS2
n be an estimator of VarppUnq that65

we shall specify later. We are mainly interested in finding the distribution of the studentized66

form pTn :“ ppUn ´ µnq{pSn. It is well-known that under the widely-studied exchangeable67

network model framework (see formal definition in Section 2.1), we have pTn
d
Ñ Np0,1q68

uniformly for “not too sparse” networks [20, 17, 61], but usually, Np0,1q only provides a69

rough characterization of the CDF F
pTn

, and one naturally yearns for a finer approximation.70

To this end, several network bootstrap methods have been recently proposed [20, 17, 61, 93]71

in an attempt to address this question. They quickly inspired many follow-up works [124,72

123, 60, 37] that clearly reflect data analysts’ need of an accurate approximation method.73

However, compared to their empirical effectiveness, the theoretical foundation of network74

bootstraps remains weak. Almost all existing justifications of network bootstraps critically75

depend on the following type of results76

|pU˚n ´
pUn| “ oppn

´1{2q, and |pUn ´Un| “ oppn
´1{2q;77

or similarly,
ˇ

ˇ

ˇ

pT ˚n ´
pTn

ˇ

ˇ

ˇ
“ opp1q, and | pTn ´ Tn| “ opp1q;78

where pU˚n or pT ˚n are bootstrapped statistics and Un or Tn are noiseless versions (see for-79

mal definitions in Section 2.2). Then the validity of network bootstraps is implied by the80

well-known asymptotic normality of Un or Tn [17, 61]. However, this approach cannot show81

whether network bootstraps have any accuracy advantage over a simple normal approxima-82

tion, especially considering the much higher computational costs of bootstraps.83

In this paper, we propose the first provable higher-order accurate approximation to the84

sampling distribution of a given studentized network moment. Our paper uncovers, for the85

first time, that in fact the noisy pUn and pTn are usually more analytically tractable than the86

noiseless versions Un and Tn. This enables our original analysis that sharply contrasts the87

common approach in existing network bootstrap literature that studies pUn by approximately88

reducing it to Un.89

Now, we briefly summarize our main results by an informal theorem here. Before present-90

ing the main results, we make a few preparatory definitions.91

1Without confusion, in this paper, we use R to represent both the motif as a subgraph pattern and its corre-
sponding adjacency matrix representation.
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DEFINITION 1.1 (Acyclic and cyclic motifs, see also [20, 17, 61, 93]). A motifR is called92

acyclic, if its edge set is a subset of an r-tree. The motif is called cyclic, if it is connected and93

contains at least one cycle. In other words, a cyclic motif is connected but not a tree.94

DEFINITION 1.2. To simplify the narration of our method’s error bounds under different95

motif shapes, especially in Table 2 and proof steps, define the following shorthand96

(1.1) Mpρn, n;Rq :“

#

pρn ¨ nq
´1
¨ log1{2 n` n´1 ¨ log3{2 n, For acyclic R

ρ
´r{2
n ¨ n´1¨ log1{2 n` n´1 ¨ log3{2 n, For cyclic R

To simplify the narration of tail-probability control, we define the following symbol.97

DEFINITION 1.3. For a sequence of random variables tZnu and a deterministic se-98

quence tαnu, define rOpp¨q as follows99

We write Zn :“ rOppαnq, if Pp|Zn| ěCαnq “Opn´1q for some constant C ą 0.(1.2)100

Our “ rOp” is similar to “op” in [96] (see the remark beneath its Lemma 2) and Assumption101

(A1) in [90]. For technical reasons, in this paper, we do not need to define a ropp¨q sign.102

Now we are ready to present the informal statement of our main results.103

THEOREM 1.1 (Informal statement of main results). Assume the network is generated104

by an exchangeable network model. Define the population Edgeworth expansion for a given105

network moment R with r nodes and s edges as follows:106

Gnpxq :“Φpxq `
ϕpxq
?
n ¨ ξ3

1

¨

#

2x2 ` 1

6
¨Erg3

1pX1qs107

`
r´ 1

2
¨
`

x2 ` 1
˘

Erg1pX1qg1pX2qg2pX1,X2qs

+

,108

where Φ and ϕ are the CDF and PDF of Np0,1q, respectively, and the estimable coefficients109

components ξ1, Erg3
1pX1qs and Erg1pX1qg1pX2qg2pX1,X2qs will be defined in Section 3110

and they only depend on the graphon f and the motif R. Let ρn denote the network sparsity111

parameter. For dense networks, under the assumptions:112

1. ρ´2s
n ¨Varpg1pX1qq ě constantą 0;113

2. (Dense regime) ρn “ ωpn´1{2q for acyclic R, or ρn “ ωpn´1{rq for cyclic R;114

3. Either ρn ĺ plognq´1, or lim suptÑ8
ˇ

ˇE
“

eitg1pX1q{ξ1
‰ˇ

ˇă 1;115

we have116

(1.3)
›

›

›
F

pTn
puq ´Gnpuq

›

›

›

8
“O pMpρn, n;Rqq,

where }Hpuq}8 :“ supuPR |Hpuq|, and Mpρn, n;Rq (defined in (1.1)) satisfies Mpρn, n;Rq !117

n´1{2. Under the same conditions, the empirical Edgeworth expansion pGn with estimated co-118

efficients (see (3.14)) satisfies119

(1.4)
›

›

›
F

pTn
puq ´ pGnpuq

›

›

›

8
“ rOppMpρn, n;Rqq.

for a large enough absolute constant C .120

For sparse networks, we replace condition 2 by:121
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2’. (Sparse regime) n´1 ă ρn ĺ n´1{2 for acyclic R, or n´2{r ă ρn ĺ n´1{r for cyclic R,122

The population Edgeworth expansion and a simple Np0,1q approximation both achieve the123

following Berry-Esseen bound2:124

›

›

›
F

pTn
puq ´Gnpuq

›

›

›

8
—

›

›

›
F

pTn
puq ´Φpuq

›

›

›

8
“O pMpρn, n;Rqq

ľ

op1q.(1.5)125

The empirical Edgeworth expansion achieves
›

›

›
F

pTn
puq ´ pGnpuq

›

›

›

8
“ rOp pMpρn, n;Rqq

ľ

opp1q.

That is, in the sparse regime, the empirical Edgeworth expansion has the same proved error126

rate bound as Np0,1q.127

1.2. Our contributions. Our contributions are three-fold. First, we establish the first128

provably higher-order accurate distribution approximations for network moments (1.3) and129

provide the first finite-sample error rate guarantee. The results originated from our discovery130

of the surprisingly blessing roles that network noise and sparsity jointly play in this setting.131

Our work reveals a new dimension to the understanding of these two components in net-132

work analysis. Second, we propose a provably highly accurate and computationally efficient133

empirical Edgeworth approximation (1.4) for practical use. Our method not only enjoys a sig-134

nificantly improved error control than network bootstrap methods in existing literature, but135

also computes much faster. Third, our results enable accurate and fast nonparametric network136

inference procedures.137

To understand the strength of our main results (1.3) and (1.4), notice that for dense net-138

works (see Assumption (ii) of Lemma 3.1), we achieve higher-order accuracy in distribution139

approximation without non-lattice or smoothness assumption. To our best knowledge, the140

non-lattice assumption is universally required to achieve higher-order accuracy in all liter-141

ature for similar settings. However, this assumption is violated by some popular network142

models such as stochastic block model, arguably one of the most important and widely-used143

network models. Waiving the graphon smoothness assumption makes our approach a pow-144

erful tool for model-free exploratory network analysis and analyzing networks with high145

complexity and irregularities, see our discussion in Section 3.4.146

Apart from the first higher-order approximation for dense networks, for sparse networks,147

we also establish a novel modified Berry-Esseen bound (1.5) for both our method and normal148

approximation – this is also the sharpest result to date. These results significantly improve149

over the previous best known op1q bound in literature [20, 17, 61, 93] and fills a large blank150

in the big picture. As the network sparsity ρn declines from n´1{2 towards n´1 for acyclic R,151

or from n´1{r towards n´2{r for cyclic R, our result reveals a gradually depreciating uniform152

error bound. In the boundary case, where ρn “ ωpn´1q (acyclic), or ρn “ ωpn´2{rq (cyclic),153

our result matches the uniform consistency result in classical literature.154

The key insight of our method is to view the sample network moment pUn as a noisy155

U-statistic, where “noise” refers to edge-wise observational errors in the adjacency matrix156

A. Our analysis reveals the connection and differences between the noisy and the conven-157

tional noiseless U-statistic settings. We discover the surprisingly blessing roles that the two158

typically-hated factors, namely, edge-wise observational errors and network sparsity jointly159

play in this setting, roughly summarized by the following intuitions:160

2Berry-Esseen bound for an asymptotically normal random variable Yn
d
ÑNpµ,σ2

q refers to the finite error
bound τn such that }FYnpuq ´ FNpµ,σ2qpuq}8 ď τn. This bound is typically discussed for CLT where Yn is a
centered and rescaled sample mean. Berry-Esseen bound for U-statistics: see [30].



NETWORK EDGEWORTH EXPANSION 5

1. The edge-wise errors behave like a smoother that tames potential distribution discontinuity161

due to a lattice or discrete network population3;162

2. Network sparsity elevates the smoothing effect of the observational error term to a suffi-163

cient level, such that F
pTn

becomes analytically tractable.164

At first sight, the smoothing effect of edge-wise errors is rather counter-intuitive. For in-165

stance, generating a binary A from the probability matrix W is discretizing the edge proba-166

bilities drawn from a continuum r0,1s into binary entries. How could this eventually yield a167

smoothing effect? In Section 3.1, we present two simple examples to illustrate the intuitive168

reason. In our proofs, we present original analysis to carefully quantify the impact of such169

smoothing effect. Our analysis techniques are very different from those in network bootstrap170

papers [17, 61, 93]. Also, it seems unlikely that our assumptions can be substantially relaxed171

since they match the well-known minimum conditions in related settings in [89].172

Our empirical Edgeworth expansion (1.4) is model-free, assuming only weak regularity173

conditions; has the sharpest finite-sample error bound guarantees to date; computes very fast,174

much more scalable than network bootstraps; and easily permits parallel computing.175

We showcase three applications of our main results. We present the first proof of the176

higher-order accuracy of some mainstream network bootstrap techniques under certain condi-177

tions, which their original proposing papers did not prove. Our results also enable rich future178

works on accurate and computationally very efficient network inferences. We present two179

immediate applications to testing and Cornish-Fisher type confidence interval for network180

moments with explicit accuracy guarantees.181

1.3. Paper organization. The rest of this paper is organized as follows. In Section 2, we182

formally set up the problem and provide a detailed literature review. In Section 3, we present183

our core ideas, derive the Edgeworth expansions and establish their uniform approximation184

error bounds. We discuss different versions of the studentization form. We also present our185

modified Berry-Esseen theorem for the sparse regime. In Section 4, we present three appli-186

cations of our results: bootstrap accuracy, one-sample test, and one-sample Cornish-Fisher187

confidence interval. In Section 5, we conduct three simulations to evaluate the performance188

of our method from various aspects. Section 6 discusses interesting implications of our results189

and future work.190

1.4. Big-O and small-o notation system. In this paper, we will make frequent references191

to the big-O and small-o notation system. We use the same definitions of Op¨q, op¨q, Ωp¨q192

and ωp¨q as that in standard mathematical analysis, and the same Opp¨q and opp¨q as that in193

probability theory. For two deterministic series an and bn, we write an ĺ bn to stand for194

an “Opbnq, nÑ8; and use an ă bn or an ! bn to stand for an “ opbnq, nÑ8; similarly195

define ľ, ą and ".196

2. Problem set up and literature review.197

2.1. Exchangeable networks and graphon model. The base model of this paper is ex-198

changeable network model [49, 19]. Exchangeability describes the unlabeled nature of many199

networks in social, knowledge and biological contexts, where node indices do not carry200

meaningful information. It is a very rich family that contains many popular models as spe-201

cial cases, including the stochastic block model and its variants including degree-corrected202

3More precisely speaking, such irregularity is jointly induced by both the network population distribution and
the shape of the motif, but the former is usually the determining factor.
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stochastic block model and overlapping memberships 4 [75, 141, 139, 140, 3, 83, 137, 82, 57],203

the configuration model [42, 103], latent space models [74, 62] and general smooth graphon204

models [41, 56, 136]5. In this paper, we base our study on the following exchangeable net-205

work model called graphon model. The framework is closely related to the Aldous-Hoover206

representation for infinite matrices [5, 77]. Under a graphon model, the n nodes correspond207

to latent space positions X1, . . . ,Xn
i.i.d.
„ Uniformr0,1s. Network generation is governed by208

a measurable latent graphon function fp¨, ¨q : r0,1s2 Ñ r0,1s, fpx, yq “ fpy,xq that encodes209

all structures. The edge probability between nodes pi, jq is210

(2.1) Wij “Wji :“ ρn ¨ fpXi,Xjq; 1ď iă j ď n,

where the sparsity parameter ρn P p0,1q absorbs the constant factor, and we fix
ş

r0,1s2 fpu, vqdudv “ con-211

stant. We only observe the adjacency matrix A with conditionally independent edges:212

(2.2) Aij “Aji|W „ BernoullipWijq,@1ď iă j ď n.

The model defined by (2.1) and (2.2) has a well-known issue that both f and tX1, . . . ,Xnu213

are only identifiable up to equivalence classes [34]. This may pose significant challenges214

for model-based network inference, especially those based on parameter estimations. On215

the other hand, network moments are permutation-invariant and thus clearly immune to this216

identification issue. This makes network moments attractive study objectives.217

2.2. Network moment statistics. To formalize network moments, it is more convenient218

to first define the sample version and then the population version. Each network moment is219

indexed by the corresponding motifR. For simplicity, we focus on connected motifs. Slightly220

abusing notation, here let R represent the adjacency matrix of a motif with r nodes and s221

edges. For any r-node sub-network Ai1,...,ir 6 of A, define222

(2.3) hpAi1,...,irq :“ 1rAi1,...,irĚRs
7, for all 1ď i1 ă ¨ ¨ ¨ ă ir ď n,

Here, “Ai1,...,irĚR” means there exists a permutation map π : t1, . . . , ru Ñ t1, . . . , ru, such223

that Ai1,...,irěRπ , where the “ě” is entry-wise and Rπ is defined as pRπqij :“Rπpiqπpjq. Our224

definition of hpAi1,...,irq here corresponds to the “QpRq” defined in [20]. One can similarly225

define226

(2.4) rhpAi1,...,irq :“ 1rAi1,...,ir–Rs
, for all 1ď i1 ă ¨ ¨ ¨ ă ir ď n,

where “Ai1,...,ir –R” means there exists a permutation map π : t1, . . . , ruÑ t1, . . . , ru, such227

that Ai1,...,ir “ Rπ . The definition of rh corresponds to the “P pRq” studied in [20, 17], and228

[61]. As noted by [20], each h can be explicitly expressed as a linear combination of rh terms,229

and vice versa. Therefore, they are usually treated with conceptual equivalence in literature,230

and most existing papers would choose one of them to study. For technical cleanness, in this231

4Here we adopt the convention of [3, 19, 1] and view community memberships and degree corrections as ran-
dom samples from their respective fixed hyper-distributions. There is a distinct understanding that memberships
and degree corrections are completely free unknown model parameters [59], which our study does not cover.

5Smooth graphon: we can simply think that a graphon is called “smooth” if fp¨, ¨q is a smooth function. In
the rigorous definition, f is smooth if fpψp¨q,ψp¨qq is smooth under some measure-preserving map ψ : r0,1s Ñ
r0,1s, see [19, 56, 136].

6We write Ai1,¨¨¨ ,ir to denote the sub-matrix of A with rows and columns indexed by ti1, ¨ ¨ ¨ , iru.
7Since we consider an arbitrary but fixed R throughout this paper, without causing confusion, we drop the

dependency on R in symbols such as h to simplify notation.
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paper we focus on h. We believe our analysis also applies to rh, but the analysis is much more232

complicated and we leave it to future work. Define the sample network moment as233

(2.5) pUn :“
1
`

n
r

˘

ÿ

1ďi1ă¨¨¨ăirďn

hpAi1,...,irq,

Then we define the sample-population version and population version of pUn to be Un :“234

ErpUn|W s and µn :“ ErUns “ ErpUns, respectively. We refer to pUn as the noisy U-statistic,235

and call Un :“
`

n
r

˘´1ř

1ďi1ă¨¨¨ăirďn
hpWi1,...,irq “

`

n
r

˘´1ř

1ďi1ă¨¨¨ăirďn
hpXi1 , . . . ,Xirq

8
236

the conventional noiseless U-statistic, where we define hpWi1,...,irq “ ErhpAi1,...,irq|W s, thus237

µn “ ErhpX1, ¨ ¨ ¨ ,Xrqs. Similar to the insight that studentization is key to achieve higher-238

order accurate approximations in the i.i.d. setting (Section 3.5 of [129]), we study239

pTn :“
pUn ´ µn

pSn
,

where pSn will be specified later in (3.3) and (3.4). We can similarly standardize or studentize240

the noiseless U-statistic Un by qTn :“ pUn ´ µnq{σn and Tn :“ pUn ´ µnq{Sn, respectively,241

where σ2
n :“VarpUnq and S2

n is a
?
n-consistent estimator9 for σ2

n, for instance, a jackknife242

variance estimator for the noiseless U-statistic Un, c.f. [71, 96].243

2.3. Edgeworth expansions for i.i.d. data and noiseless U-statistics. Edgeworth expan-244

sion [51, 127] refines the central limit theorem. It is the supporting pillar in the justification of245

bootstrap’s higher-order accuracy, while itself is of great independent interest. In this subsec-246

tion, we review the literature on Edgeworth expansions for i.i.d. data and conventional noise-247

less U-statistics, due to their close connection. Under mild conditions, the one-term Edge-248

worth expansion for the sample mean of n i.i.d. X1, . . . ,Xn reads Fn1{2pX̄´ErX1sq{σX1
puq “249

Φpuq´n´1{2 ¨ErX3
1 spu

2´ 1qϕpuq{p6σ3
X1
q`Opn´1q, where Φ and ϕ are the CDF and PDF250

of Np0,1q, respectively. Edgeworth terms of even higher orders can be derived [68] but are251

not meaningful in practice unless we know a few true population moments. The minimax252

rate for estimating ErX3
1 s is Oppn´1{2q, so Opn´1q is the best practical remainder bound for253

an Edgeworth expansion. For further references, see [18, 115, 16, 66, 67, 10] and textbooks254

[68, 47, 129].255

The literature on Edgeworth expansions for U-statistics concentrates on the noiseless ver-256

sion. In early 1980’s, [30, 79, 32] established the asymptotic normality of the standarized257

and the studentized U-statistics, respectively, both with Opn´1{2q Berry-Esseen type bounds.258

Then [31, 21, 90] approximated degree-two (i.e. r “ 2) standardized U-statistics with an259

opn´1q remainder with known population moments, and [14] established an Opn´1q bound260

under relaxed conditions for more general symmetric statistics. Later, [71, 110] studied em-261

pirical Edgeworth expansions (EEE) with estimated coefficients and established opn´1{2q262

bounds. For finite populations, [11, 24, 25, 23] established the earliest results, and we will263

use some of their results in our analysis of network bootstraps. An incomplete list of other264

notable works on Edgeworth expansions for noiseless U-statistics with various finite moment265

assumptions includes [13, 70, 80, 96, 15, 81].266

8Here, without causing confusion, we slightly abused the notation of hp¨q, letting it take either W or X
as its argument, noticing that W is determined by X1, . . . ,Xn. To elucidate hpWi1,...,ir q, we first explicitly
re-express hpAi1,...,ir q as a polynomial of Ai1,...,ir ’s edges, then replace “A” by “W ”. For example, with

R“ triangle, we have hpW123q “W12W13W23 “ ρ
3
nfpX1,X2qfpX1,X3qfpX2,X3q. Notice that generally,

hpWi1,...,ir q ‰ 1rWi1,...,ir
ĚRs.

9?n-consistency of S2
n means that

?
npS2

n ´ σ
2
nq “ opp1q, see [17, 93] for definition.



8 ZHANG AND XIA

2.4. The non-lattice condition and lattice Edgeworth expansions in the i.i.d. setting. A267

major assumption called the non-lattice condition is critical for achieving opn´1{2q accu-268

racy in Edgeworth expansions and is needed by all results in the i.i.d. setting without oracle269

moment knowledge and all results for noiseless U-statistics, but this condition is clearly not270

required for an Opn´1{2q accuracy bound10. A random variable X1 is called lattice, if it is271

supported on ta` bk : k P Zu for some a, b P R where b‰ 0. General discrete distributions272

are “nearly lattice” 11. A distribution is essentially non-lattice if it contains a continuous273

component. In many works, the non-lattice condition is replaced by the stronger Cramer’s274

condition [45]:275

lim sup
tÑ8

ˇ

ˇE
“

eitX1
‰ˇ

ˇă 1.

For U-statistics, this condition is imposed on g1pX1q :“ ErhpX1, . . . ,Xrq|X1s ´ µn.276

Cramer’s condition can be relaxed [9, 100, 119, 120] towards a non-lattice condition, but277

all existing relaxations come at the price of essentially depreciated error bounds 12. There-278

fore, for simplicity, in Theorems 3.1 and 4.1, we use Cramer’s condition to represent the279

non-lattice setting.280

However, in network analysis, Cramer’s condition may be a strong assumption, for the281

following reasons. First, it is violated by stochastic block model, a very popular and im-282

portant network model. In a block model, g1pX1q only depends on node 1’s community283

membership, thus is discrete. Second, this condition is difficult to check in practice. Third,284

some smooth models may even induce a lattice g1pX1q under certain motifs and a non-285

lattice g1pX1q under a different motif. For example, under the graphon model fpx, yq :“286

0.3` 0.1 ¨ 1rxą1{2;yą1{2s` 0.1 sin p2πpx` yqq, g1pX1q is lattice when R is an edge, but it is287

non-lattice when R is a triangle.288

Next, we review existing treatments of Edgeworth expansion in the lattice case that will289

spark the key inspiration to our work. In current literature, in the lattice case, we could ap-290

proximate the CDF of an i.i.d. sample mean at higher-order accuracy, where the lattice Edge-291

worth expansion would contain an order n´1{2 jump function; whereas to our best knowl-292

edge, no analogous result exists for U-statistics. Available approaches can be categorized into293

two mainstreams: (1) adding an artificial error term to the sample mean to smooth out lattice-294

induced discontinuity [118, 89]; and (2) formulating the lattice version Edgeworth expansion295

with a jump function [118]. The seminal work [118] adds a uniform error of bandwidth n´1{2,296

and by inverting its impact on the smoothed distribution function, it explicitly formulates the297

lattice Edgeworth expansion with an Opn´1q remainder. Another classical work [89] uses298

a normal artificial error instead of uniform and shows that the Gaussian bandwidth must be299

ωpplogn{nq1{2q and op1q to provide sufficient smoothing effect without causing an ωpn´1{2q300

distribution distortion. Other notable works include [132, 86, 12], in which, [132] and [86]301

also formulate lattice Edgeworth expansions in the i.i.d. univariate setting, and [12] studies302

Edgeworth expansions for the sample mean of i.i.d. random vectors, where some dimensions303

are lattice and the others are non-lattice.304

10Simply use a Berry-Esseen theorem.
11“A discrete distribution is nearly-lattice”: a discrete distribution, if not already lattice, can be viewed as a

lattice distribution with diminishing periodicity.
12To our knowledge, existing results assuming only non-latticeness achieve no better than opn´1{2

q approx-
imation errors. For example, [14] replaces the RHS “1” in Cramer’s condition by 1´ q and assumes it holds for
tĺ n1{2. They obtain an error bound proportional to q´2. Another example is [25]. It replaces [14]’s t range by
tĺ π (their π is a variable) and obtains an error bound proportional to q´2π´2. Also see the comment beneath
equation (4.7) of [110].
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Despite the significant achievements of these treatments, latticeness remains an obstacle305

in practice. The difficulties are two-fold. On one hand, if we introduce an artificial error306

to smooth the distribution, it will unavoidably bring an Ωpn´1{2q distortion to the original307

distribution13. On the other hand, the exact formulation of a lattice Edgeworth expansion308

contains an n´1{2 jump term. In many examples such as bootstrap, the jump locations depend309

on the true population variance, laying an uncrossable Ωpn´1{2q barrier for practical CDF310

approximation. For more details, see page 91 of [68].311

3. Edgeworth expansions for network moments. Our approach to formulate the Edge-312

worth expansion can be summarized into the following progressive steps. We naturally start313

with decomposing pUn and study the stochastic variation of each term in its expansion. Based314

on this understanding, we can design pS2
n to estimate VarppUnq, studentize pUn and formulate315

pTn :“ ppUn ´ µnq{pSn. But using pSn on the denominator of pTn introduces additional first or-316

der (i.e. Opn´1{2q) bias in the eventual distribution approximation formula and also alters317

the approximately-Gaussian error term that contributes the key self-smoothing effect. Bear-318

ing this in mind, we expand pTn and study the impact of the terms in this decomposition.319

The outcome of this part of analysis is the Edgeworth expansion formula. We then present320

our main theoretical results on explicit uniform and finite-sample error bounds for population321

and sample Edgeworth expansions, for dense and sparse networks, respectively. We conclude322

this section by a comprehensive comparison table of our results to existing literature and fur-323

ther discussions on the assumptions and results of our theory.324

3.1. Decomposition of the stochastic variations of pUn and design of the variance estimator325

pS2
n. The starting point of all analysis is the decomposition of pUn. This would allow us to326

design a variance estimator of pUn for studentization. The studentized form, pTn, has a related327

but different decomposition, which will be formulated and analyzed next in Section 3.2. Now328

let us inspect pUn.329

The stochastic variations in pUn ´ µn “ pUn ´ µnq ` ppUn ´ Unq stem from two sources:330

(1) the randomness in Un ´ µn due to W and ultimately X1, . . . ,Xn; and (2) the ran-331

domness in pUn ´ Un due to A|W , the edge-wise observational errors. In VarppUnq “332

ErVarppUn|W qs ` VarpErpUn|W sq, by Lemma 3.1, we observe VarppUn|W q — ρ2s´1
n ¨ n´2

333

and VarpErpUn|W sq “ VarpUnq — ρ2s
n ¨ n

´1. We shall universally assume ρn ¨ nÑ8, so334

σ2
n “VarpUnq “VarpErpUn|W sq dominates. Therefore, our design of the variance estimator335

pS2
n for VarppUnq should align with the formulation of VarpUn ´ µnq.336

Now we inspect the main term Un ´ µn. It is a conventional noiseless U-statistic that337

admits the well-known Hoeffding’s decomposition [73]:338

Un ´ µn “
r

n

n
ÿ

i“1

g1pXiq

loooooomoooooon

Linear part

`
rpr´ 1q

npn´ 1q

ÿ

1ďiăjďn

g2pXi,Xjq

looooooooooooooooomooooooooooooooooon

Quadratic part

` rOppρ
s
n ¨ n

´3{2 log3{2 nq
looooooooooooomooooooooooooon

Higher-degree part

(3.1)339

where g1, . . . , gr are defined as follows. To avoid complicated subscripts, without confu-340

sion we define gk’s for special indexes pi1, . . . , irq “ p1, . . . , rq. For indexes 1 and k P341

t2, . . . , r ´ 1u (only when r ě 3) and r, define g1px1q :“ ErhpX1, . . . ,Xrq|X1 “ x1s ´ µn,342

gkpx1, . . . , xkq :“ ErhpX1, . . . ,Xrq|X1 “ x1, . . . ,Xk “ xks´µn´
řk´1
k1“1

ř

1ďi1ă...ăik1ďr
gk1pxi1 , . . . , xik1 q343

for 2 ď k ď r ´ 1 and grpx1, . . . , xrq :“ hpx1, . . . , xrq ´ µn. From classical literature,344

13To see this, simply notice that the original distribution contains n´1{2 jumps, but the smoothed distribution
does not, so an opn´1{2

q approximation error is impossible [21].



10 ZHANG AND XIA

we know that ErgkpXi1 , . . . ,Xikq|tXi : i P Ik Ă ti1, . . . , ikuus “ 0, where the strict sub-345

set Ik could be H, and Cov pgkpXi1 , . . . ,Xikq, g`pXj1 , . . . ,Xj`qq “ 0 unless k “ ` and346

ti1, . . . , iku “ tj1, . . . , j`u. Consequently, the linear part in the Hoeffding’s decomposition347

makes dominating contribution to VarpUn ´ µnq
14. Define348

(3.2) ξ2
1 :“Varpg1pX1qq.

Now we are ready to design pSn and thus can fully specify pTn “ ppUn ´ µnq{pSn. There349

are two main choices of pSn. The conventional choice for studentizing noiseless U-statistics350

[32, 71, 110] uses the jackknife estimator351

(3.3) n ¨ pS2
n;jackknife :“ pn´ 1q

n
ÿ

i“1

´

pU p´iqn ´ pUn

¯2
,

where pU
p´iq
n is pUn calculated on the induced sub-network of A with node i removed.352

Despite conceptual straightforwardness, the jackknife estimator unnecessarily compli-353

cates analysis. In this paper, we propose an estimator with a simpler formulation. In354

VarppUnq “ σ2
n ` Opρ2s´1

n n´2q “ r2ξ2
1{n ` Opρ2s´1

n n´2q, replace ξ1 by its moment esti-355

mator. Specifically, recall that ξ2
1 “ Varpg1pX1qq “ ErpErhpX1, . . . ,Xnq|X1s ´ µnq

2s. Re-356

placing ErhpX1, . . . ,Xnq|X1s and µn by their estimators based on observable data, we can357

design pSn as follows358

(3.4) n ¨ pS2
n :“

r2

n

n
ÿ

i“1

#

1
`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăir´1ďn
i1,...,ir´1‰i

hpAi,i1,...,ir´1
q ´ pUn

+2

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Estimates ξ21“Varpg1pX1qq

.

We will show in Theorem 3.3 that the |pS2
n ´

pS2
n;jackknife| is ignorable, but our estimator pSn is359

computationally much more efficient than the jackknife estimator. See our discussion right360

following Theorem 3.3.361

3.2. Expansion of pTn and self-smoothing phenomenon. The studentization pTn can be ex-362

panded using a similar method to our study of pUn, but certain into a very different expression.363

The analysis in Section 3.1 already gives us a good understanding of the expansion of pTn’s364

numerator, namely, recall that365

(3.5) pUn ´ µn “
r

n

n
ÿ

i“1

g1pXiq `
rpr´ 1q

npn´ 1q

ÿ

1ďiăjďn

g2pXi,Xjq ` ppUn ´Unq ` remainder

where we shall prove that the remainder terms contributed by gk, k ě 3 are dominated by366

pUn ´ Un. Now, to handle pTn’s denominator, we follow the method in Maesono [96] and367

re-express pTn as:368

(3.6) pTn “
pUn ´ µn

pSn
“

pUn ´ µn
σn

¨

!

1`
pS2
n ´ σ

2
n

σ2
n

)´1{2

14Hoeffding’s decomposition reveals that the asymptotic behavior of the noiseless U-statistic Un is largely
determined by the linear part and bears some similarity to the i.i.d. case. But we should also notice that the
quadratic part, i.e. g2 terms, plays a non-ignorable role in the Edgeworth expansion of Un. For more details, see
[21, 71, 96, 110]
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and use Taylor expansion p1 ` xq´1{2 « 1 ´ x{2 ` Opx2q with x :“ ppS2
n ´ σ2

nq{σ
2
n “369

rOppn
´1{2q. In fact, just like our earlier decomposition of pUn ´ µn into two parts that repre-370

sent the random variations originated from W (or X1, . . . ,Xn) and A|W , respectively; here,371

it is also technically beneficial to do the same for pS2
n ´ σ

2
n. Define an auxiliary intermediate372

term pσ2
n to insert in between pS2

n and σ2
n:373

n ¨ pσ2
n :“

r2

n

n
ÿ

i“1

#

1
`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăir´1ďn
i1,...,ir´1‰i

hpWi,i1,...,ir´1
q ´Un

+2

.374

and also define the following convenience shorthand375

U#
n :“

1
?
n ¨ ξ1

n
ÿ

i“1

g1pXiq, ∆n :“
r´ 1

?
npn´ 1qξ1

ÿ

1ďiăjďn

g2pXi,Xjq,(3.7)376

p∆n :“ ppUn ´Unq{σn, δn :“ ppσ2
n ´ σ

2
nq{σ

2
n, and pδn :“ ppS2

n ´ pσ2
nq{σ

2
n,377

Recall that in Section 3.1 we observed that σ2
n :“VarpUnq — r

2ξ2
1{n. We now obtain the key378

expansion of pTn as follows:379

pTn “
´

U#
n `∆n ` p∆n ` rOppn

´1 log3{2 nq
¯

¨

´

1` pδn ` δn

¯´1{2
380

“ rTn ` q∆n `Remainder,(3.8)381

in which we define382

rTn :“ U#
n `∆n ´

1

2
U#
n ¨ δn,(3.9)383

q∆n :“

ˆ

n

2

˙´1
ÿ

1ďiăjďn

pΘij ¨ ηij ,(3.10)384

where we define ηij :“ Aij ´Wij , and the formal definition of pΘij is lengthy and sunk385

to Supplemental Material (see (8.19)). The gist is that pΘij is a function of W (thus all its386

randomness comes from X1, . . . ,Xn) and does not depend on the conditional randomness in387

A|W , and also that pΘij — ρ
´1
n ¨ n1{2. The term q∆n encodes the “linear part” (linear in ηij’s)388

of p∆n (see Lemma 3.1-(c)). The remainder in (3.8) consists of the remainder terms from the389

two expansions of Un ´ µn and pUn ´ Un, respectively. We will show that the remainder is390

rOppMpρn, n;Rqq, where we recall the definition of rOp from Section 1.4.391

To give readers a quick preview of the roles of the main constituent terms in the expansion392

of pTn, we present a summary table, see Table 1. The full quantitative justification of its393

contents will be provided soon in Lemma 3.1. Notice that despite smoother q∆n is Ωpn´1{2q,394

it does not distort any smooth order-n´1{2 term in the Edgeworth expansion formula. Similar395

phenomenon is observed in the i.i.d. setting, see [118] (equation (2.8)) and [89] (Section 2.2).396

Our decomposition (3.8) is a renaissance of the spirits of [118] and [89], but with the397

following crucial conceptual distinctions. First and most important, the error term q∆n in our398

formula is not artificial, but a natural constituent component of pTn. Therefore, the smoother399

does not distort the objective distribution, that is, pTn is self-smoothed. The second distinction400

lies in the bandwidth of the smoothing error term. Since the smoothing error terms in [118]401

and [89] are artificial, the user is at the freedom to choose these bandwidths. In our setting,402

the bandwidth of the smoothing term pρn ¨ nq
´1{2 is not managed by the user, but governed403

by the network sparsity. Therefore, when Cramer’s condition fails, we make the very mild404
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TABLE 1

Summary of the main components in pTn

Component Order of std. dev.
Impacts

Edgeworth formula
Smoothing

effect

U
#
n 1 Yes No

∆n ´
1
2U

#
n ¨ δn n´1{2 Yes No

q∆n pρn ¨ nq
´1{2 No Yes

Remainder rOp pMpρn, n;Rqq No No

sparsity assumption that ρn “Opplognq´1q to ensure enough smoothing effect. This echoes405

the lower bound on Gausssian bandwidth in [89]. This upper bound can be easily enforced406

by a data pre-processing step. See our discussion in Section 6. We also need ρn to be lower407

bounded to effectively bound the remainder term, see Lemma 3.1-(b). Third, our error term408

q∆n is dependent on rTn through W . Last, the proof technique of [118] is inapplicable to our409

setting due to the quadratic part (g2pXi,Xjq terms) in rTn; and [89] obtains an opn´1{2q error410

bound15, while we aim at stronger results under a more complicated U-statistic setting with411

degree-two terms. In our proofs, we carefully manage these challenges with original analysis.412

A key difference between our noisy U-statistic setting and the conventional noiseless set-413

ting is carried by the q∆n term, which is unique to network data. Prior to our paper, the typical414

treatment in network bootstrap literature is to simply bound and ignore this component, such415

as Lemma 7 in [61]. In sharp contrast, by carefully quantifying the impact of q∆n, we shall416

reveal its key smoothing effect by a refined analysis. Therefore, before advancing to the state-417

ment of our main lemma, we present two concrete examples to give the general audience an418

intuitive impression of the asymptotic orders of each constituent term in (3.10). For sim-419

plicity of illustration, in these examples, we would standardize pUn using its true variance420

σ2
n, rather than the estimator pS2

n. The impact of this simplification is that the expansion of421

the standardization would not have the ´p1{2qU#
n ¨ δn term, and an altered pΘij at the same422

asymptotic order as the original pΘij , and a different remainder term; but all these differences423

are non-essential for demonstrating our core ideas. For the moment, let us bear in mind that424

σn — pSn — ρ
s
n ¨ n

´1{2 by Lemma 3.1. We first study the simplest motif R“ Edge.425

EXAMPLE 3.1. LetR be an edge with r “ 2 and s“ 1, and pUn is simply the sample edge
density pρn :“ Ā. By definition, all hpAi1,i2q ´ hpWi1,i2q terms are mutually conditionally
independent given W . Then the asymptotic behavior of the self-smoother term is

pUn ´Un
σn

ˇ

ˇ

ˇ
W

d
ÑN

ˆ

0, σ2
xUn´Un
σn

ˇ

ˇW
— pρn ¨ nq

´1

˙

at a uniform Opρ
´1{2
n ¨ n´1q Berry-Esseen CDF approximation error rate.426

The next example shows that the key insight of Example 3.1 also applies to general motifs.427

EXAMPLE 3.2. Let R be a triangular motif with r “ 3, s “ 3, and pUn is the empirical428

triangle frequency. We can decompose pUn ´Un as follows:429

pUn ´Un
σn

“
1
`

n
3

˘

ÿ

1ďi1ăi2ăi3ďn

thpAi1,i2,i3q ´ hpWi1,i2,i3qu

σn
430

15The opn´1{2
q error bound in [89] holds on some B Ă R with “diminishing boundary”, while our error

bounds hold on the entire R.
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“
1
`

n
3

˘

ÿ

1ďi1ăi2ăi3ďn

pWi1i2 ` ηi1i2q pWi1i3 ` ηi1i3q pWi2i3 ` ηi2i3q ´Wi1i2Wi1i3Wi2i3

σn
431

“
1
`

n
3

˘

#

ÿ

1ďi1ăi2ďn
1ďi3ďn
i3‰i1,i2

Wi1i3Wi2i3ηi1i2 `Wi1i2ηi1i3ηi2i3
σn

`
ÿ

1ďi1ăi2ăi3ďn

ηi1i2ηi1i3ηi2i3
σn

+

432

“
1
`

n
2

˘

ÿ

1ďiăjďn

¨

˝

3
ř

1ďkďn
k‰i,j

WikWjk

pn´ 2qσn

˛

‚ηij

loooooooooooooooooooooooomoooooooooooooooooooooooon

Linear part

`
1
`

n
3

˘

ÿ

1ďiăjďn
1ďkďn
k‰i,j

Wij

σn
ηikηjk

looooooooooooomooooooooooooon

Quadratic part

433

`
1
`

n
3

˘

ÿ

1ďiăjăkďn

1

σn
ηijηikηjk

loooooooooooooooomoooooooooooooooon

Cubic part

434

where recall that we define ηij :“ Aij ´Wij . Recall that we are conditioning on W , so435

σn — ρsn ¨ n
´1{2 is treated as a constant. The linear part is — ρ

´1{2
n ¨ n´1{2, the quadratic436

part is rOppρ
´1
n ¨ n´1 log1{2 nq and the cubic part is rOppρ

´3{2
n ¨ n´1 log1{2 nq. We make two437

observations. First, the linear part in this example has the same asymptotic order as the linear438

part in Example 3.1. This is not a coincidence and will be formalized by Lemma 3.1-(b). In439

other words, regardless of the shape of R, the linear part in such decomposition always440

provides smoothing effect at the same magnitude. Second, different from Example 3.1, we441

now have higher-degree remainder consisting of products of quadratic and cubic η terms.442

The linear part nicely always dominates the quadratic part; but it only dominates the cubic443

part when ρn “ ωpn´1{2 log1{2 nq.444

For readers’ convenience, we now link the terms in the two examples to items in Table 1.445

The entire ppUn´Unq{σn in Example 3.1 and the linear part of the expansion in Example 3.2446

both map to q∆n in Table 1; and the quadratic and cubic parts of the expansion in Example447

3.2 correspond to the remainder part in Table 1.448

Readers who are familiar with the martingale CLT (c.f. [69]) see immediately that the449

cubic part in Example 3.2 is also asymptotically normal and naturally question why our study450

would stick to ρn regimes such that this term is ignorable. In other words, when the network451

is very sparse that the cubic part dominates the linear part, can the asymptotic normality of452

the former take over the role of self-smoother? The reason why the cubic part is much more453

challenging to characterize than the linear part lies in its very slow convergence to its limiting454

normal distribution. In Example 3.2, the CDF of the linear part converges to its limiting455

distribution at a uniform rate of Opρ´1{2
n ¨ n´1q (See (3.12) in our Lemma 3.1-(b)). In sharp456

contrast, the convergence rate of the cubic part as a martingale is much slower. The reported457

uniform convergence rate for martingale CLT across various different settings in literature458

are all significantly slower than n´1{2, see [72, 64, 107, 29] and so on. This is not surprising459

considering the lack of independence between summands in the scenarios that martingale460

CLT addresses. Our discussion here does not disprove the possibility that a sharper analysis461

might show that the higher-degree η-product terms in fact can serve as the self-smoother,462

but required analysis might be difficult. Considering the already existing complexity of this463

paper, we simply control the stochastic magnitude of the cubic part in Example 3.2.464

On the other hand, however, the asymptotic normality of the cubic part provides a unrig-465

orous but helpful intuitive understanding of the log1{2 n factor in the first term of our error466
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bound (1.2). If we roughly treat Zcubic :“ the cubic part in Example 3.2 as normal, then467

Pp|Zcubic| ą CpVarpZcubicq
1{2 ¨ log1{2 nqq “ Opn´1q for a large enough constant C . The468

log3{2 n factor in the second term of (1.2) comes from a different source, namely, the tail469

probability control of gk : k ě 3 terms in the Hoeffding’s decomposition of Un ´ µn (not470

presented by Example 3.2) in a similar spirit.471

The insights of the two examples will be generalized in part (b) of our main lemma below.472

When the network is sufficiently dense, among the expansion terms of pUn ´ Un, the linear473

part dominates. Consequently, the overall contribution of the stochastic variations in A|W474

approximates Gaussian at an Opρ´1{2
n ¨n´1q Berry-Esseen error rate. Now recalling the defi-475

nition of acyclic and cyclic R shapes from Definition 1.1, the definition of Mpρn, n;Rq from476

definition 1.2 in Section 1, and the definition of rOp, we are ready to state our main lemma.477

LEMMA 3.1. Assume the following conditions hold:478

(i). ρ´sn ¨ ξ1 ąC ą 0, where C ą 0 is a universal constant,479

(ii). ρn “ ωpn´1q for acyclic R, or ρn “ ωpn´2{rq for cyclic R,480

We have the following results:481

(a)
Un ´ µn
σn

“ U#
n `∆n ` rOppn

´1 ¨ log3{2 nq,482

(b) We have

p∆n “
ppUn ´Unq

σn
“ q∆n ` qRn,

where q∆n and the remainder qRn satisfy483

qRn “ rOp pMpρn, n;Rqq(3.11)484

›

›

›
F
q∆n|W

puq´ FNp0,pρn¨nq´1σ2
wq
puq

›

›

8
“ rOp

´

ρ´1{2
n ¨ n´1

¯

(3.12)485

where the order control in (3.12) is rOpp¨q rather than Op¨q due to the randomness in W .486

The definition of σw is lengthy and formally stated in Section 7 in Supplemental Material.487

As nÑ8, we have σw
p
— 1.488

(c) pδn “ rOp pMpρn, n;Rqq,489

(d) We have490

δn “
1

n

n
ÿ

i“1

g2
1pXiq ´ ξ

2
1

ξ2
1

`
2pr´ 1q

npn´ 1q

ÿ

1ďti,juďn
i‰j

g1pXiqg2pXi,Xjq

ξ2
1

` rOppn
´1¨ lognq.

Overall, Lemma 3.1 clarifies the asymptotic orders of the leading terms in the expansion of491

pTn. In fact, Lemma 3.1 has a parallel version for the jackknife pSn;jackknife in view of Theorem492

3.3, but we do not present it due to page limit. We spend the rest of this section on discussing493

the conditions and results of Lemma 3.1.494

REMARK 3.1. Assumption (i) is a standard non-degeneration assumption in literature.495

It is different from a smoothness assumption on graphon f 16. A globally smooth Erdos-Renyi496

graphon leads to a degenerate g1pX1q that ξ2
1 “Varpg1pX1qq “ 0. In the degenerate setting,497

16Smooth graphon: f is called smooth, if there exists a measure-preserving map % : r0,1s Ñ r0,1s such that
fp%p¨q, %p¨qq is a smooth function. See [56, 136] for more details.
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both the standardization/studentization and the analysis would be very different. Asymptotic498

results for r “ 2,3 motifs under an Erdos-Renyi graphon have been established by [54, 55].499

Degenerate U-statistics are outside the scope of this paper.500

REMARK 3.2. We note that Lemma 3.1 only requires the weak assumption on ρn (see501

Assumption ii). This assumption matches the classical sparsity assumptions in network boot-502

strap literature [20, 17, 61]. Using Lemma 3.1, we prove a higher-order error bound of the503

Edgeworth expansion in Theorem 3.1 with a stronger density assumption; while in Theo-504

rem 3.4 on sparse networks, we prove a novel modified Berry-Esseen bound for the normal505

approximation. Both downstream theorems significantly improve over existing best results.506

REMARK 3.3. Lemma 3.1-(a) and (d) are similar to results in classical literature on507

Edgeworth expansion for noiseless U-statistics [71, 96], but here we account for ρn. Parts508

(b) and (c) are new results unique to the network setting. Especially in the proof of part (b),509

we significantly refine the analysis of the randomness in A|W in [17] and [61].510

3.3. Population and empirical Edgeworth expansions for network moments. In this sub-511

section, we present our main theorems.512

THEOREM 3.1 (Population network Edgeworth expansion). Define513

Gnpxq :“Φpxq `
ϕpxq
?
n ¨ ξ3

1

¨

#

2x2 ` 1

6
¨Erg3

1pX1qs514

`
r´ 1

2
¨
`

x2 ` 1
˘

Erg1pX1qg1pX2qg2pX1,X2qs

+

,(3.13)515

where Φpxq and ϕpxq are the CDF and PDF of Np0,1q, respectively. Assume condition (i)516

of Lemma 3.1 hold, and replace condition (ii) by a stronger assumption that either R is517

acyclic and ρn “ ωpn´1{2q, or R is cyclic and ρn “ ωpn´1{rq. Additionally, assume either518

ρn “Opplognq´1q or Cramer’s condition lim suptÑ8

ˇ

ˇ

ˇ
E
”

eitg1pX1q¨ξ
´1
1

ı
ˇ

ˇ

ˇ
ă 1 holds. We have519

›

›

›
F

pTn
pxq ´Gnpxq

›

›

›

8
“O pMpρn, n;Rqq.

REMARK 3.4. The assumed ρn’s upper bound in absence of Cramer’s condition serves520

to sufficiently boost the smoothing power of q∆n, quantified in Lemma 3.1-(3.12). This as-521

sumption seems minimal in presence of a lattice g1pX1q, since it corresponds to a normal522

smoother with variance pρn ¨ nq´1 “ Ωplogn ¨ n´1q. This matches the minimum standard523

deviation requirement Ωpplognq1{2 ¨ n´1{2q in Remark 2.4 in [89] for the i.i.d. setting.524

In (3.13), the Edgeworth coefficients depend on true population moments. In practice, they525

need to be estimated from data. Define526

pg1pXiq :“
1

`

n´1
r´1

˘

ÿ

1ďi1ă...ăir´1ďn
i1,...,ir´1‰i

hpAi,i1,...,ir´1
q ´ pUn,527

pg2pXi,Xjq :“
1

`

n´2
r´2

˘

ÿ

1ďi1ă...ăir´2ďn
i1,...,ir´2‰i,j

hpAi,j,i1,...,ir´2
q ´ pUn ´ pg1pXiq ´ pg1pXjq,528
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where we write “pg1pXiq” rather than “ {g1pXiq” for cleanness. We stress that the evaluation of529

pg1pXiq and pg2pXi,Xjq does not require knowing the latent Xi,Xj . The Edgeworth coeffi-530

cients can be estimated by531

pξ2
1 :“

n ¨ pS2
n

r2
“

1

n

n
ÿ

i“1

pg2
1pXiq, and pE

“

g3
1pX1q

‰

:“
1

n

n
ÿ

i“1

pg3
1pXiq,532

pE rg1pX1qg1pX2qg2pX1,X2qs :“
1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqpg2pXi,Xjq.533

THEOREM 3.2 (Empirical network Edgeworth expansion). Define the empirical Edge-534

worth expansion as follows:535

pGnpxq :“Φpxq `
ϕpxq
?
n ¨ pξ3

1

¨

#

2x2 ` 1

6
¨ pErg3

1pX1qs536

`
r´ 1

2
¨
`

x2 ` 1
˘

pErg1pX1qg1pX2qg2pX1,X2qs

+

,(3.14)537

Under the conditions of Theorem 3.1, we have538

›

›

›
F

pTn
pxq ´ pGnpxq

›

›

›

8
“ rOppMpρn, n;Rqq.

REMARK 3.5. Another approach to estimate the unknown coefficients in Edgeworth ex-539

pansion is bootstrap. The concentration of pGnÑ Gn should not be confused with the con-540

centration pG˚nÑ
pGn, where pG˚n is the expansion with bootstrap-estimated coefficients. See541

literature regarding the i.i.d. setting [71, 96]. In pG˚n Ñ
pGn, the convergence rate is not a542

concern, because without constraining computation cost, one can let the number of bootstrap543

samples grow arbitrarily fast. Hence, establishing consistency would suffice for the analysis544

of pG˚nÑ
pGn, whereas our proof concerning pGnÑGn requires careful rate calculations.545

Next, we show that different choices of the variance estimators for studentization represent546

no essential discrepancy.547

THEOREM 3.3 (Studentizing by a jackknife variance estimator (3.3)). Define

pTn;jackknife :“
pUn ´ µn
pSn;jackknife

.

Under the assumptions of Theorem 3.1, we have548

|pSn ´ pSn;jackknife| “OppSn ¨ n
´1q,(3.15)549

›

›

›
F

pTn;jackknife
pxq ´Gnpxq

›

›

›

8
“O pMpρn, n;Rqq,550

›

›

›
F

pTn;jackknife
pxq ´ pGnpxq

›

›

›

8
“ rOppMpρn, n;Rqq.551

Theorem 3.3 states that on statistical properties, one does not need to differentiate between552

pTn and pTn;jackknife. The evaluation of pSn;jackknife costs Opnr`1q time because each individual553

pU
p´iq
n costs Opnrq; whereas our estimator pSn costs Opnrq. Our estimator also has a more554

convenient form for theoretical analysis.555
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3.4. Remarks on non-smooth graphons. Our results do not assume graphon smoothness556

or low-rankness. This aligns with the literature on noiseless U-statistics but sharply con-557

trasts network inferences based on model parameter estimation such as [74, 91] and network558

bootstraps based on model estimation [61, 93]. Notice that the concept “non-smoothness”559

usually emphasizes “not assuming smoothness” rather than explicitly describing irregularity.560

It is a very useful tool for modeling networks with high structural complexity or unbalanced561

observations, examples include: (1) a small group of outlier nodes that behave differently562

from the main network patterns [28]; (2) in networks that exhibit “core-periphery” structures563

[48, 138], we may wish to relax structural assumptions on periphery nodes due to scarcity of564

observations; and (3) networks generated from a mixture model [104, 82] with many small-565

probability mixing components may appear non-smooth in these parts. Unfortunately, ex-566

isting research on practical methods for non-smooth graphons is rather limited due to the567

obvious technical difficulty, but exceptions include [40].568

Our results send the surprising message that under mild conditions, the sampling distri-569

bution of a network moment is still smooth and can be accurately approximated, even if the570

graphon is non-smooth.571

3.5. Sparse networks. We have been focusing on discussing dense networks, but many572

networks tend to be sparse [63]. In this section, we investigate the following sparsity regime573

(3.16) ρn :

#

n´1 ă ρn ĺ n´1{2, for acyclic R
n´2{r ă ρn ĺ n´1{r, for cyclic R

It turns out that the Berry-Esseen bound in this setting would be slower than n´1{2, unlike574

that in i.i.d. and noiseless U-statistic settings. The exact reason is technical and will be better575

seen in the proof of Theorem 3.4, but the intuitive explanation is that if ρn is too small,576

the higher degree (ě 2) random errors in pUn ´ Un diminishes too slowly compared to the577

scale of the demoninator of pTn. If the network sparsity ρn falls below the typically assumed578

lower bounds: n´1 for acyclic R and n´2{r for cyclic R [20, 17, 61], no known consistency579

guarantee exists. In fact, in this case we do not even know if pTn is asymptotically normal.580

THEOREM 3.4. Under the conditions of Lemma 3.1, except replacing Condition (ii) by581

(3.16), we have the following modified Berry-Esseen bound582
›

›

›
F

pTn
puq ´Gnpuq

›

›

›

8
—

›

›

›
F

pTn
puq ´Φpuq

›

›

›

8
“O pMpρn, n;Rqq

ľ

op1q,583

where recall that Φp¨q is the CDF of Np0,1q. Moreover,
›

›

›
F

pTn
puq ´ pGnpuq

›

›

›

8
“ rOp pMpρn, n;Rqq

ľ

opp1q

In the sparse regime, the current upper bound on the remainder terms would dominate584

the n´1{2 leading term in the Edgeworth expansion. In other words, in sparse networks,585

the Edgeworth expansion is guaranteed by the same error rate bound as a simple Np0,1q586

approximation. On the other hand, the conclusion of Theorem 3.4 connects the error bound587

results for dense and sparse regimes. Interestingly, as the order of ρn decreases from n´1{2 to588

n´1 for acyclic R, or from n´1{r to n´2{r for cyclic R, we see a gradual depreciation in the589

uniform CDF approximation error from the order of n´1{2 to merely uniform consistency.590

The classical literature only studied the boundary cases (ρn “ ωpn´1q or ρn “ ωpn´2{rq,591

depending on R), and our result here reveals the complete picture.592

A natural question is whether a higher-order approximation would be possible in the sparse593

regime. We conjecture not. We also conjecture that the Berry-Esseen bound that both empir-594

ical Edgeworth expansion and Np0,1q approximation achieve is either sharp or nearly sharp,595

but we do not know an answer for sure. This would be an interesting future work.596
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3.6. Comparison table of our method to benchmarks. We conclude this section by com-597

paring our results to some representative works in classical and very recent literature.598

TABLE 2
Comparison of CDF approximation methods for noisy/noiseless studentized U-statistics

Method
U-stat.
type

Popul.
momt.17

Smooth
graphon

Non lat.
/Cramer

Network sparsity
assumption on ρn18

CDF approx.
error rate

Our method
(empirical Edgeworth)

Noisy No No
If yes ωpn´2{r

q(C); ωpn´1
q(Ac)19

rOp pMpρn, n;Rqq ^ opp1q (H)20

If no
ωpn´2{r

q(C); ωpn´1
q(Ac)

and O
´

plognq´1
¯

(C, Ac)
rOp pMpρn, n;Rqq ^ opp1q (H)

Node re-/sub- sampling
justified by our theory

Noisy No No Yes ωpn´1{r
q(C); ωpn´1{2

q(Ac) oppn
´1{2

q (H)

Bickel, Chen and Levina [20] Noisy No21 No No ωpn´2{r
q(C); ωpn´1

q(Ac) Consistency
Bhattacharyya and Bickel [17] Noisy No No No ωpn´2{r

q(C); ωpn´1
q(Ac) Consistency

Green and Shalizi [61] Noisy No Mixed22 No R is Ac; or ωpn´1{p2rq
q(C)23 Consistency

Levin and Levina [93] Noisy No Low-rank24 No ωpn´1
¨ lognq (Ac*)25 Consistency

Bickel, Gotze and Zwet [21] Noiseless Yes No Yes Not applicable opn´1
q (H)

Bentkus, Gotze and Zwet [14] Noiseless Yes No Yes Not applicable Opn´1
q (H)

Putter and Zwet [110] Noiseless No No Yes Not applicable oppn
´1{2

q (H)
Bloznelis [23] Noiseless No No Yes Not applicable oppn

´1{2
q (H)

4. Theoretical and methodological applications.599

4.1. Higher-order accuracy of node sub- and re-sampling network bootstraps. One im-600

portant corollary of our results is first higher-order accuracy proof of some network bootstrap601

schemes. For a network bootstrap scheme that produces an estimated pU bn˚ and its jackknife26
602

variance estimator pS˚n˚ , define pT ˚n˚ “ p
pU bn˚ ´

pUnq{pS
˚
n˚ . We are going to establish the first603

explicit rate guarantees for following two schemes.604

(a). Sub-sampling [17]: randomly sample n˚ nodes from t1, . . . , nu without replacement,605

and compute pT ˚n˚ from the induced sub-network of A.606

(b). Re-sampling [61]: random sample n nodes from t1, . . . , nu with replacement, and com-607

pute pT ˚n˚ from the induced sub-network of A.608

17“Yes” means need to know the population moments that appear in Edgeworth coefficients, i.e. ξ1,
Erg3

1pX1qs and Erg1pX1qg1pX2qg2pX1,X2qs.
18To compare ρn assumptions, see our Remark 3.2
19(C): cyclic R; (Ac): acyclic R.
20Recall Mpρn, n;Rq defined in (1.1) and rOp defined in Section 1.4. (H): higher-order accuracy results.

“Consistency”: only convergence, no error rate.
21In [20, 17], pUn´µn was rescaled by ρn and n. Whether assuming the knowledge of the true ρn or not does

not matter for their opp1q error bound, but it would make a difference if an oppn´1{2
q or finer bound is desired.

22The bootstrap based on denoised A requires smoothness. See Theorem 2 of [61].
23It seems their assumption for cyclic R was a typo, and ρn “ ωpn´2{r

q should suffice. Also, they used [17]
in their proof, which requires ρn “ ωpn´1

q for (Ac).
24[93] assumed the graphon rank is low and known.
25(Ac*): They require the motif to be either acyclic or an r-cycle, see their Theorem 4. Their Theorem 3

requires condition (8) that only holds when R is a clique.
26Here, we use jackknife variance estimator in bootstraps to better connect with existing literature in the proof.
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REMARK 4.1. Notice that [61] did not study the studentized form, and [17] propoosed a609

different variance estimator (what they call “pσBi”). Our justifications focus on the sampling610

schemes combined with some natural formulation, not necessarily the same formulation as611

in these two papers.612

REMARK 4.2. As noted in [61], scheme (b) can be viewed as our data generation pro-613

cedure described in Sections 2.1 and 2.2 but with the graphon f replaced by the adjacency-614

induced graphon Apu, vq “ Arnus,rnvs, where rys :“ Ceilingpyq. This may seem similar to615

f -based data generaion, but in fact they are distinct. The graphon Ap¨, ¨q inherits the binary616

nature of A and will necessarily yield a lattice g˚1 pX
˚
1 q regardless of the original graphon f617

and the motif R, rendering most classical Edgeworth analysis techniques inapplicable. But618

the real obstacle is that the bootstrapped network data from Ap¨, ¨q have no edge-wise ob-619

servational errors (i.e. no counterpart to the randomness in A|W ). Consequently, pT ˚n˚ loses620

the self-smoothing feature that pTn enjoys. For this reason, when justifying the higher-order621

accuracy of network bootstraps, we cannot simply reproduce the proof of our main theorem622

that crucially benefits from the self-smoothing effect. Aligned with this observation, the even-623

tual error rates that we established for network bootstraps are significantly worse than our624

population and empirical Edgeworth expansions. We conjecture that further improving the625

error guarantee for network bootstraps beyond Theorem 4.1, if possible, might require much626

more sophisticated analysis.627

THEOREM 4.1. Assume g1pX1q satisfies a Cramer’s condition such that lim suptÑ8

ˇ

ˇ

ˇ
E
”

eitg1pX1q¨ξ
´1
1

ıˇ

ˇ

ˇ
ă628

1. Under the conditions of Theorem 3.2, we conclude for the following bootstrap schemes:629

(a). Sub-sampling: choosing n˚ — n and n´ n˚ — n, we have630

(4.1)
›

›

›
F

pT˚
n˚
puq ´ F

pTn˚p1´n˚{nq
puq

›

›

›

8
“ op

´

pn˚q´1{2
¯

“ oppn
´1{2q.

(b). Re-sampling: choosing n˚ “ n, we have631

(4.2)
›

›

›
F

pT˚
n˚
puq ´ F

pTn˚
puq

›

›

›

8
“ op

´

pn˚q´1{2
¯

“ oppn
´1{2q.

REMARK 4.3. In the proof of Theorem 4.1, we combined our main results with the results632

of [23] for finite population U-statistics. It is important to notice that all existing works633

under the finite populations did assume non-lattice with population size growing to infinity,634

see condition (1.13) in Theorem 1 of [23]. Consequently, the higher-order accuracy of some635

network bootstraps is only proved under Cramer’s condition by so far.636

Part (a) of Theorem 4.1 quantifies the effective sample size in the sub-sampling network637

bootstrap: sampling n˚ out of n nodes without replacement, the resulting bootstrap pT ˚n˚ ap-638

proximates the distribution of pTm where m “ tn˚{n ¨ p1´ n˚{nqu ˆ n. Consequently, in639

order to approach the sampling distribution of pTn with higher-order accuracy using sub-640

sampling [17], one must have an observed network of at least 4n nodes, from which she shall641

repeatedly sub-sample 2n nodes without replacement.642

4.2. One-sample t-test for network moments under general null graphon models. In this643

and the next subsections, we showcase how our results immediately lead to useful inference644

procedures for network moments. For a given motif R, we test on its population mean fre-645

quency µn. Since µn depends on n through ρn, we formulate the hypotheses as follows646

H0 : µn “ cn, versus Ha : µn ‰ cn.647
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where cn is a speculated value of µn “ ErhpA1,...,rqs. In practice, cn may come from a prior648

study on a similar data set or fitting a speculated model to the data (for concrete examples on649

cn guesses, see Section 6.1 of [17]).650

Here for simplicity we only discuss a two-sided alternative, and one-sided cases are exactly651

similar. The p-value can be formulated using our empirical Edgeworth expansion pGnp¨q in652

(3.14):653

(4.3) Estimated p-value“ 2 ¨min
!

pGnpt
pobsqq,1´ pGnpt

pobsqq

)

.

where tpobsq :“ ppu
pobsq
n ´ cnq{ps

pobsq
n , and pu

pobsq
n and ps

pobsq
n are the observed pUn and pSn, re-654

spectively. We have the following explicit Type-II error rate.655

THEOREM 4.2. Under the conditions of Theorem 3.2, we have the following results:656

1. The Type-I error rate of test (4.3) is α`O pMpρn, n;Rqq.657

2. The Type-II error rate of this test is op1q when |cn ´ µn| “ ω
`

ρsn ¨ n
´1{2

˘

.658

REMARK 4.4. The null model we study is complementary to the degenerate Erdos-659

Renyi null model in [91, 54, 55]. The scientific questions are also different: they test model660

goodness-of-fit whereas we test population moment values. Notice that distinct network mod-661

els may possibly share some common population moments. These approaches also use very662

different methods and analysis techniques.663

4.3. Cornish-Fisher confidence intervals for network moments. Noticing that pGn is al-664

most never a valid CDF, in order to preserve the higher-order accuracy of pGn, we use the665

Cornish-Fisher expansion [44, 53] to approximate the quantiles of F
pTn

. A Cornish-Fisher666

expansion is the inversion of an Edgeworth expansion, and its validity hinges on the validity667

of its corresponding Edgeworth expansion. Using the technique of [65], we have668

THEOREM 4.3. For any α P p0,1q, define the lower α quantile of the distribution of pTn669

by670

(4.4) q
pTn;α

:“ arg inf
qPR

F
pTn
pqq ě α

and define the approximation671

pq
pTn;α

:“ zα ´
1

?
n ¨ pξ3

1

¨

#

2z2
α ` 1

6
¨ pErg3

1pX1qs672

`
r´ 1

2
¨
`

z2
α ` 1

˘

pErg1pX1qg1pX2qg2pX1,X2qs

+

,(4.5)673

where zα :“Φ´1pαq. Then under the conditions of Theorem 3.2, we have674

(a). The discrepancy between nominal and actual percentage-below for q
pTn;α

is bounded by675

(4.6) |F
pTn
pq

pTn;α
q ´ α| “O pMpρn, n;Rqq

(b). The “horizontal” error bound:676

(4.7)
ˇ

ˇ

ˇ
pq
pTn;α

´ q
pTn;α

ˇ

ˇ

ˇ
“ rOp pMpρn, n;Rqq

(c). The uniform “vertical” error bound:677

(4.8) Pp pTn ď pq
pTn;α
q “ α`O pMpρn, n;Rqq.
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The vertical error bound describes the approximation error between the nominal and ac-678

tual coverage probabilities, whereas the horizontal error bound governs the approximation679

of quantiles. Using the vertical error bound, a 1 ´ α two-sided symmetric Cornish-Fisher680

confidence interval for estimating µn can be easily constructed as follows681

(4.9)
´

pUn ´ pq
pTn;1´α{2

¨ pSn, pUn ´ pq
pTn;α{2

¨ pSn

¯

and by Theorem 4.3, we know this CI has a 1´ α`O pMpρn, n;Rqq coverage probability.682

One-sided confidence intervals can be constructed exactly similarly, thus we omit them.683

5. Simulations.684

5.1. Simulation 1: Higher-order accuracy of empirical Edgeworth expansion. In the first685

simulation, our numerical studies focus on the CDF of F
pTn

. In an illustrative example, we686

simulate with a lattice g1pX1q and show the distinction between F
pTn

and FTn that clearly687

illustrates the self-smoothing effect in pTn. Then we systematically compare the performance688

of our empirical Edgeworth expansion to benchmarks that demonstrates the clear advantage689

of our method in both accuracy and computational efficiency.690

We begin by describing the basic settings. We range the network size n in an exponen-
tially spaced set n P t10,20,40,80,160u. Synthetic network data are generated from three
graphons marked by their code-names in our figures: (1). "BlockModel": This is an or-
dinary stochastic block model with K “ 2 equal-sized communities and the following edge
probabilities B “ p0.6,0.2; 0.2,0.2q; (2). "SmoothGraphon": Graphon 4 in [136], i.e.
fpu, vq :“ pu2`v2q{3 ¨cosp1{pu2`v2qq`0.15. This graphon is smooth and full-rank [136];
(3). "NonSmoothGraphon"[40]: We set up a high-fluctuation area in a smooth f to emu-
late the sampling behavior of a non-smooth graphon, as follows

fpu, vq :“ 0.5 cos
 

0.1{ppu´ 1{2q2 ` pv´ 1{2q2q´1 ` 0.01
(

maxtu, vu2{3 ` 0.4.

We test the four simplest motifs: edge, triangle, V-shape27, and a three-star among 4 nodes691

with edge set tp1,2q, p1,3q, p1,4qu. The main computation bottleneck lies in the evaluation692

of F
pTn

. Network bootstraps also becomes costly as n increases.693

The benchmarks are: 1. Np0,1q (its computation time is deemed zero and not compared694

to others); 2. sub-sampling by [17] with n˚ “ n{2; 3. re-sampling A by [61]; 4. latent space695

bootstrap called “ASE plug-in” defined in Theorem 2 of [93]. Notice that we equipped [93]696

with an adaptive network rank estimation28 by USVT [35].697

For each (graphon, motif, n) tuple, we first evaluate the true sampling distribution of pTn698

by a Monte-Carlo approximation that samples nMC :“ 106 networks from the graphon. Next699

we start 30 repeated experiments: in each iteration, we sample A from the graphon and ap-700

proximate F
pTn

by all methods, in which we draw nboot “ 2000 bootstrap samples for each701

bootstrap method – notice that this is 10 times that in [93]. We compare702

(5.1) Errorp pF
pTn
q :“ sup

uPr´2,2s;10uPZ

ˇ

ˇ

ˇ

pF
pTn
puq ´ F

pTn
puq

ˇ

ˇ

ˇ
.

REMARK 5.1. We need many Monte-Carlo repetitions, because the uniform accuracy of703

the empirical CDF of an i.i.d. sample is only Oppn
´1{2
MC q [50, 88], and for the noiseless and704

27A “V-shape” is the motif obtained by disconnecting one edge in a triangle. In the language of [20], it is a
2-star.

28Consequently, our enhanced version of this benchmark can decently denoise some smooth but high-rank
graphons, in view of the remarks in [136] and the results of [134].



22 ZHANG AND XIA

noisy U-statistic setting, the bound might be worse than the i.i.d. setting due to dependency29.705

Therefore, we set nMC " maxpn2q “ 1602 to prevent the errors of the compared methods706

being dominated by the error of the Monte-Carlo procedure; while keep our simulations707

reproducible with moderate computation cost. We did find smaller nMC such as 105 to cloud708

the performance of our method.709
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Fig 1: CDF curves of the studentization forms and approximations. Network size n “
80. The graphon is the “BlockModel” we described earlier in this section, and the
motif is triangular. Each bootstrap method draws 500 random samples. TrueA is F

pTn
;

TrueAJack is F
pTn;jackknife

; TrueW is FTn ; Edgeworth is our empirical Edgeworth ex-
pansion; Re-sample is node re-sampling A in [61]; Sub-sample is node sub-sampling
A in [17]; Levin-Levina is the “ASE plug-in” bootstrap in [93].

Now we present the results. We first present the illustrative simulation for just one specific710

setting. Figure 1 shows the distribution approximation curves under a block model graphon711

that yields a lattice g1pX1q. Lines correspond to the population CDF of pTn, its jackknife ver-712

sion and noiseless version, all evaluated by Monte-Carlo procedures; our proposed empirical713

Edgeworth expansion; and benchmarks. We make two main observations. First, TrueA and714

TrueAJack are almost indistinguishable, echoing our Theorem 3.3; meanwhile, they are715

both smooth and rather different from the step-function TrueW. This clearly demonstrates716

the self-smoothing feature of pTn in the lattice case. If we change the graphon to a smooth717

one, these curves would all be smooth and close to each other. Second, we observe the higher718

accuracy of our empirical Edgeworth expansion compared to competing methods. In fact,719

29This is not to be confused with the Edgeworth approximation error bound. In this Monte Carlo procedure,
both the true and approximate F

pTn
are oracle.
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repeating this experiment multiple times, our method shows significantly stabler approxima-720

tions than bootstraps.721

Next, we conduct a systematic comparison of the performances of all methods across many722

settings. We mainly varied three factors: graphon type, motif type and network size, over the723

previously described ranges. Our experiment results under different network sparsity levels724

would have to sink to Supplemental Material due to page limit, and here we keep ρn “ 1.725

Results are shown in Figure 2 (error) and Figure 3 (time cost), where error bars show standard726

deviations.727

In all experiments, our empirical Edgeworth expansion approach exhibited clear advan-728

tages over benchmark methods in all aspects: the absolute values of errors, the diminishing729

rates of errors, and computational efficiency. Our method shows a higher-order accuracy by730

slopes steeper than ´1{2 and much steeper than other methods. On computation efficiency,731

our method is the second cheapest after the simpleNp0,1q approximation (that does not need732

computation) and much faster than network bootstraps. It typically costs about e´5 « 1{150733

the time of sub-sampling and about e´7 « 1{1000 the time of re-sampling. Our method only734

needs one run and does not require repeated sampling.735

Notice that there is no simple rule to judge the difficulty of different scenarios, which736

jointly depends on the graphon and the motif through implicit and complex relationship. In737

our experience, triangle may be more difficult than V-shape under some graphons, but easier738

under some others, and this comparison may vary from method to method. Answering this739

question requires calculation of the population Edgeworth expansion up to opn´1q remainder,740

and the leading term in the remainder of the one-term Edgeworth expansion would then741

quantify the real difficulty. But the calculation is very complicated and outside the scope of742

this paper.743

We did not observe the higher-order accuracy of bootstrap methods as our results pre-744

dicted. One likely reason is the numerical accuracy limited by the nboot that our computing745

servers can afford. We did see an observable improvement in the performances of network746

bootstraps as we increased nboot from 200 suggested by [93] to the current 2000. But further747

increasing nboot will also increase their time costs and potentially memory usage. We ran748

each experiment on 36 parallel Intel(R) Xeon(R) X5650 CPU cores at 2.67GHz with 12M749

cache and 2GB RAM. It took roughly 3„8 hours to run each experiment that produces one750

individual plot in Figures 2 and 3.751

5.2. Simulation 2: Finite-sample performance of Cornish-Fisher confidence interval. In752

this simulation, we numerically assess the performance of our Cornish-Fisher confidence in-753

terval, compared to benchmark methods. Throughout this subsection, we set α “ 0.2 and754

focus on symmetric two-sided confidence intervals. We inherit most simulation settings from755

Section 5.1 with some modifications we now clarify. The main difference is that in this sim-756

ulation, we must conduct many repeated experiments in order to accurately evaluate the cov-757

erage probability (each iteration produces a binary outcome of whether the CI contains the758

population parameter). We repeated the experiment 10000 times for our method and normal759

approximation, and 500 times for the much slower bootstrap methods. Due to the computer760

limitations, while we can keep the same number of Monte Carlo evaluations, in order to re-761

peat the entire experiment 500 times to accurately evaluate the actual CI coverage rates of762

bootstraps, we have to reduce their numbers of bootstrap samples to 500 (still more than the763

200 in [93]). We evaluate three performance measures: coverage: actual coverage proba-764

bility; length: confidence intereval length; and time: computation time in seconds.765

Due to page limit, in the main text, we only present the results for the setting n“ 80 and766

ρn “ 1 in Tables 3 (block model), 4 (smooth graphon) and 5 (non-smooth graphon). Each en-767

try is formatted “mean(standard deviation)”. We sink the remaining results to Supplemental768
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Fig 2: CDF approximation errors. Both axes are log(e)-scaled. Motifs: row 1: Edge; row
2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle: our
method (empirical Edgeworth); black dashed curve marked down-triangle: Np0,1q approxi-
mation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed curve
marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers: ASE
plug-in bootstrap in [93].
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Fig 3: Time costs (in seconds) of all methods. Both axes are log(e)-scaled. Motifs: row
1: Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve
marked circle: our method (empirical Edgeworth); green dashed curve marked up-triangle:
re-sampling of A in [61]; blue dashed curve marked plus: [17] sub-sampling — n nodes; ma-
genta dashed line with square markers: ASE plug-in bootstrap in [93]. We regarded Np0,1q
as zero time cost so does not appear in the time cost plot.
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TABLE 3
Performance measures of 95% confidence intervals

n“ 80, ρn — 1, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.957p0.202q
Length “ 0.097p0.010q

LogTime “´8.448p0.110q

0.953p0.211q
0.040p0.008q
´7.214p0.083q

0.956p0.205q
0.200p0.033q
´7.165p0.082q

0.952p0.213q
0.145p0.033q
´7.180p0.353q

Norm. Approx.
0.950p0.218q
0.097p0.010q
No time cost

0.934p0.248q
0.040p0.008q
No time cost

0.942p0.235q
0.200p0.033q
No time cost

0.932p0.251q
0.145p0.033q
No time cost

Bhattacharyya and Bickel [17]
0.842p0.365q
0.068p0.009q
´2.591p0.008q

0.870p0.337q
0.031p0.007q
´2.160p0.026q

0.852p0.355q
0.147p0.026q
´2.127p0.024q

0.852p0.355q
0.113p0.025q
´0.992p0.006q

Green and Shalizi [61]
0.938p0.241q
0.096p0.013q
´1.198p0.007q

0.944p0.230q
0.044p0.010q
0.499p0.032q

0.934p0.249q
0.204p0.038q
0.142p0.035q

0.938p0.241q
0.150p0.037q
0.383p0.010q

Levin and Levina [93]
0.942p0.234q
0.099p0.013q
´1.188p0.004q

0.942p0.234q
0.043p0.010q
0.507p0.028q

0.942p0.234q
0.209p0.039q
0.142p0.027q

0.942p0.234q
0.155p0.038q
0.489p0.004q

TABLE 4
Performance measures of 95% confidence intervals

n“ 80, ρn — 1, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.958p0.201q
Length “ 0.092p0.009q

LogTime “´8.225p0.113q

0.940p0.238q
0.021p0.005q
´7.363p0.066q

0.951p0.216q
0.141p0.025q
´7.278p0.086q

0.942p0.235q
0.083p0.021q
´6.974p0.541q

Norm. Approx.
0.951p0.216q
0.092p0.009q
No time cost

0.920p0.271q
0.021p0.005q
No time cost

0.938p0.242q
0.141p0.025q
No time cost

0.923p0.266q
0.083p0.021q
No time cost

Bhattacharyya and Bickel [17]
0.816p0.388q
0.066p0.009q
´2.554p0.010q

0.840p0.367q
0.018p0.005q
´2.124p0.026q

0.826p0.379q
0.110p0.021q
´2.139p0.026q

0.852p0.355q
0.072p0.018q
´1.020p0.027q

Green and Shalizi [61]
0.928p0.259q
0.092p0.012q
´1.144p0.009q

0.946p0.226q
0.025p0.007q
0.497p0.042q

0.938p0.241q
0.147p0.029q
0.157p0.054q

0.948p0.222q
0.090p0.024q
0.334p0.025q

Levin and Levina [93]
0.948p0.222q
0.095p0.012q
´1.138p0.005q

0.948p0.222q
0.024p0.007q
0.507p0.031q

0.950p0.218q
0.153p0.030q
0.172p0.030q

0.958p0.201q
0.095p0.025q
0.447p0.019q

Materials. Our method exhibits very accurate actual coverage probabilities consistently close769

to the nominal confidence level. Our method is the only method that can always achieve a770

ď 0.010 coverage error across all settings. It also produces competitively short confidence771

interval lengths, again, reflecting the high accuracy of the method. The comparison of com-772

putational efficiency between different methods echoes the qualitative results in Figure 3773

despite slightly different settings and confirms our method’s huge speed advantage over all774

bootstrap methods.775

It is interesting to observe that under the setting of this simulation, our empirical Edge-776

worth expansion method always produces the same interval length as the normal approxima-777

tion. This is not a coincidence in view of (4.5), (4.9) and that z2
α{2 “ z

2
1´α{2. In other words,778

as long as the studentization form pTn that Np0,1q approximates is equipped with the same779

variance estimator pSn as our method, our two-sided Edgeworth confidence interval is a bias-780

corrected version (by mean-shift) of the corresponding ordinary CLT confidence interval.781
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TABLE 5
Performance measures of 95% confidence intervals
n“ 80, ρn — 1, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.956p0.205q
Length “ 0.116p0.009q

LogTime “´8.291p0.076q

0.957p0.203q
0.135p0.010q
´7.345p0.103q

0.957p0.202q
0.422p0.027q
´7.817p0.153q

0.957p0.203q
0.531p0.040q
´7.045p0.373q

Norm. Approx.
0.952p0.215q
0.116p0.009q
No time cost

0.949p0.220q
0.135p0.010q
No time cost

0.951p0.215q
0.422p0.027q
No time cost

0.950p0.218q
0.531p0.040q
No time cost

Bhattacharyya and Bickel [17]
0.830p0.376q
0.081p0.010q
´2.569p0.012q

0.832p0.374q
0.096p0.011q
´2.105p0.051q

0.830p0.376q
0.297p0.031q
´2.116p0.035q

0.836p0.371q
0.379p0.041q
´1.011p0.005q

Green and Shalizi [61]
0.940p0.238q
0.112p0.013q
´1.201p0.011q

0.938p0.241q
0.135p0.014q
0.547p0.075q

0.944p0.230q
0.415p0.041q
0.169p0.037q

0.944p0.230q
0.529p0.055q
0.328p0.015q

Levin and Levina [93]
0.954p0.210q
0.116p0.013q
´1.190p0.003q

0.956p0.205q
0.138p0.013q
0.534p0.049q

0.956p0.205q
0.427p0.039q
0.162p0.033q

0.954p0.210q
0.544p0.052q
0.436p0.014q

In the Supplemental Materials, we present simulation results for the remaining config-782

urations among n P t80,160u and ρn — t1, n
´1{4, n´1{2, n´1u. For very sparse networks,783

our method and Np0,1q approximation produce similar conservative confidence intervals for784

the R “ Edge. On the other hand, all methods fail spectacularly for more complex motifs.785

Despite the required ρn lower bounds for all acyclic motifs are identically ωpn´1q for our786

method and Np0,1q approximation, the results are not surprising for two reasons: (i) the the-787

ory requires ρn " n´1, so the simulation setting ρn — n´1 is the boundary case and sensible788

outputs are not guaranteed; and (ii) the constant factor may matter a lot, and different acyclic789

motif shapes may require different minimum constants factor in ρn to show sensible results.790

5.3. Simulation 3: Numerical evaluation of the finite-sample impact of sparsity. In this791

part, we conduct numerical studies to evaluate the finite sample performances of our method792

compared to benchmarks as the network grows sparser under fixed n. Despite in Simulation793

5.1, we tested different network sparsity settings (see Supplemental Material), it would still794

be interesting to more directly illustrate the impact of ρn for each fixed network size. The795

simulation set up carries over the same set of graphon models, motif shapes and compared796

methods from Simulation 5.1. Here, for simplicity, we only tested n“ 80,160 and varied ρn797

in a wider range of sparsity as follows: t1 (“dense”), n´1{4, n´1{2, n´1u.798

Figure 4 shows the CDF approximation errors under different ρn settings for n “ 160.799

Aligned with our theory’s prediction, we observe that as the network grows sparser, our800

method’s performance depreciates and gradually regresses to the performance of normal ap-801

proximation. Due to page limit, we sink the approximate error plots for n“ 80 and the time802

cost plots for both n settings to Supplemental Materials.803

5.4. Simulation 4: Degree-corrected stochastic block models. We also tested our method804

on networks with degree heterogeneity. Our method maintains significant advantage in both805

accuracy and speed. Due to page limit, we sink all results and interpretation to Supplemental806

Materials (See Section 9.4).807

5.5. Simulation 5: Scalability of our method to large networks. In this experiment, we808

test the scalability of our method. We find that all the three benchmark methods that we tested809

in previous simulations would fail to finish running on our high performance computing810

servers within 24 hours. Therefore, only the time costs of our method are recorded.811
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Fig 4: Impact of sparsity on approximation errors, n “ 160. Both axes are log(e)-scaled.
Motifs: row 1: Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid
curve marked circle: our method (empirical Edgeworth); black dashed curve marked down-
triangle: Np0,1q approximation; green dashed curve marked up-triangle: re-sampling of A
in [61]; blue dashed curve marked plus: [17] sub-sampling — n nodes; magenta dashed line
with square markers: ASE plug-in bootstrap in [93].
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Fig 5: Scalability of our method on large networks. Bootstrap methods [17, 61, 93] with
nboot “ 200 bootstrap iterations did not finish in 24 hours, thus are not shown. In all experi-
ments, our method took less than 20 seconds at the longest to run.

Figure 5 shows the results. Notably, our method shows a clear uniform slope in their812

log-time cost growth rates for all the three motifs with r “ 2,3,4, respectively. This echoes813

our discussion in Section 6 that some “nicely shaped” motifs only cost Opn2q or Opn3q to814

count, regardless of motif size r. On the other hand, we recognize that counting a large and815

“irregularly-shaped” motif could cost significantly more time.816

6. Discussion. Our results do not cover the case where g1pX1q is lattice and ρn — 1. An
ad-hoc remedy is to simply introduce artificial missing links by sparsifying A:

rAij :“ rAji :“

#

Aij “Aji, with probability 1´ rρn

0, with probability rρn

where we set rρn — plognq´1. One can then make inferences about the population network817

moment rρn ¨ µn using rA as the input data (notice rρn is known). This reinstates the plognq´1
818

sparsification that we need to overcome the latticeness at the price of a very minor information819

loss.820

The Edgeworth expansion we derived for Bernoulli Aij |Wij distributions can be readily
extended to general weighted networks formulated by

Aij :“Wij ` εij ,

where εij may either depend on Wij or not. A distinct feature of our setting is that the edge-821

wise observational errors are a contributing component of pTn that smooths the distribution.822

In contrast to matrix estimation problems, where such noise is to be suppressed [33, 133], a823

moderate amount of tailedness can strengthen the smoothing effect in A|W and might im-824

prove finite sample performances. Notice that similar to [17, 61, 93], throughout this paper,825

we work under the assumption inherited from well-known network analysis literature includ-826

ing [19, 34, 56, 40] that ρn ¨ fp¨q P r0,1s, which also yields the boundedness of hp¨q. Thus,827

the bounded-moment conditions in the classical literature of Edgeworth expansions for noise-828

less U-statistics would be satisfied. There are at least two directions of potential relaxations:829

relaxing the boundedness of the distribution of Aij |Wij and study a weighted network, or830

consider unbounded graphons like that in [26]. The extension of our algorithm and analysis831

to some light-tailed Aij |Wij distributions is straightforward. For instance, our proofs remain832

valid for weighted network models with bounded graphon and an sub-exponential edge error833

distribution, where Wij —Varpεij |Wijq — ρn, by simply replacing Bernstein’s inequality by834

generalized Hoeffding’s inequality (Theorem 1.2.2 in [126]).835
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On the other hand, in fact there is a simple universal strategy to handle heavy-tailed Aij836

distributions, regardless of whether this is due to a heavy-tailed Aij |Wij distribution, or an837

unbounded graphon such as fpx, yq “ pxyq´α for α P p0,1q in [26], or even both. As pointed838

out in [111], we can perform a one-to-one transformation, such as the widely-used sigmoid839

or tanh functions in machine learning, on each Aij , tame it into a bounded T pAijq, and work840

with the transformed data. This also guarantees that the population network moments of the841

transformed network are always well-defined.842

This paper focuses on studying the marginal randomness in A jointly contributed by the843

randomness in W and A|W . In this study, we take the sparsity-scaled graphon ρn ¨ f as844

the population and the graphon feature µn as the ultimate inference goal. Our approach is845

nonparametric and directly approximates F
pTn

without requiring a graphon estimation xW . If846

one regards W as the population and wants to make inference for Un, she would need a CDF847

approximation to ppUn ´ Unq|X1, . . . ,Xn. This distribution is asymptotically normal as has848

been described by (3.12) in our Lemma 3.1-(b). However, estimating the normal variance849

typically requires a graphon estimation xW 30. Meanwhile, a practically meaningful graphon850

estimation would typically require that f is smooth and/or low-rank, see [136, 134]. In other851

words, the bootstrapping of pTn|X1, . . . ,Xn would (seemingly unavoidably) be a parametric852

bootstrap. In view of Lemma 3.1-(b), asympotically853

(6.1) pρn ¨ nq
1{2 ¨

pUn ´Un
σn

d
«Np0, σ2

wq

given X1, . . . ,Xn, where recall that σw — 1. However, the minimax rate for sparse graphon
estimation (see [58, 85]) is

Rescaled MSE: pρn ¨ nq´2 ¨ }xW ´W }2F — pρn ¨ nq
´1 ¨ logn

If we use this error bound to control the estimation error of σ2
w, then this yields an error of854

|pσ2
w´σ

2
w| — n

´1}xW ´W }F — ρ
1{2
n ¨n´1{2 ¨ log1{2 n. This error may dominate the n´1{2 cor-855

rection term in an Edgeworth expansion even for dense networks (e.g., Cramer’s condition856

holds and ρn — 1). Moreover, the minimax graphon estimation rate has not yet been achieved857

by any polynomial-time algorithm (see [136, 134] for comments), and using a practically858

feasible xW would cause an error " n´1{2, ignoring ρn and log. Therefore, it might be chal-859

lenging to accurately approximate the distribution of the LHS of (6.1) beyond asymptotic860

normality. Our observation here echos the common practice in network bootstrap literature861

[17, 61, 93] that they unanimously focus on the marginal distribution of pUn, rather than862

ppUn ´Unq|X1, . . . ,Xn
31.863

A retrospection on our simulation setting provides an interesting insight. In fact,864

the population Edgeworth expansion provides a much more efficient Monte Carlo pro-865

cedure for simulating the true distribution F
pTn

. Indeed, estimating ξ1, Erg3
1pX1qs and866

Erg1pX1qg1pX2qg2pX1,X2qs with nMC — n Monte Carlo samples yields a CDF approxima-867

tion rate of O pMpρn, n;Rqq “ opn´1{2q when ρn satisfies the conditions of Theorem 3.1.868

This is much more efficient than the empirical CDF, which requires nMC ľ n2 to achieve the869

same accuracy order.870

In the application of our results, we focus on node sampling network bootstraps. It is an
interesting future work to investigate the higher-order accuracy properties of other schemes,

30The expression of σ2
w contains W 2

ij terms originated from “Wijp1 ´Wijq” terms, which could not be
estimated without a graphon estimation.

31For example, in Levin and Levina [93], the authors used a low-rank decomposition of A, which directly
leads to an estimated xW . But they also solely focused the marginal distribution of Un (in our notation system).
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such as sub-graph sampling [17] and (artificially) weighted bootstrap [93]. Also comprehen-
sive numerical comparisons of different schemes under various settings would certainly be
interesting for practitioners. As a closely related point, this paper studies the complete noisy
U-statistic, “complete” in the sense that pi1, . . . , irq ranges over all

`

n
r

˘

possible r-tuples. As
one of the anonymous referees pointed out, evaluating the moment corresponding to an r-
node motif would cost Opnrq, which is still expensive for large n. Even for sparse networks,
the counting may still needOpρr´1

n ¨nrq time using cutting-edge algorithms, see Section III.A
of [2]. To accelerate the computation, papers [22, 105, 36, 87, 121] investigated this topic
for the conventional noiseless U-statistic setting and formulated the Edgeworth expansion
for “incomplete” U-statistics. They study noiseless incomplete U-statistics, and [17] pro-
posed a “subgraph subsampling” scheme (their scheme (a)) that computes noisy incomplete
U-statistics, which we call pU pIncompleteq

n for the network setting. Formally, define

pU pIncompleteq
n :“

ř

1ďi1ă¨¨¨ăirďn
Ii1,...,ir ¨ hpAi1,...,irq

ř

1ďi1ă¨¨¨ăirďn
Ii1,...,ir

where Ii1,...,ir ’s are random variables indepedent of the network data. These Ii1,...,ir ’s can871

be i.i.d. Bernoulli, multinomial (if a given proportion of sub-sampled motifs is desired), or872

other reasonable sampling scheme distributions. It would be an interesting future research to873

carefully explore and quantify the self-smoothing effect for pU
pIncompleteq
n .874

On the other hand, however, some particular motifs, such as cycles, stars and wheels, can875

be very efficiently evaluated, and the computational complexity may remain at most Opn3q,876

instead of Opnrq. For instance, the pUn for star motifs can be approximately counted with877

ignorable error in just Opn2q time by averaging over tAr
pi,:qui“1,...,n. Another example is878

that a pk, `q-wheel (see [20] for definition) can be evaluated in at most Opn3q time using the879

sample version of QpRq in Equation (2.9) in [20]. More readings along this line include [98],880

which provides detailed formula table for parallel computing up to r “ 4 motifs, and [4] that881

studies fast-counting triangles in very large graphs. A recent paper [38] points out another882

promising direction of distributed computation.883

Code. The MATLAB code for our method (empirical Edgeworth expansion) is available884

at https://github.com/yzhanghf/NetworkEdgeworthExpansion.885
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7. Definition of σw in Lemma 3.1-(b). The formal definition of σw we present here903

would complete the statement of this lemma. To start, we express hpAi1,...,irq :“ 1rAi1,...,irĚRs904

more explicitly as a sum of indicator product-terms, in which, each term checks if Ai1,¨¨¨ ,ir ě905

Rπ , where the ě is entry-wise and Rπ is defined as pRπqij :“Rπpiqπpjq with π ranging over906

all permutations. To formalize this, let PermpRq :“ tπp`q, `“ 1, . . . ,Lu denote the permuta-907

tion group of R, where πp1q “ id is the identity map and πp`1qpRq ‰ πp`2qpRq for any `1 ‰ `2.908

For simplicity, for all 1ď k1 ă k2 ď r, define909

J pk1,k2qpxq “

#

x if Rk1k2 “ 1

1 if Rk1k2 “ 0
910

Then hpAi1,...,irq can be formally represented as911

hpAi1,...,irq “
L
ÿ

`“1

1rAi1,...,irěRπp`qs
“

L
ÿ

`“1

ź

1ďk1ăk2ďr

Jpπ
p`qpk1q,πp`qpk2qq

`

Aik1 ,ik2
˘

912

Define913

E
p`q
ti1,...,iru,j1,j2

:“ Jpπ
p`qpj1q,πp`qpj2qq

`

Wij1 ,ij2

˘

(7.1)914

S
p`q
j1,j2

:“ Sign
!

Jpπ
p`qpj1q,πp`qpj2qq

`

Wij1 ,ij2

˘

)

(7.2)915

where

SignpJq :“
dJpxq

dx
“

#

`1 if Jpxq “ x
0 if Jpxq “ 1

and define

pΘij :“
2rpr´ 1q

σn ¨
`

n´2
r´2

˘

ÿ

1ďi1ă¨¨¨ăirďn
ti,juĎti1,...,iru

L
ÿ

`“1

$

’

’

&

’

’

%

ź

1ďj1ăj2ďr
pij1 ,ij2 q‰pi,jq

E
p`q
ti1,...,iru,j1,j2

,

/

/

.

/

/

-

¨S
p`q

j11,j
1
2:

pij1
1
,ij1

2
q“pi,jq

Define σw as follows916

(7.3) σ2
w :“

ρn ¨ n
`

n
2

˘2

ÿ

1ďiăjďn

pΘ2
ij ¨Wijp1´Wijq

This completes the statement of Lemma 3.1-(b).917
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8. Proofs.918

8.1. Bernstein-type concentration bound for multilinear polynomials of centered error919

terms. Our proof would need the main result Theorem 1.3 of [116], which is also used in920

the proofs in [84]. To state this theorem, we first define a few preliminary quantities.921

DEFINITION 8.1 (See Section 1.1 of [116]). A hypergraph is formed by a node set
VpHq :“ t1, . . . ,Nu “ rN s and a set HpHq of hyperedges, where a hyperedge h of degree q
is defined to be a subset of nodes Vphq Ă VpHq satisfying |Vphq| ď q. We study the following
multilinear polynomial

fpXq :“
ÿ

hPHpHq
Wh

ź

vPVphq
Xv

where X“ pX1, ¨ ¨ ¨ ,XN q and Wh is an weight multiplier on each hyperedge h. Suppose on922

each node we have a random variable, Y :“ tY1, . . . , YNu and a natural number rě 0. Let923

W denote the set of all edge weights. We define:924

(8.1) Ξr :“ ΞrpY,H,Wq :“ max
SĎrNs:|S|“r

¨

˝

ÿ

hPHpHq:SĎVphq
|Wh|

ź

vPVphqzS
Er|Yv|s

˛

‚

where to avoid symbol conflict we replaced “µ” in [116] by “Ξ”.925

Next we cite the main assumption.926

DEFINITION 8.2. A random variable Z is called central moment bounded with parame-
ter Lą 0, if for any integer iě 1, we have

E
“

|Z ´ErZs|i
‰

ď iL ¨E
“

|Z ´ErZs|i´1
‰

Now we are ready to cite their main result.927

THEOREM 8.1 (Theorem 1.3 of [116], also cited as Lemma 15 in [84]). Suppose all928

Y1, . . . , YN are independent (but not necessarily identically distributed) and they all satisfy929

the central moment bounded condition with a common parameter L. Then we have930

P
`
ˇ

ˇfpY q´ErfpY qs
ˇ

ˇě u
˘

931

ď e2 ¨max

#

exp

"

´
u2

Cq ¨VarpfpY qq

*

, max
1ďrďq

exp

#

´

ˆ

u

ΞrLrCq

˙1{r
++

(8.2)932

where C is a universal constant.933

8.2. Proof of Lemma 3.1.934

8.2.1. Proof of Lemma 3.1-(a). By the decomposition in [96], we have935

σ2
n “

r2ξ2
1

n
`Opρ2s

n ¨ n
´2q936
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Therefore, σn — n´1{2 ¨ ξ1 — ρ
s
n ¨ n

´1{2. Combining this fact with the Hoeffding’s decompo-937

sition of Un ´ µn in (3.1), we have938

Un ´ µn
σn

“

r
n

řn
i“1 g1pXiq `

rpr´1q
npn´1q

ř

1ďiăjďn g2pXi,Xjq ` rR3:r

rξ1?
n
`Opρsn ¨ n

´3{2q
939

where940

rR3:r :“

ˆ

n

3

˙´1ˆn´ 3

r´ 3

˙

ÿ

1ďi1ăi2ăi3ďn

g3pXi1 ,Xi2 ,Xi3q941

`

r
ÿ

k“4

ˆ

n

k

˙´1ˆn´ k

r´ k

˙

ÿ

1ďi1ă¨¨¨ăikďn

gkpXi1 , . . . ,Xikq942

“: rR3 ` rR4:r(8.3)943

and we also recall the definitions of U#
n and ∆n from (3.7) and the Opρsn ¨n

´3{2q remainder944

control on the denominator is due to945

σn “
rξ1
?
n

a

1`Opn´1q “
rξ1
?
n
`Opρsn ¨ n

´3{2q.946

Recall that for simplicity, throughout this paper we assume f is bounded, which implies947

the boundedness of the induced kernel function hp¨q. Therefore, the moment conditions of948

Lemma 1 of [96] are satisfied. By Lemma 1 of [96], we know that Er| rR4:r|s “Oppρ
s
n ¨n

´2q,949

thus by the remark below Lemma 2 in [96], this term is also rOppρ
s
n ¨ n

´3{2q. Now for rR3,950

using Theorem 1 in [97], we know that rR3 “ rOppρ
s
n ¨ n

´3{2 ¨ log3{2 nq. Therefore, we have951

Un ´ µn
σn

“ U#
n `∆np1`Opn

´1qq ` rOppn
´1 ¨ log3{2 nq952

“ U#
n `∆n ` rOppn

´1 ¨ log3{2 nq953

This completes the proof of Lemma 3.1-(a).954

Note that we use rR, qR and R̊ to denote the remainder terms, where the “R” means “remain-955

der”. The properties of rR, qR and R̊ certainly depend on the shape of the motif R, where we956

inherit the tradition of using “R” to represent the motif from past network moment method957

literature [20], but rR, qR and R̊ are distinct notions from R.958

8.2.2. Proof of Lemma 3.1-(b). We have959

ˆ

n

r

˙

¨ pUn “
ÿ

1ďi1ă¨¨¨ăirďn

hpAi1,...,irq960

“
ÿ

1ďi1ă¨¨¨ăirďn

#

L
ÿ

`“1

ź

1ďj1ăj2ďr

´

E
p`q
ti1,...,iru,j1,j2

`S
p`q
j1,j2

¨ ηij1 ,ij2

¯

+

961

“:
ÿ

1ďk1ăk2ďn

rΘk1,k2 ¨ ηk1,k2 `
ÿ

1ďi1ă¨¨¨ăirďn

L
ÿ

`“1

ź

1ďj1ăj2ďr

E
p`q
ti1,...,iru,j1,j2

` R̊962

“
ÿ

1ďk1ăk2ďn

rΘk1,k2 ¨ ηk1,k2 `

ˆ

n

r

˙

¨Un ` R̊,(8.4)963
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where we denote964

ηi,j “Aij ´Wij ,965

rΘk1,k2 :“
ÿ

1ďi1ă¨¨¨ăirďn
tk1,k2uĎti1,...,iru

L
ÿ

`“1

¨

˚

˚

˝

ź

1ďj1ăj2ďr
pij1 ,ij2 q‰pk1,k2q

E
p`q
ti1,...,iru,j1,j2

˛

‹

‹

‚

S
p`q

j11,j
1
2:

pij1
1
,ij1

2
q“pk1,k2q

,966

where we recall the definitions of E and S from (7.1) and (7.2), respectively, and R̊ :“
`

n
r

˘

σn¨ qRn is the remainder that contains all unmentioned terms. Referring to the later formal
definition of q∆n in (8.19) and recalling the definition of p∆n in (3.7), one can also easily
verify that by definition p∆n “ q∆n ` qRn. For clarity, we first verify that the coefficient in
front of ηk1,k2 is indeed rΘk1,k2 . For each ti1, . . . , iru : 1ď i1 ă ¨ ¨ ¨ ă ir ď n and each `, the
term

ź

1ďj1ăj2ďr

´

E
p`q
ti1,...,iru,j1,j2

`S
p`q
j1,j2

¨ ηj1,j2

¯

contributes to the coefficient of ηk1,k2 if and only if tk1, k2u Ď ti1, . . . , iru. Now if pj11, j
1
2q

is the index pair from t1, . . . , ru such that pij11 , ij12q “ pk1, k2q, then itself contributes a mul-
tiplicative factor of S

p`q
j11,j

1
2

and every other pair pij1 , ij2q ‰ pk1, k2q among t1, . . . , ru con-

tributes a multiplicative factor of Ep`q
ti1,...,iru,j1,j2

, both into the term:
¨

˚

˚

˝

ź

1ďj1ăj2ďr
pij1 ,ij2 q‰pk1,k2q

E
p`q
ti1,...,iru,j1,j2

˛

‹

‹

‚

S
p`q

j11,j
1
2:

pij1
1
,ij1

2
q“pk1,k2q

as an additive term in the expression of rΘk1,k2 . This confirms that the coefficient of ηk1,k2 is967

indeed rΘk1,k2 .968

The main content of this proof is to show the finite sample convergence rate of the linear969

part to its asymptotic distribution, and to bound the remainder R̊.970

Concentration inequality for the remainder term R̊971

In this part of the proof, our focus is to bound the remainder term R̊. Without loss of
generality, we inspect the coefficient in front of the term

η
pk
p1q
1 ,k

p1q
2 q
¨ ¨ ¨η

pk
pvq
1 ,k

pvq
2 q

where
´

k
p1q
1 , k

p1q
2

¯

, . . . ,
´

k
pvq
1 , k

pvq
2

¯

are mutually different pairs from the set of node pairs972

formed by the first r indices
!´

rk1,rk2

¯

: rk1 ă rk2, trk1,rk2u Ď ti1, . . . , iru
)

. This coefficient973

can be denoted and explicitly expanded as follows974

rΘK:“tpk
p1q
1 ,k

p1q
2 q,...,pk

pvq
1 ,k

pvq
2 qu

975

:“
ÿ

1ďi1ă¨¨¨ăirďn

pYvj“1tk
pjq
1 ,k

pjq
2 uqĂti1,...,iru

L
ÿ

`“1

¨

˚

˚

˝

ź

1ďj1ăj2ďr
pij1 ,ij2 qRK

E
p`q
ti1,...,iru,j1,j2

˛

‹

‹

‚

¨

˚

˚

˚

˝

ź

pj11,j
1
2q:

pij1
1
,ij1

2
qPK

S
p`q
j11,j

1
2

˛

‹

‹

‹

‚

976
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“:
L
ÿ

`“1

rΘ
p`q
K(8.5)977

Here we note a crucially important property of rΘ
p`q
K that it is nonzero if and only if all

of the node pairs in K are edges in the `-th permuted version of the motif πp`qpRq. This
will be the key for us to effectively bound rΘK and p∆pv,pq in (8.7). We now upper bound
rΘ
pk
p1q
1 ,k

p1q
2 q,...,pk

pvq
1 ,k

pvq
2 q

for all v ě 2, and this is an important step in upper bounding R̊. De-
fine p

p :“
ˇ

ˇ

ˇ
tk
p1q
1 , k

p1q
2 u Y ¨ ¨ ¨ Y tk

pvq
1 , k

pvq
2 u

ˇ

ˇ

ˇ

to be the number of distinct indexes among
´

k
p1q
1 , k

p1q
2

¯

, . . . ,
´

k
pvq
1 , k

pvq
2

¯

. Clearly, for v ě 2,978

we have979

3ď pď r, and
p

2
ď vď

#

p´ 1, for acyclic R,
ppp´ 1q{2, for cyclic R,

980

It suffices to bound inside part of the right hand side of (8.5) for each fixed set of indices
ti1, . . . , iru and `, because multiplying such upper bound by

`

n´p
r´p

˘

gives an upper bound on
rΘK, ignoring constant factors including L. For each fixed ` and given i1, . . . , ir and K, we
see that the number of

´

k
pjq
1 , k

pjq
2

¯

that correspond to edges under the permutation mapping

πp`q must be v, otherwise at least one S term is zero and the summand is zero. So we have
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ź

1ďj1ăj2ďr
pij1 ,ij2 qRK

E
p`q
ti1,...,iru,j1,j2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

— ρs´vn

and consequently,981

ˇ

ˇ

ˇ

rΘ
pk
p1q
1 ,k

p1q
2 q,...,pk

pvq
1 ,k

pvq
2 q

ˇ

ˇ

ˇ
ĺρs´vn ¨

ˆ

n´ p

r´ p

˙

— ρs´vn nr´p(8.6)982

We can express the remainder term R̊ in terms of rΘ and η terms. To facilitate detailed983

discussion and bounding, we group these terms. Define984

p∆pv,pq :“
ÿ

KĎtpk1,k2q:1ďk1ăk2ďnu
Unique nodespKq“p

|K|“v

¨

˝
rΘK

ź

pk1,k2qPK
ηk1,k2

˛

‚(8.7)985

to be the collection of the terms in the remainder R̊ corresponding to the product over v986

different η-terms with exactly p unique participating nodes in these η-terms’ indexes. Then987

R̊“
ÿ

All possible pv,pq
vě2,pě3

p∆pv,pq(8.8)988

Obviously, v, p and the total number of possible pv, pq pairs are all universally bounded,989

because the motif R is fixed. Therefore, in order to bound R̊, it suffices to bound p∆pv,pq for990

every pv, pq pair. We need to bound not only the asymptotic magnitude of p∆pv,pq, but also991

its tail probability. Notice that p∆pv,pq is mean zero both conditional on W and marginally.992
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In order to bound its tail probability, it suffice to show a proper concentration inequality for993

p∆pv,pq conditional on W .994

For this goal, we are going to apply Theorem 8.1, which derives a Bernstein inequality for995

polynomials of independent centered random variables. Notice that p∆pv,pq can be rewritten996

in the form of (8.1), where the nodes of the hypergraph VpHq “ tpi, jq : 1ď iă j ď nu are997

defined to be the following set of node pairs (notice that they are not nodes but node pairs in998

our network). Define the set of hyperedges HpHq as follows999

HpHq :“
!

K :“
!´

k
p1q
1 , k

p1q
2

¯

, . . . ,
´

k
pvq
1 , k

pvq
2

¯)

Ď tpi, jq : 1ď iă j ď nu1000

s.t.
ˇ

ˇ

ˇ
Yvv1“1tk

pv1q
1 , k

pv1q
2 u

ˇ

ˇ

ˇ
“ p, and1001

there exists 1ď i1 ă ¨ ¨ ¨ ă ir ď n and 1ď `ď L, s.t.1002

K P tpik11 , ik12q : 1ď k11 ă k
1
2 ď ru,1003

and
´

πp`qpRq
¯

k11,k
1
2

“ 1, for all pk11, k
1
2q : pik11 , ik12q PK

*

1004

In other words, using the notation in Theorem 8.1, HpHq is the collection of all size-v1005

subsets of VpHq that span across p nodes and are subset to some `th permuted version of1006

the motif πp`qpRq, edge weights being Wh “ rΘK, and each individual node-wise random1007

variable is tYv1u :“
!

η
k
pv1q
1 ,k

pv1q
2

)

. Clearly, centered Bernoulli random variables satisfy the1008

“bounded central moment” assumption with parameter L“ 1. In our context, q“ v. In order1009

to apply Theorem 8.1, now we bound the key quantities Ξ1, . . . ,Ξv . For each q1 : 1ď q1 ď v,1010

bounding Ξq1 consists of two sub-tasks:1011

(i). Bounding
ś

v1PVphqzS Er|ηv1 |s,1012

(ii). Bounding
ř

hPHpHq:SĎV phq |Wh| ¨
ś

v1PVphqzS Er|ηv1 |s,1013

where in both bounds, S Ď VpHq : |S| “ q1. Bounding (i) is easy since it is just a product1014

over v´ q1 independent η terms, each of which has an absolute expectation of ρn. We have1015

(8.9)
ź

v1PVphqzS
Er|ηv1 |s “

ź

v1PVphqzS
ErEr|ηv1 |

ˇ

ˇ

ˇ
W ssĺ ρv´q

1

n

Now we bound (ii). This requires more detailed calculations to count the number of rΘ terms1016

involved in the summation. It turns out the bound would differ for acyclic and cyclic motifs,1017

which we discuss as follows.1018

• When R is acyclic, in the summation
ř

hPHpHq:SĎV phq |Wh|, we are summing over at most1019

p´ q1 ´ 1 free indices. To see this fact, recall that in order for an individual summand to1020

be nonzero, its corresponding hyperedge h, or equivalently, the corresponding K, must be1021

a subset of some permuted version of the motif R. Therefore the requirement that it must1022

contain S : |S| “ q1 would pin down at least q1 ` 1 indices, leaving us at most p´ q1 ´ 11023

free indices. Therefore, recalling that |Wh| :“ |rΘK|ĺ ρs´vn nr´p, we obtain the following1024

bound for (1)1025

ÿ

hPHpHq:SĎV phq
|Wh| ¨

ź

v1PVphqzS
Er|ηv1 |sĺ

ˆ

n

p´ q1 ´ 1

˙

¨ ρs´vn nr´p ¨ ρv´q
1

n1026

ď ρs´q
1

n ¨ nr´q
1´1(8.10)1027
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Since (8.10) holds for any S : |S| “ q1, by the definition of Ξq1 , we have1028

Ξq1
`

n
r

˘

¨ σn
ĺ
ρs´q

1

n ¨ nr´q
1´1

ρsn ¨ n
r´1{2

“ pρn ¨ nq
´q1 ¨ n´1{2(8.11)1029

Notice that under the weak sparsity assumption ρn “ ωpn´1q for acyclic R, the RHS of1030

(8.11) is decreasing in q1. The interpretation of the result (8.11) says that in fact, our choice1031

of “u” in the second term inside “max” in Theorem 8.1 for r : 1ď rď q“ v is bottlenecked1032

by the case r“ 1.1033

• Then we discuss the more complicated case that R is cyclic. Now, we consider those
S Ă VpHq whose numbers of unique nodes are q2`1 for some q2 P t2, ¨ ¨ ¨ , p´1u (q2 “ 1
cannot form a cyclic R). For such S , we have

ÿ

hPHpHq:SĎV phq
Unique nodespSq“q2`1

|Wh| ď

ˆ

n

p´ q2 ´ 1

˙

¨ ρs´vn nr´p ď ρs´vn ¨ nr´q
2´1

since we have p´ q2 ´ 1 free indices to sum over. Meanwhile, regardless of the number
of unique nodes in S , we always have

ź

v1PVphqzS
Er|ηv1 |sĺ ρv´|S|n ,

Now using the simple relationship |S| ď q2pq2 ` 1q{2, we have1034

ÿ

hPHpHq:SĎV phq
|Wh| ¨

ź

v1PVphqzS
Er|ηv1 |s1035

“
ÿ

All possible q2

ÿ

hPHpHq:SĎV phq
Unique nodespSq“q2`1

|Wh|
ź

v1PVphqzS
Er|ηv1 |s1036

ď
ÿ

q2

ˆ

n

p´ q2 ´ 1

˙

¨ ρs´vn nr´p ¨ ρv´q
2pq2`1q{2

n1037

ď
ÿ

q2

ρs´q
2pq2`1q{2

n ¨ nr´q
2´1(8.12)1038

Therefore, we have1039

Ξq1
`

n
r

˘

¨ σn
ĺ max
q2:q2pq2`1q{2ěq1

ρ
s´q2pq2`1q{2
n ¨ nr´q

2´1

ρsn ¨ n
r´1{2

1040

“ max
q2:q2pq2`1q{2ěq1

pρ´pq
2`1q{2

n ¨ n´1qq
2

¨ n´1{2(8.13)1041

Recall that by definition q2 ď p ´ 1 ď r ´ 1. Under the weak sparsity assumption that1042

ρn “ ωpn
´2{rq, we know that ρ´pq

2`1q{2
n ¨ n´1 ! 1, so the maximum asymptotic order on1043

the RHS of (8.13) is achieved at the minimum possible q2 value of 2.1044

Now we have bounded the Ξ terms. In fact, as we will see, in Theorem 8.1, the concen-1045

tration error bound terms due to Ξ’s are dominated by the term due to variance. In order to1046

apply Theorem 8.1, it only remains to bound Var
´

p∆pv,pq
¯

. We shall do this by bounding1047

Var
´

p∆pv,pq|W
¯

for each individual pv, pq, since the number of such terms is a fixed number.1048
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We have1049

Var
´

p∆pv,pq|W
¯

“
ÿ

1ďi1ă...ăipďn

rΘ2
K ¨Var

¨

˝

ź

pk1,k2qPK
ηk1,k2

ˇ

ˇW

˛

‚1050

ĺ np ¨ ρ2s´2v
n ¨ n2r´2p ¨ ρvn “ ρ

2s´v
n ¨ n2r´p ď ρ2s´v

n ¨ n2r´p(8.14)1051

where we used (8.6). Since v ď s and pě 3, this yields the following upper bound.1052

!

Var
´

p∆pv,pq|W
¯)1{2

`

n
r

˘

¨ σn
— ρ´sn ¨ n1{2´r ¨

!

Var
´

p∆pv,pq|W
¯)1{2

1053

ĺ

´

ρ´sn ¨ n1{2´r
¯

¨

´

ρs´v{2n ¨ nr´p{2
¯

1054

“ ρ´v{2n ¨ n´pp´1q{2(8.15)1055

Next we discuss different upper bounds of the RHS of (8.15) based on different motif R1056

shapes.1057

• Case 1: if R is acyclic, we have v ď p´ 1. Combining this with the fact that p ě 3 and1058

Assumption (ii) of Lemma 3.1 that ρn “ ωpn´1q, we have1059

ρ´v{2n ¨ n´pp´1q{2 ď pρn ¨ nq
´pp´1q{2

ď pρn ¨ nq
´1(8.16)1060

• Case 2: if R is cyclic, we have v ď ppp´1q{2. Combining this with the fact that 3ď pď r1061

and Assumption (ii) of Lemma 3.1 that ρn “ ωpn´2{rq, we have1062

ρ´v{2n ¨ n´pp´1q{2 ď pρ´ppp´1q{2
n ¨ n´pp´1qq1{21063

“

´

ρ´p{2n ¨ n´1
¯pp´1q{2

ď ρ´r{2n ¨ n´1(8.17)1064

Repeating this argument for every pv, pq pair, and plug (8.11), (8.13), (8.16) and (8.17)1065

back into Theorem 8.1, we have1066

P

˜

qRn :“
R̊

`

n
r

˘

¨ σn
ěC ¨Mpρn, n;Rq

¸

(8.18)

1067

ĺ

$

&

%

max
!

exp
´

´
ppρn¨nq´1 log1{2 nq2

pρn¨nq´2

¯

, exp
´

´
pρn¨nq´1 log1{2 n
pρn¨nq´1¨n´1{2

¯)

, for acyclic R;

max
!

exp
´

´
ppρ´r{2n ¨n´1q log1{2 nq2

pρ
´r{2
n ¨n´1q2

¯

, exp
´

´
pρ´r{2n ¨n´1q log1{2 n

ρ´3
n n´5{2

¯)

, for cyclic R;
1068

“Opn´1q1069

for a large enough universal constant C .1070

Asymptotic normality of the linear part q∆n and Berry-Esseen bound1071

Now, we focus on q∆n, the linear part of ppUn ´ Unq{σn and show the uniform rate of its1072

normal approximation. Recalling the definitions of q∆n, rΘij and pΘij , ignoring the remainder1073

term, we have1074

q∆n :“ Linear part of

˜

pUn ´Un
σn

¸

“
1

`

n
r

˘

¨ σn

ÿ

1ďiăjďn

rΘij ¨ ηij1075
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“:
1
`

n
2

˘

ÿ

1ďiăjďn

pΘij ¨ ηij(8.19)1076

We are going to show the asymptotic normality of q∆n and its concentration speed by apply-1077

ing the Berry-Esseen bound for independent but differently-distributed random variables [39]1078

conditioning on W . In this derivation, the key terms are the asymptotic orders of the second1079

and third central moments of each individual pΘijηij term. We first show that with respect to1080

the randomness in W , we have pΘij — ρ
´1
n ¨ n1{2. Then when we condition on W and apply1081

the generalized Berry-Esseen bound with respect to the randomness of A given W , we can1082

think of pΘij as its asymptotic order ρ´1
n ¨ n1{2. Recall that1083

ź

1ďj1ăj2ďr
pij1 ,ij2 q‰pi,jq

E
p`q
ti1,...,iru,j1,j2

¨S
p`q

j11,j
1
2:

pij1
1
,ij1

2
q“pi,jq

1084

—

$

’

’

’

&

’

’

’

%

ρs´1
n , if Sp`q j11,j

1
2:

pij1
1
,ij1

2
q“pi,jq

“ 1 or equivalently
`

πp`qpRq
˘

j11,j
1
2
“ 1

0, if Sp`q j11,j
1
2:

pij1
1
,ij1

2
q“pi,jq

“ 0 or equivalently
`

πp`qpRq
˘

j11,j
1
2
“ 0

1085

We have

σn ¨ pΘij — ρ
s´1
n

This is because1086

(8.20)
σn ¨ pΘij

2rpr´ 1q
“

1
`

n´2
r´2

˘

ÿ

1ďi1ă¨¨¨ăirďn
ti,juĂt1,...,iru

L
ÿ

`“1

$

’

’

&

’

’

%

ź

1ďj1ăj2ďr
pj1,j2q‰pi,jq

E
p`q
ti1,...,iru,j1,j2

,

/

/

.

/

/

-

¨S
p`q
i,j

Since for each given ti1, . . . , iru that contains ti, ju, the summation over ` ranges among1087

all πp`q that keep pi, jq an edge in πp`qpRq, so the outcome of this summation over ` is1088

symmetric in ti1, . . . , iruzti, ju. Consequently, pΘij is also symmetric in t1,2, . . . , nuzti, ju.1089

Applying Hoeffding’s decomposition to each pΘij viewed as a U-statistic with index set1090

t1, . . . , nuzti, ju and using [97] to bound the remainder, we have1091

(8.21)

σn ¨ pΘij

2rpr´ 1q
“

E
”

σn ¨ pΘij

ˇ

ˇXi,Xj

ı

2rpr´ 1q
`
r´ 2

n´ 2

ÿ

1ďkďn
k‰i,j

qg1;i,jpXkq ` rOppρ
s´1
n ¨ n´1 ¨ log3{2 nq

where

qg1;i,jpXkq :“ E

»

—

—

–

ź

1ďj1ăj2ďr
pij1 ,ij2 q‰pi,jq

E
p`q
ti1,...,iru,j1,j2

ˇ

ˇ

ˇ
Xk,Xi,Xj

fi

ffi

ffi

fl

´

E
”

σn ¨ pΘij

ˇ

ˇXi,Xj

ı

2rpr´ 1q

where the indexes i1, . . . , ir satisfy ti, j, ku Ď ti1, . . . , iru Ď t1, . . . , nu. Since the linear part
of a Hoeffding’s decomposition are averaging over— n i.i.d. terms with Erqg1;i,jpXkq|Xi,Xjs “

0, |qg1;i,jpXkq| “Opρ
s´1
n q a.s. and Varpqg1;i,jpXkq|Xi,Xjqĺ ρs´1

n , by Bernstein’s inequality
combined with a union bound, we have

P

¨

˝ max
1ďiăjďn

σn ¨
ˇ

ˇ

ˇ

pΘij ´E
”

pΘij

ıˇ

ˇ

ˇ

2rpr´ 1q
ě ρs´1

n ¨ t

ˇ

ˇ

ˇ

ˇ

ˇ

Xi,Xj

˛

‚ďC1

ˆ

n

2

˙

¨

!

e´C2nt2 ` e´C3nt
)
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which yields that conditioning on Xi,Xj , we have1092

(8.22) max
1ďiăjďn

σn ¨
ˇ

ˇ

ˇ

pΘij ´E
”

pΘij

ı
ˇ

ˇ

ˇ

2rpr´ 1q
“ rOp

´

ρs´1
n ¨ n´1{2 ¨ logn

¯

Since

ρ´ps´1q
n ¨E

”

σn ¨ pΘij

ı

—C ą 0

for a universal constant C , when discussing the concentration of q∆n, it suffices to prove1093

the Berry-Esseen bound for the asymptotic normality of q∆n with respect to the random-1094

ness in A|W , conditioning on a “nicely-behaved” W such that C{2 ă ρ
´ps´1q
n σn ¨ pΘij —1095

ρ
´ps´1q
n σn ¨ pΘij ă 3C{2 holds for all 1ď iă j ď n simultaneously, because the probability1096

that W behaves “badly” is exponentially small and ignorable. We write1097

(8.23)
pρn ¨ nq

1{2 ¨ q∆n

σw
“

ÿ

1ďiăjďn

pρn ¨ nq
1{2 ¨ pΘij

σw ¨
`

n
2

˘ ¨ ηij

where we notice that each individual coefficient in front of ηij is at the order of ρ´1{2
n ¨ n´1.1098

Using Theorem 2.1 of [39]1099
›

›

›

›

›

›

›

›

›

F
pρn ¨ nq

1{2 ¨ q∆n

σw

ˇ

ˇ

ˇ

ˇ

ˇ

W

puq ´ FNp0,1qpuq

›

›

›

›

›

›

›

›

›

8

ďC

$

&

%

0`
ÿ

1ďiăjďn

˜

pρn ¨ nq
1{2 ¨ pΘij

σw ¨
`

n
2

˘

¸3

E
”

|ηij |
3
ı

ˇ

ˇ

ˇ

ˇ

ˇ

W

,

.

-

1100

ĺ n2 ¨ ρ´3{2
n ¨ n´3 ¨ ρn — ρ

´1{2
n ¨ n´1(8.24)1101

where we used1102

E
”

|ηij |
3
|W

ı

“Wijp1´Wijq
3 ` p1´WijqW

3
ij ď 2Wij — ρn1103

Recall that the above result was obtained under “nicely-bahaved” W , but the probability of1104

“bad” W is exponentially small. Therefore, we have1105
›

›

›

›

›

›

›

›

›

F
pρn ¨ nq

1{2 ¨ q∆n

σw

ˇ

ˇ

ˇ

ˇ

ˇ

W

puq ´ FNp0,1qpuq

›

›

›

›

›

›

›

›

›

8

“ rOppρ
´1{2
n ¨ n´1q(8.25)1106

1107

Combining (8.25) and (8.18) with Lemma 8.2 finishes the proof of Lemma 3.1-(b).1108

8.2.3. Proof of Lemma 3.1-(c). Define the following shorthand that will be used in not1109

only this proof but also others1110

pai :“
1

`

n´1
r´1

˘

ÿ

1ďi1ă...ăir´1ďn
i1,...,ir´1‰i

hpAi,i1,...,ir´1
q(8.26)1111

ai :“
1

`

n´1
r´1

˘

ÿ

1ďi1ă...ăir´1ďn
i1,...,ir´1‰i

hpWi,i1,...,ir´1
q(8.27)1112

“
1

`

n´1
r´1

˘

ÿ

1ďi1ă...ăir´1ďn
i1,...,ir´1‰i

hpXi,Xi1 , . . . ,Xir´1
q1113
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A simple but useful property is as follows:1114

(8.28)
1

n

n
ÿ

i“1

pai “ pUn and
1

n

n
ÿ

i“1

ai “ Un

To see (8.28), notice that1115

n
ÿ

i“1

pai ¨

ˆ

n´ 1

r´ 1

˙

“ r
ÿ

1ďi1ă¨¨¨ăirďn

hpAi1,...,irq “ r ¨

ˆ

n

r

˙

pUn

because each hpAi1,...,irq is counted r times by pai1 , . . . ,pair , respectively, on the LHS. The1116

relationship between ai and Un is verified exactly similarly.1117

Next, we start to decompose pδn. By definition, we have

pδn “
pS2
n ´ pσ2

n

σ2
n

“

npS2
n

r2
´
npσ2

n

r2

nσ2
n

r2

in which,1118

npS2
n

r2
“

1

n

n
ÿ

i“1

´

pai ´ pUn

¯2
“

1

n

n
ÿ

i“1

!

ppai ´Unq `
´

Un ´ pUn

¯)2
1119

“
1

n

n
ÿ

i“1

ppai ´Unq
2
`

2

n

n
ÿ

i“1

ppai ´Unq
´

Un ´ pUn

¯

`

´

Un ´ pUn

¯2
1120

“
1

n

n
ÿ

i“1

ppai ´Unq
2
´

´

Un ´ pUn

¯2
(8.29)1121

By the earlier proof steps, we know that1122

(8.30)
´

Un ´ pUn

¯2
“Oppρ

2s´1
n n´2q

According to the remark under Lemma 2 in [96], this term is rOppρ
2s´1
n ¨ n´1q and thus1123

ignorable. We focus on decomposing the first term on the RHS of (8.29). We have1124

1

n

n
ÿ

i“1

ppai ´Unq
2
“

1

n

n
ÿ

i“1

tppai ´ aiq ` pai ´Unqu
2

1125

“
1

n

n
ÿ

i“1

ppai ´ aiq
2
`

2

n

n
ÿ

i“1

ppai ´ aiq pai ´Unq `
1

n

n
ÿ

i“1

pai ´Unq
2(8.31)1126

Term 3 on the RHS of (8.31) is the constituting part of pσ2
n, so we only need to bound the1127

first two terms. The key component is to study pai´ai. Similar to the proof of part (b), starting1128

from re-expressing the definition of pai and ai, we have1129

pai ´ ai “
1

`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăirďn
iPti1,...,iru

thpAi1,...,irq ´ hpWi1,...,irqu1130

“
1

`

n´1
r´1

˘

ÿ

All possible pv,pq

p∆pi;v,pq(8.32)1131
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where recall that we use the shorthand K :“ tpk
p1q
1 , k

p1q
2 q, . . . , pk

pvq
1 , k

pvq
2 qu, and define1132

p∆pi;v,pq :“
ÿ

KĎtpk1,k2q:1ďk1ăk2ďnu
Unique nodespKq“p

|K|“v

rΘ
piq
K

ź

pk1,k2qPK
ηk1,k2

(8.33)

1133

rΘ
piq
K :“

ÿ

1ďi1ă¨¨¨ăirďn
iPti1,...,iru

KĎtpij1 ,ij2 q:1ďj1ăj2ďru

L
ÿ

`“1

˜

ź

1ďj1ăj2ďr

E
p`q
ti1,...,iru,j1,j2

¸

¨

˝

ź

pj11,j
1
2q:pij1

1
,ij1

2
qPK

S
p`q
j11,j

1
2

˛

‚

(8.34)

1134

Here we stress a crucial point that although in these definitions we always have i P1135

ti1, . . . , iru, the node i, however, might or might not appear in K. This is because K is a sub-1136

set of tpij1 , ij2q : 1ď j1 ă j2 ď ru. Conceptually assisted by this understanding, by counting1137

the number of indexes over which the first summation in the definition of rΘpiqK is running, we1138

have1139

(8.35)
ˇ

ˇ

ˇ

rΘ
piq
K

ˇ

ˇ

ˇ
ĺ

#

ρs´vn ¨ nr´p, if i PUnique nodespKq
ρs´vn ¨ nr´p´1, if i RUnique nodespKq

Next, we separate the linear p∆pi;v,pq terms, “linear” in the sense the are linear in ηpk1,k2q1140

terms, from those terms quadratic and higher degree in “η”. The linear term corresponds to1141

pv, pq “ p1,2q, and the higher degree terms correspond to v ě 2 and p ě 3. For the linear1142

part, we have1143

p∆pi;1,2q “
ÿ

1ďjďn:j‰i

rΘpi,jqηi,j `
ÿ

1ďj1ăj2ďn
j1,j2‰i

rΘpj1,j2qηj1,j2(8.36)1144

Conditioned onW , applying Bernstein’s inequality and (8.35) to the second term on the RHS1145

of (8.36), respectively, we have1146

p∆pi;1,2q “
ÿ

1ďjďn:j‰i

rΘpi,jqηij ` rOppρ
s´1{2
n nr´2 ¨ lognq(8.37)1147

where the first term on the RHS of (8.37) is rOppρ
s´1{2
n nr´3{2 ¨ log1{2 nq.1148

Now we study the higher degree p∆pi;v,pq terms. We are going to apply Theorem 8.1. We1149

first upper bound “Ξq1” for all q1 “ 1, . . . , s as follows1150

• If R is acyclic:1151

(i). If i P K: with “|S| “ q1”, we are summing over pp´ 1q ´ q1 ´ 1 node indices in the
summation

ř

hPHpHq:Vphq:SĎVpHq – compared to the derivation of (8.11), here we have
“p´ 1” instead of “p” because the index i is fixed and cannot vary in the summation.
Therefore

ÿ

hPHpHq:Vphq:SĎVpHq
|Wh|ĺ ρs´vn nr´p ¨ np´q

1´2 “ ρs´vn ¨ nr´q
1´2

and consequently1152

Ξq1 ĺ ρs´vn ¨ nr´q
1´2 ¨ ρv´q

1

n “ ρs´q
1

n ¨ nr´q
1´2 ď ρs´1

n ¨ nr´3,(8.38)1153

under the weak sparsity assumption ρn “ ωpn´1q.1154
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(ii). If i R K: with “|S| “ q1”, we are summing over p´ q1 ´ 1 node indices in the sum-1155

mation
ř

hPHpHq:Vphq:SĎVpHq. But compared to the “i P K” case, here we lose an “n”1156

factor in |rΘpiqK | according to (8.35). Therefore, we arrive at the identical upper bound1157

for
ř

hPHpHq:Vphq:SĎVpHq as the above case, namely, Ξq1 ĺ ρs´1
n ¨ nr´3 under the weak1158

sparsity assumption ρn “ ωpn´1q.1159

• The proof for the case where R is cyclic can be obtained by revising the proof of (8.13).
If i P K, we are summing over pp ´ 1q ´ q2 ´ 1 instead of p ´ q2 ´ 1 node indices in
ř

hPHpHq:Vphq:SĎVpHq, if i R K, then we sum over p ´ q2 ´ 1 node indices but will lose

an n factor in the upper bound of |ΘpiqK | according to (8.35). Therefore, both cases would
eventually lead to the same upper bound

ÿ

hPHpHq:Vphq:SĎVpHq
|Wh|ĺ ρs´vn nr´p´1 ¨ np´q

2´1 “ ρs´vn ¨ nr´q
2´2

Similar to the proof of (8.13), it suffices to upper bound those Ξq1 where q1 “ q2pq2`1q{2,1160

and we have1161

Ξq2pq2`1q{2 ĺ ρs´vn ¨ nr´q
2´2 ¨ ρv´q

2pq2`1q{2
n “ ρs´q

2pq2`1q{2
n ¨ nr´q

2´2(8.39)1162

Same as before, the RHS is still monotone in q2 under the assumption ρn “ ωpn´2{rq and1163

thus it is bottlenecked by the q2 “ 1 case.1164

Now in order to apply Theorem 8.1 to the higher degree p∆pi;v,pq terms (v ě 2 and pě 3),1165

it only remains to calculate their conditional variances given W . Notice that given W , all1166

p∆pi;v,pq terms with different pv, pq configurations are mutually uncorrelated. We can bound1167

each of them. Straightforward calculations show that1168

Var
!

p∆pi;v,pq|W
)

ĺ

ˆ

n´ 1

p´ 1

˙

¨ ρ2s´2v
n ¨ n2r´2p ¨ ρvn

looooooooooooooooomooooooooooooooooon

sum over K-indexed terms: iPK

`

ˆ

n

p

˙

¨ ρ2s´2v
n ¨ n2r´2p´2 ¨ ρvn

loooooooooooooooomoooooooooooooooon

sum over K-indexed terms: iRK

1169

“Opρ2s´v
n ¨ n2r´p´1q1170

• For acyclic R, if ρn “ ωpn´1q, we have1171

Var
!

p∆pi;v,pq|W
)

“Opρ2s´v
n ¨ n2r´p´1q ďOpρ2s´pp´1q

n ¨ n2r´p´1q1172

ďOpρ2s
n ¨ n

2r´2 ¨ pρn ¨ nq
´2q(8.40)1173

• For cyclic R, if ρn “ ωpn´2{rq, we have1174

Var
!

p∆pi;v,pq|W
)

“Opρ2s´v
n ¨ n2r´p´1q ďOpρ2s

n ¨ n
2r´1 ¨ ρ´ppp´1q{2

n ¨ n´pq1175

ďOpρ2s
n ¨ n

2r´2 ¨ pρ´r{2n ¨ n´1q2q(8.41)1176

Combining (8.38), (8.39), (8.40) and (8.41) with Theorem 8.1, we see that the sum of all1177

higher degree p∆pi;v,pq terms into pδn is at the order of1178

(8.42)
ÿ

All possible pv,pq:
vě2,pě3

p∆pi;v,pq “ rOppρ
s
n ¨ n

r´1 ¨Mpρn, n;Rqq

Compared to the order of the linear p∆pi;v,pq terms as the leading term on the RHS of (8.37),1179

we see that the higher degree terms are ignorable.1180
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Therefore, for the rest of the proof of Lemma 3.1-(c), we can replace pai ´ ai by1181

pai ´ ai “
1

`

n´1
r´1

˘

$

’

’

&

’

’

%

ÿ

1ďjďn
j‰i

rΘpi,jqηij ` rOppρ
s
n ¨ n

r´1 ¨Mpρn, n;Rqq

,

/

/

.

/

/

-

1182

“:
1

n´ 1

ÿ

1ďjďn
j‰i

Θ̆ijηij ` rOppρ
s
n ¨Mpρn, n;Rqq(8.43)1183

where

Θ̆ij :“
r´ 1
`

n´2
r´2

˘

rΘpi,jq ĺ ρs´1
n

according to (8.35).1184

Now we are ready to bound the first two terms on the RHS of (8.31) and finish the proof1185

of Lemma 3.1-(c). For term 1, by Bernstein inequality and ρn “ ωpn´1q, we have1186

1

n

n
ÿ

i“1

ppai ´ aiq
2 “ rOp

`

ρ2s
n ¨Mpρn, n;Rq

˘

(8.44)1187

For term 2, recalling |ai ´Un|ĺ ρsn, we have1188

2

n

n
ÿ

i“1

pai ´Unqppai ´ aiq “
2

npn´ 1q

ÿ

1ďiďn
1ďjďn
i‰j

pai ´UnqΘ̆ijηij ` rOppρ
2s
n ¨Mpρn, n;Rqq

(8.45)

1189

conditioned on W . Applying Bernstein’s inequality to the first on the RHS of (8.45) yields a1190

bound of rOppρ
2s´1{2
n ¨ n´1lognq. This completes the proof of Lemma 3.1-(c).1191

8.2.4. Proof of Lemma 3.1-(d). By definition, we have1192

npσ2
n

r2
“

1

n

n
ÿ

i“1

$

’

’

&

’

’

%

1
`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăir´1ďn
i1,...,ir´1‰i

hpWi,i1,...,ir´1
q ´Un

,

/

/

.

/

/

-

2

1193

“
1

n

n
ÿ

i“1

pai ´Unq
2 “

1

n

n
ÿ

i“1

 

pai ´ µnq
2 ` 2pai ´ µnqpµn ´Unq ` pµn ´Unq

2
(

1194

“
1

n

n
ÿ

i“1

pai ´ µnq
2 ´ pUn ´ µnq

2
1195

Recalling Hoeffding’s decomposition for Un and applying Theorem 1 of [97] to bound the1196

high-order canonical U-statistics, we have1197

pUn ´ µnq
2 “

#

r

n

n
ÿ

i“1

g1pXiq ` rOppρ
s
nn
´1 ¨ lognq

+2

“ rOppρ
2s
n n

´1 ¨ lognq

We focus on the first term. For notation convenience, define1198

rai :“ E
“

hpXi,Xi1 , . . . ,Xir´1
q|Xi

‰

“ g1pXiq ` µn
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where i1, . . . , ir´1 ‰ i are distinct indexes. We have1199

1

n

n
ÿ

i“1

pai ´ µnq
2 “

1

n

n
ÿ

i“1

tpai ´ raiq ` prai ´ µnqu1200

“
1

n

n
ÿ

i“1

pai ´ raiq
2 `

2

n

n
ÿ

i“1

pai ´ raiqprai ´ µnq `
1

n

n
ÿ

i“1

prai ´ µnq
2(8.46)1201

First, we realize that term 3 on the RHS of (8.46) is simply1202

(8.47)
1

n

n
ÿ

i“1

prai ´ µnq
2 “

1

n

n
ÿ

i“1

g2
1pXiq

Now we focus on handling terms 1 and 2. The key part is to handle ai ´ rai. By applying the1203

Hoeffding’s ANOVA decomposition of an arbitrary symmetric statistic (1.1)–(1.3) in [14]1204

onto each single hpXi,Xi1 , . . . ,Xir´1
q term, we can see that1205

ai ´ rai “
1

`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăir´1ďn
i1,...,ir´1‰i

 

hpXi,Xi1 , . . . ,Xir´1
q ´ErhpXi,Xi1 , . . . ,Xir´1

q|Xis
(

1206

“
1

`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăir´1ďn
i1,...,ir´1‰i

$

’

’

&

’

’

%

r´1
ÿ

k“1

ÿ

1ďj1ă¨¨¨ăjkďn
tj1,...,jkuĎti1,...,ir´1u

gk`1pXi,Xj1 , . . . ,Xjkq

,

/

/

.

/

/

-

1207

“
1

`

n´1
r´1

˘

r´1
ÿ

k“1

ˆ

n´ k´ 1

r´ k´ 1

˙

ÿ

1ďj1ă¨¨¨ăjkďn
j1,...,jk‰i

gk`1pXi,Xj1 , . . . ,Xjkq(8.48)1208

Now we apply Theorem 1 of [97] to the RHS of (8.48), we see that1209

ai ´ rai “
r´ 1

n´ 1

ÿ

1ďjďn
j‰i

g2pXi,Xjq ` rOppρ
s
nn
´1 ¨ lognq(8.49)1210

“ rOppρ
s
nn
´1{2 ¨ log1{2 nq(8.50)1211

Now we are ready to continue bounding the RHS of (8.46). Using (8.50), term 1 on the RHS1212

of (8.46) is1213

(8.51) pai ´ raiq
2 “ rOppρ

2s
n n

´1 ¨ lognq

Using (8.49), term 2 on the RHS of (8.46) is1214

2

n

n
ÿ

i“1

pai ´ raiqprai ´ µnq1215

“
2

n

n
ÿ

i“1

$

’

’

&

’

’

%

r´ 1

n´ 1

ÿ

1ďjďn
j‰i

g2pXi,Xjq ` rOppρ
s
nn
´1 ¨ lognq

,

/

/

.

/

/

-

g1pXiq1216

“
2pr´ 1q

npn´ 1q

ÿ

1ďiďn
1ďjďn
i‰j

g1pXiqg2pXi,Xjq ` rOppρ
2s
n n

´1 ¨ lognq(8.52)1217

Finally, combining (8.51), (8.52) and (8.47) completes the proof of Lemma 3.1-(d).1218
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8.3. Proof of Theorem 3.1. We mainly prove for the case ρn “ O
`

plognq´1
˘

without1219

non-lattice condition. We will explain how this proof can be revised for the other case with1220

Carmer’s condition but without a ρn upper bound.1221

LEMMA 8.1 (Esseen’s smoothing lemma ([52], Section XVI.3)). For any distribution1222

function F and a general function G that has universally bounded derivative and satisfy1223

Gp´8q “ 0,Gp8q “ 1, we have1224

(8.53) }F puq ´Gpuq}8 ďC1

ż γ

´γ

ˇ

ˇ

ˇ

ˇ

Ch.f.pF ; tq ´Ch.f.pG; tq

t

ˇ

ˇ

ˇ

ˇ

dt`
C2 supu |G

1puq|

γ

for universal constants C1,C2 ą 0, where Ch.f.pG; tq is defined to be the characteristic func-
tion of G as follows

Ch.f.pG; tq :“

ż 8

´8

eitxdGpxq

Recall the definition of rTn from (3.9) that

rTn “ U
#
n `∆n ´

U#
n

2
δn and pTn “ rTn ` p∆n ` rOp

`

Mpρn, n;Rq
˘

.

We define a random variable r∆n|W „ Np0, pρn ¨ nq
´1σ2

ωq, that r∆n is conditionally in-1225

dependent of A, given W . By Lemma 3.1-(b), we have supuPR
ˇ

ˇF
r∆n
puq ´ F

q∆n
puq

ˇ

ˇ “1226

Opρ
´1{2
n ¨ n´1q. We are going to show that1227

›

›

›
F

pTn
puq ´ F

rTn`q∆n
puq

›

›

›

8
“O pMpρn, n;Rqq(8.54)1228

›

›

›
F

rTn`q∆n
puq ´ F

rTn`r∆n
puq

›

›

›

8
“Opρ´1{2

n ¨ n´1q(8.55)1229

›

›

›
F

rTn`r∆n
puq ´Gnpuq

›

›

›

8
“Oppρn ¨ nq

´1 ` n´1 lognq(8.56)1230

where Gnpuq is defined in (3.13). To proceed, we need the following smoothing lemma.1231

LEMMA 8.2. Suppose we have random variables X,Y,Z satisfying

X “ Y `Z

such that the CDF of Y is smooth, and there exists a universal constant 0 ăM ă8 such1232

that FY pu`aq´FY puq ďM ¨a`Opζnq for any u PR and aą 0. Also assume that Pp|Z| ě1233

rζnq ď n
´1, that is, Z “ rOpprζnq. We have1234

}FXpuq ´ FY puq}8 “Opζn `
rζn ` n

´1q

Remark. We emphasize that Lemma 8.2 does not require any independence between X ,1235

Y and Z .1236

PROOF OF LEMMA 8.2. Since “Y ` Z ą u” implies the union of the following two1237

events: “Y ą u´a” and “Z ą a”, we have 1´PpY `Z ď uq ď 1´PpY ď u´aq`Pp|Z| ą1238

aq, which further implies that1239

PpY `Z ď uq ě PpY ď u´ aq ´ Pp|Z| ą aq1240

ě PpY ď uq ´M ¨ a´Opζnq ´ Pp|Z| ą aq1241

(Setting a“ rζn)ě PpY ď uq ´Opζn ` rζn ` n
´1q1242
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On the other hand, we have1243

PpY `Z ď uq “
ż

z
PpY ď u´ z|Z “ zqdPZpzq1244

“

ż

z:|z|ďa
PpY ď u´ z|Z “ zqdPZpzq `

ż

z:|z|ąa
PpY ď u´ z|Z “ zqdPZpzq1245

ď

ż

z
PpY ď u` a|Z “ zqdPZpzq `

ż

z:|z|ąa
1 dPZpzq1246

ďPpY ď u` aq ` Pp|Z| ě aq1247

Setting a“ rζn, the RHS is upper bounded by PpY ď uq`Opζn` rζn`n
´1q. Combining the1248

two inequalities proves Lemma 8.2.1249

Now we return to the main proof of Theorem 3.1. Our proof would proceed as follows.1250

We shall use Lemma 3.1-(b) to prove (8.55); then with the assistance of Lemma 8.2, we use1251

(8.56) and (8.55) to prove (8.54); finally, we state the proof of (8.56) without needing (8.54)1252

or (8.55).1253

• Proof of “Lemma 3.1-(b) ñ (8.55)”. Noticing that rTn does not depend on the random1254

variations of A|W given W , but it is determined if W is given, we have1255

F
rTn`q∆n

puq “ P
´

rTn ` q∆n ď u
¯

1256

“E
”

P
´

rTn ` q∆n ď u|W
¯ı

1257

“E
”

P
´

q∆n ď u´ rTn|W
¯ı

1258

Lemma 3.1-(b)“E
”

P
´

r∆n ď u´ rTn|W
¯

` rOppρ
´1{2
n ¨ n´1q

ı

1259

“E
”

P
´

rTn ` r∆n ď u|W
¯ı

`Opρ´1{2
n ¨ n´1q1260

“F
rTn`r∆n

puq `Opρ´1{2
n ¨ n´1q1261

• Proof of “(8.55), (8.56) and Lemma 8.2ñ (8.54)”. We set Y “ rTn` q∆n and Z “ pTn´Y .1262

We notice that by Lemma 3.1-(b), we have Z “ rOp pMpρn, n;Rqq meaning that P
`

|Z| ě1263

C1Mpρn, n;Rq
˘

“Opn´1q. Next we verify that Y satisfies the condition of Lemma 8.2,1264

we notice that (8.56) implies that for any u PR and aą 0, we have1265

F
rTn`q∆n

pu` aq ´ F
rTn`q∆n

puq1266

ď

ˇ

ˇ

ˇ
F

rTn`q∆n
pu` aq ´ F

rTn`r∆n
pu` aq

ˇ

ˇ

ˇ

looooooooooooooooooooomooooooooooooooooooooon

Bounded by (8.55)

`

ˇ

ˇ

ˇ
F

rTn`q∆n
puq ´ F

rTn`r∆n
puq

ˇ

ˇ

ˇ

looooooooooooooomooooooooooooooon

Bounded by (8.55)

1267

`

ˇ

ˇ

ˇ
F

rTn`r∆n
pu` aq ´Gnpu` aq

ˇ

ˇ

ˇ

loooooooooooooooooomoooooooooooooooooon

Bounded by (8.56)

`|Gnpu` aq ´Gnpuq|
loooooooooooomoooooooooooon

supu,n |G
1
npuq|ă8

1268

`

ˇ

ˇ

ˇ
F

rTn`r∆n
puq ´Gnpuq

ˇ

ˇ

ˇ

loooooooooooomoooooooooooon

Bounded by (8.56)

1269

ďC ¨ a`Opρ´1{2
n ¨ n´1q1270
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Then applying Lemma 8.2 and noticing that Mpρn, n;Rq dominates all of ρ´1{2
n ¨ n´1,1271

pρn ¨ nq
´1 and n´1 logn completes the proof of (8.54).1272

Next, we focus on proving (8.56). In this proof, we shall set γ “ n in Esseen’s smoothing1273

lemma and break the integration range into three parts: |t| P p0, nεq, pnε, n1{2q and pn1{2, nq1274

LEMMA 8.3. We have the following bounds:1275

(a). For any fixed εą 0, we have
ż n

nε

ˇ

ˇ

ˇ

ˇ

Ch.f.1pGn; tq

t

ˇ

ˇ

ˇ

ˇ

dt“Opn´1q

1276

(b). For a small enough constant cρ ą 0, if ρn ď cρplognq´1, we have

ż n

C1n1{2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
”

eitp
rTn`r∆nq

ı

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dt“Opn´1q

for an arbitrary constant C1 ą 0.1277

(c). For a small enough constant C1 ą 0 and arbitrary fixed εą 0, we have

ż C1n1{2

nε

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
”

eitp
rTn`r∆nq

ı

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dt“Opn´1 lognq.

(d). For fixed εą 0 chosen such that εď 1{7, then we have

ż nε

0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E
”

eitp
rTn`r∆nq

ı

´Ch.f.pGn; tq

t

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

dt“Oppρn ¨ nq
´1 ` n´1 lognq.

PROOF OF LEMMA 8.3. First of all, we notice that between two parts rTn and r∆n, the1278

former is completely determined by W , and the latter follows Np0, pρn ¨ nq´1 ¨ σ2
wq, where1279

σ2
w — 1 is a U-statistic of X1, . . . ,Xn. We have1280

E
”

eit
rTn ¨ eit

r∆n

ı

“ E
”

E
”

eit
rTn ¨ eit

r∆n
ˇ

ˇW
ıı

“ E
”

eit
rTn ¨E

”

eit
r∆n
ˇ

ˇW
ıı

1281

“ E
”

eit
rTn ¨ e´pρn¨nq

´1σ2
wt

2{2
ı

1282

Then we prove each of the bounds in the lemma.1283

(a). Notice that for each of k “´1,0,1,2,3, . . ., we always have tke´t
2{2 ďCke

´t2{3 when1284

tą 1 for universal constants Ck ą 0 that only depend on k. From the classical literature1285

on Hermite polynomials, we recall that function Ch.f.pGn; tq takes the form of e´t
2{2

1286

multiplies a polynomial of t. Therefore, for k “´1,0,1,2,3 . . .1287

ż n

nε
|Ch.f.pGn; tq{t|dtď pC´1 ` ¨ ¨ ¨ `Cdg´1q

ż 8

nε
e´t

2{3dt“Opn´1q1288

where dg :“ degree of Ch.f.pGn; tq is a fixed finite number.1289

1Ch.f.: characteristic function. For the Edgeworth expansion function Gn that is not necessarily a valid CDF,
its Ch.f. is defined to be its Fourier transform.
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(b). For |t|ľ n1{2, we have1290

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ e´pρn¨nq

´1σ2
wt

2{2
ıˇ

ˇ

ˇ
ď E

”ˇ

ˇ

ˇ
eit

rTn
ˇ

ˇ

ˇ
¨

ˇ

ˇ

ˇ
e´pρn¨nq

´1σ2
wt

2{2
ˇ

ˇ

ˇ

ı

1291

“ E
”

e´pρn¨nq
´1σ2

wt
2{2

ı

ď E
”

e´pρn¨nq
´1Erσ2

ws{4¨t
2
ı

` P
`

σ2
w ă Erσ2

ws{4
˘

1292

ď e´C1¨ρ´1
n ` e´C2n “Cn´C1¨c´1

ρ(8.57)1293

since ρ´1
n “ c´1

ρ logn, and notice that P
`

σ2
w ă Erσ2

ws{4
˘

diminishes exponentially fast
because σ2

w is a U-statistic (as will be proved in the proof of part (c) below) dominated
by its linear part and concentration inequalities such as Bernstein’s. Then choosing cρ “
p4C1q

´1 finishes the proof of Lemma 8.3-(b) since
ż n

C1n1{2

t´1 dt“Oplognq

(c). For this part of the proof, we show that σ2
w can be written as the sum of U-statistics thus1294

Hoeffding’s decomposition to U-statistics conveniently applies to it2. Then we combine1295

this argument with the argument used in [21]. Recall that pΘij — ρ
´1
n ¨ n1{2, and it is a U-1296

statistic with the index set t1, . . . , nuzti, ju, thus the Hoeffding’s decomposition implies:1297

(8.58) pΘij ¨ ρn ¨ n
´1{2 “ θij `

C

n´ 2

ÿ

1ďkďn
k‰i,j

qg1pXk;Xi,Xjq ` rOppn
´1 ¨ lognq

where θij :“ ErpΘij |Xi,Xjs ¨ ρn ¨ n
´1{2, and we used [97] to obtain a probabilistic upper1298

bound of the higher order terms in Hoeffding’s decomposition. Then we have1299

σ2
w “ ρn ¨ n ¨Var

˜

1
`

n
2

˘

ÿ

1ďiăjďn

pΘijηij

ˇ

ˇ

ˇ
W

¸

“
ρn ¨ n
`

n
2

˘2

ÿ

1ďiăjďn

pΘ2
ijWijp1´Wijq1300

“
ρn ¨ n
`

n
2

˘2 ¨ ρ
´2
n ¨ n ¨

ÿ

1ďiăjďn

$

’

’

&

’

’

%

θij `
C

n´ 2

ÿ

1ďkďn
k‰i,j

qg1pXk;Xi,Xjq ` rOppn
´1 ¨ lognq

,

/

/

.

/

/

-

2

¨Wijp1´Wijq1301

“
ρ´1
n n2

`

n
2

˘2

ÿ

1ďiăjďn

$

’

’

&

’

’

%

θ2
ij `

2Cθij
n´ 2

ÿ

1ďkďn
k‰i,j

qg1pXk;Xi,Xjq ` rOppn
´1 ¨ lognq

,

/

/

.

/

/

-

Wijp1´Wijq1302

“
ρ´1
n ¨ n2

ř

1ďiăjďn θ
2
ijWijp1´Wijq

`

n
2

˘21303

`
ρ´1
n ¨ n2 ¨ 2C

pn´ 2q ¨
`

n
2

˘2

ÿ

1ďiăjďn
1ďkďn
k‰i,j

qg1pXk;Xi,XjqWijp1´Wijq ` rOppn
´1 ¨ lognq

(8.59)

1304

2Notice that in this part of the proof, we cannot simply bound the σw term away because it is dependent on
any individual term in the expansion of rTn.
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where we used the fact
ˇ

ˇpn ´ 2q´1
ř

1ďkďn;k‰i,j qg1pXk;Xi,Xjq
ˇ

ˇ “ rOp
`

pn´1 lognq1{2
˘

1305

by Bernstein inequality.1306

Clearly, the first term in (8.59) is a U-statistic of degree 2, where the individual term is
at the order

ρ´1
n ¨ n2 ¨ θ2

ij ¨Wijp1´Wijq
`

n
2

˘ —
ρ´1
n ¨ n2 ¨ 1 ¨ ρn

n2
— 1

Now we focus on the second term and re-express it as a U-statistic. We have1307

ÿ

1ďiăjďn
1ďkďn
k‰i,j

θijqg1pXk;Xi,XjqWijp1´Wijq “
1

2

ÿ

1ďti,j,kuďn
i‰j,j‰k,k‰i

θijqg1pXk;Xi,XjqWijp1´Wijq1308

“
1

2

ÿ

1ďti,j,kuďn
i‰j,j‰k,k‰i

«

1

3

!

θijqg1pXk;Xi,XjqWijp1´Wijq1309

` θkiqg1pXj ;Xk,XiqWkip1´Wkiq ` θjkqg1pXi;Xj ,XkqWjkp1´Wjkq

)

ff

1310

“:
ÿ

1ďiăjăkďn

qHpXi,Xj ,Xkq

(8.60)
1311

where we denote1312

qHpXi,Xj ,Xkq :“ θijqg1pXk;Xi,XjqWijp1´Wijq1313

` θkiqg1pXj ;Xk,XiqWkip1´Wkiq ` θjkqg1pXi;Xj ,XkqWjkp1´Wjkq1314

Clearly, qHpXi,Xj ,Xkq is symmetric in Xi,Xj ,Xk, and the individual term

ρ´1
n ¨ n2 ¨ 2C ¨

`

n
3

˘

pn´ 2q ¨
`

n
2

˘2 ¨ qHpXi,Xj ,Xkq —
ρ´1
n ¨ n2 ¨ n3

n5
¨ ρn — 1

So the second term on the RHS of (8.59) is a U-statistic of degree 3. Therefore, σ2
w can be1315

re-expressed as Hoeffding’s decomposition for U-statistics as follows1316

(8.61) σ2
w “ Erσ2

ws `
1

n

n
ÿ

i“1

gσ;1pXiq ` rOppn
´1 ¨ lognq

where we again applied [97] to derive the probabilistic upper bound for the higher order1317

terms in Hoeffding’s decomposition.1318

Now, we are ready to upper bound the characteristic function for nε ĺ |t|ĺ n1{2
1319

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ e´pρn¨nq

´1σ2
wt

2{2
ıˇ

ˇ

ˇ
1320

ď

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ e´pρn¨nq

´1t2{2¨tErσ2
ws`

1

n

řn
i“1

gσ;1pXiq` rOppn´1¨lognqu
ıˇ

ˇ

ˇ
1321

“

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ e´pρn¨nq

´1t2{2¨tErσ2
ws`

1

n

řn
i“1

gσ;1pXiqu ¨

´

1` rOp
`

ρ´1
n ¨ n´2 logn ¨ t2

˘

¯ı
ˇ

ˇ

ˇ

(8.62)

1322
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where in the last line, we used the fact that |ez ´ 1| “Op|z|q for all universally bounded1323

z PC (here |t| “Opn1{2q and by assumption ρn ¨ logn“Op1q). Then since1324

ż n1{2

nε

ρ´1
n ¨ n´2 ¨ logn ¨ t2

t
dt— pρn ¨ nq

´1 ¨ logn(8.63)1325

we know that this rOppρ
´1
n ¨ n´2 ¨ logn ¨ t2q term can be ignored in (8.62). Continuing1326

(8.62), we have1327

RHS of (8.62)ď e´pρn¨nq
´1t2{2¨Erσ2

ws ¨

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ e´ρ

´1
n ¨n

´2¨
řn
i“1

gσ;1pXiq¨t2
ıˇ

ˇ

ˇ
1328

We are going to show that rTn can be expressed as a U-statistic of degree 2 plus an1329

rOppn
´1 log3{2 nq remainder term, which can be ignored. Indeed,1330

rTn “U
#
n `∆n ´

1

2
¨U#

n ¨ δn1331

“
1

?
nξ1

n
ÿ

i“1

g1pXiq `
r´ 1

?
npn´ 1qξ1

ÿ

1ďiăjďn

g2pXi,Xjq1332

`
1

n3{2ξ1

n
ÿ

i“1

g1pXiq

n
ÿ

j“1

g2
1pXjq ´ ξ

2
1

ξ2
1

` rOppn
´1 ¨ log3{2 nq.1333

Since n´3{2
řn
i“1 g1pXiq

`

g1pXiq
2 ´ ξ2

1

˘

{ξ3
1 “

rOppn
´1 ¨ log1{2 nq, we can write1334

rTn “
1

?
nξ1

n
ÿ

i“1

g1pXiq `
r´ 1

?
npn´ 1qξ1

ÿ

1ďiăjďn

g2pXi,Xjq1335

`
1

n3{2ξ1

n
ÿ

1ďiăjďn

g1pXiq
`

g2
1pXjq ´ ξ

2
1

˘

` g1pXjq
`

g2
1pXiq ´ ξ

2
1

˘

ξ2
1

` rOppn
´1 ¨ log3{2 nq1336

“:
1

?
nξ1

n
ÿ

i“1

g1pXiq `
r´ 1

?
npn´ 1q

ÿ

1ďiăjďn

rg2pXi,Xjq ` rOppn
´1 ¨ log3{2 nq1337

which therefore is expressed as a U-statistic of degree 2 plus an rOppn
´1 ¨ log3{2 nq term,

where Errg2pXi,Xjqs “ 0 and Errg2
2pXi,Xjqs “ Op1q. To prove the claimed bound, we

can choose a positive integer m (depending on t) and write

ÿ

1ďiăjďn

rg2pXi,Xjq “

m
ÿ

i“1

n
ÿ

j“i`1

rg2pXi,Xjq `

n´1
ÿ

i“m`1

n
ÿ

j“i`1

rg2pXi,Xjq

Then the arguments of [21, eq. (2.17)-(2.20)] can be applied here. Notice that this part1338

of the proof of [21] does not require non-lattice assumption, but all it requires on the1339

behavior of |Ereitg1pXiq{p
?
n¨ξ1qs| is its closeness to 1 for t{

?
n « 0. Indeed, for nρn " 11340

and tď c1n
1{2 with small c1 ą 0,1341

ˇ

ˇEeitg1pXiq{p
?
n¨ξ1q´ρ´1

n n´2t2{2gσ,1pXiq
ˇ

ˇ1342

ď

ˇ

ˇ

ˇ

ˇ

E
ˆ

1`
1

2

´

itg1pXiq
?
nξ1

´
t2gσ,1pXiq

2ρnn2

¯2
˙ˇ

ˇ

ˇ

ˇ

`O
´

E
ˇ

ˇ

ˇ

itg1pXiq
?
nξ1

´
t2gσ,1pXiq

2ρnn2

ˇ

ˇ

ˇ

3¯

1343

ď 1´
t2

3n
ď exp

"

´
t2

3n

*

.1344

The proof of Lemma 8.3-(c) is therefore completed after applying the arguments of [21,1345

eq. (2.17)-(2.20)].1346
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(d). Finally, in this part, we calculate the expansion of E
”

eit
rTn
ı

and derive the Edgeworth1347

expansion for |t| ď nε for a small enough fixed ε. The main portion of the proof for1348

this part, i.e., our calculations in (8.69), (8.70), (8.73) and (8.74) that we are going to1349

present, follow the roadmap in classical literature on Edgeworth expansion for noise-1350

less U-statistics, laid out by [21, 71, 90, 96]. Our rTn is different from their studentiza-1351

tion/standardization forms by using a different rescaler, so this part is not a direct corollary1352

of their results. Despite the resulting differences is non-essential, we nonetheless present1353

the full calculation steps for completeness and for the convenience of the readers.1354

To start, we have1355

E
”

eit
rTn ¨ e´pρn¨nq

´1σ2
wt

2{2
ı

1356

“ E
„

eit
rTn ¨

"

1´
σ2
wt

2

2ρn ¨ n
`

σ4
wt

4

8ρ2
n ¨ n

2
`O

ˆ

σ6
wt

6

ρ3
n ¨ n

3

˙*

(8.64)1357

as long as nρn “ ωpn2εq. We first bound the remainder, we have
şnε

0 pσ
6
wt

6qpρ3
nn

3q ¨1358

t´1dt— n6ε ¨ pρn ¨nq
´3. Since the assumption of Theorem 3.1 implies that ρn “ ωpn´1{2q1359

in any case, so setting εď 1{13 yields n6ε ¨ pρn ¨ nq
´3 “Opn´1q. We have1360

eit
rTn “ eitpU

#
n `∆n´

1

2
U#
n ¨δnq1361

“eitU
#
n

#

1`

ˆ

∆n ´
1

2
U#
n ¨ δn

˙

it´
1

2
¨

ˆ

∆n ´
1

2
U#
n ¨ δn

˙2

t2

+

1362

` rOp

˜

ˇ

ˇ

ˇ

ˇ

∆n ´
1

2
U#
n ¨ δn

ˇ

ˇ

ˇ

ˇ

3

t3

¸

(8.65)1363

To bound the remainder term, notice that
ˇ

ˇ1´ σ2
wt

2{pρn ¨ nq
ˇ

ˇď 1 for |t| ď nε, where we1364

recall that Theorem 3.1 we are proving here always assumes ρn “ ωpn´1{2q in all cases.1365

Then, setting ε ď 1{7 together with the fact U#
n “ rOpplog1{2 nq, ∆n “ rOppn

´1{2 lognq,1366

δn “ rOppn
´1{2 log1{2 nq, by Bernstein’s inequality and [97], we have1367

ż nε

0

ˇ

ˇ

ˇ

ˇ

∆n ´
1

2
U#
n ¨ δn

ˇ

ˇ

ˇ

ˇ

3

t3 ¨
1

t
dt“ rOp

´

n´3{2 ¨ n3εlog3{2 n
¯

1368

“ rOppn
´15{14log3{2 nq “ rOppn

´1q(8.66)1369

and this remainder term can also be ignored. Now we deal with the main part of the terms.1370

Set ϕnptq :“ E
”

e
it¨

g1pX1q?
n¨ξ1

ı

. Then by Section VI, Lemma 4 of [108], we have1371

ϕnnptq “ e
´t2{2

ˆ

1´ n´1{2 ¨
iErg3

1pX1qst
3

6ξ3
1

˙

`O
´

n´1 ¨ logn ¨ P0ptqe
´t2{4

¯

(8.67)1372

ϕn´kn ptq “ ϕnnptq `O
´

n´1 ¨ logn ¨ Pkptqe
´t2{4

¯

1373

for any fixed k “ 0,1,2,3, where P0ptq, . . . , Pkptq are fixed polynomials of t and each1374

of them can be divided by t. Here, we first focus on Ereit rTns, and then handle Ereit rTn ¨1375

σ2
wt

2{pρn ¨ nqs. For Ereit rTns, by ignoring the small term in (8.65), we have1376

E
”

eit
rTn
ı

“ E

«

eitU
#
n

#

1` it

ˆ

∆n ´
1

2
U#
n ¨ δn

˙

´
t2

2

ˆ

∆n ´
1

2
U#
n ¨ δn

˙2
+ff

(8.68)1377
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Now we inspect each term on the RHS of (8.68). For EreitU#
n s we use (8.67) and obtain1378

EritU#
n s “ ϕnnptq. For the next term, recall that Erg2pX1,X2qs “ 0 and Ergk1 pX1qg2pX1,X2qs “1379

0 for all k PN. We have1380

E
”

eitU
#
n ¨ it∆n

ı

“ E

«

eitU
#
n ¨ it ¨

r´ 1
?
npn´ 1q

ÿ

1ďiăjďn

g2pXi,Xjq

ξ1

ff

1381

“
itpr´ 1q
?
npn´ 1q

¨

ˆ

n

2

˙

¨ϕn´2
n ptq ¨E

„

e
it
g1pX1q`g1pX2q?

nξ1 ¨
g2pX1,X2q

ξ1



1382

“
itpr´ 1q

?
n

2
¨ϕn´2

n ptq ¨E

«

g2pX1,X2q

ξ1
`

itpg1pX1q ` g1pX2qqg2pX1,X2q
?
n ¨ ξ2

1

1383

´
t2
 

g2
1pX1q ` 2g1pX1qg1pX2q ` g

2
1pX2q

(

¨ g2pX1,X2q

2nξ3
1

`

ff

`O
´

n´1 ¨ e´t
2{4 ¨ Polyptq

¯

1384

“
itpr´ 1q

?
n

2
¨ϕn´2

n ptq ¨E

«

g2pX1,X2q

ξ1
`

2itg1pX1qg2pX1,X2q
?
n ¨ ξ2

1

1385

´
t2
 

g2
1pX1q ` g1pX1qg1pX2q

(

¨ g2pX1,X2q

nξ3
1

ff

`O
´

n´1 ¨ e´t
2{4 ¨ Polyptq

¯

1386

“
´it3pr´ 1q

2
?
n ¨ ξ3

1

¨ϕn´2
n ptq ¨E rg1pX1qg1pX2q ¨ g2pX1,X2qs `O

´

n´1 ¨ e´t
2{4t ¨ Polyptq

¯

1387

“e´t
2{2 ¨

´it3pr´ 1q

2
?
n ¨ ξ3

¨E rg1pX1qg1pX2qg2pX1,X2qs `O
´

n´1 ¨ e´t
2{4t ¨ Polyptq

¯

(8.69)

1388

We use the approximation to δn given by Lemma 3.1-(d). When we use it here, we may1389

ignore any rOppn
´1 lognq remainder term, which is justified by Lemma 8.2 in the real1390

domain, not the frequency domain that characteristic function works with. We thus have1391

E
„

eitU
#
n ¨ it

ˆ

´
1

2
U#
n ¨ δn

˙

“´
1

2
it ¨E

«

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

"řn
i“1 g1pXiq
?
n ¨ ξ1

*

¨1392

¨

˜

řn
j“1

 

g2
1pXjq ´ ξ

2
1

(

nξ2
1

`
2pr´ 1q

řn
i“1

ř

j‰i g1pXiqg2pXi,Xjq

npn´ 1qξ2
1

¸

` rOppn
´1 ¨ log3{2 nq

ff

(8.70)

1393

We consider the expression into two parts by the two terms inside the parenthesis on the1394

RHS of the equation, and inspect them respectively. Ignoring the rOppn
´1 ¨ Polylogpnqq1395

remainder, for the first part, we have1396

´
1

2
it ¨E

«

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

"řn
i“1 g1pXiq
?
n ¨ ξ1

*

¨

˜

řn
j“1

 

g2
1pXjq ´ ξ

2
1

(

nξ2
1

¸ff

1397

“´
1

2
it ¨E

»

—

—

–

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

$

’

’

&

’

’

%

n
ÿ

i“1

g1pXiq
`

g2
1pXiq ´ ξ

2
1

˘

n
?
n ¨ ξ3

1

`
ÿ

i,jPt1,...,nu
i‰j

g1pXiq
`

g2
1pXjq ´ ξ

2
1

˘

n
?
n ¨ ξ3

1

,

/

/

.

/

/

-

fi

ffi

ffi

fl

(8.71)

1398
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Further breaking the RHS down and handle the two summations in the fancy bracket1399

separately, we have1400

´
1

2
it ¨E

«

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

#

n
ÿ

i“1

g1pXiq
`

g2
1pXiq ´ ξ

2
1

˘

n
?
n ¨ ξ3

1

+ff

1401

“´
1

2
it ¨ϕn´1

n ptq ¨ n ¨E

«

"

1`
it ¨ g1pX1q
?
n ¨ ξ1

*

¨

#

g1pX1q
`

g2
1pX1q ´ ξ

2
1

˘

n
?
n ¨ ξ3

1

+ff

1402

`O
´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

1403

“´
1

2
¨
itϕn´1

n ptq
?
n ¨ ξ3

1

¨E
“

g3
1pX1q

‰

`O
´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

(8.72)1404

and1405

´
1

2
it ¨E

«

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

#

ÿ

i,jPt1,...,nu
i‰j

g1pXiq
`

g2
1pXjq ´ ξ

2
1

˘

n
?
n ¨ ξ3

1

+ff

1406

“´
1

2
it ¨ϕn´2

n ptq ¨ npn´ 1q ¨E

«

"

1` it ¨
g1pX1q
?
n ¨ ξ1

´
t2g2

1pX1q

2nξ2
1

*

1407

"

1` it ¨
g1pX2q
?
n ¨ ξ1

´
t2g2

1pX2q

2nξ2
1

*

¨

#

g1pX1q
`

g2
1pX2q ´ ξ

2
1

˘

n
?
n ¨ ξ3

1

+ff

`O
´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

1408

“
1

2
it3 ¨ϕn´2

n ptq ¨ npn´ 1q ¨E

«

g2
1pX1qg1pX2q

 

g2
1pX2q ´ ξ

2
1

(

n2
?
n ¨ ξ5

1

ff

`O
´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

1409

“
1

2

it3ϕn´2
n ptq

?
n ¨ ξ3

1

¨E
“

g3
1pX1q

‰

`O
´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

(8.73)

1410

Now we calculate Part 2 of the RHS of (8.70). We have1411

´
1

2
it ¨E

«

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

"řn
i“1 g1pXiq
?
n ¨ ξ1

*

¨

˜

2pr´ 1q
řn
i“1

ř

j‰i g1pXiqg2pXi,Xjq

npn´ 1qξ2
1

¸ff

1412

“´
pr´ 1qit

ξ2
1

¨E
„

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

"

g1pX1q ` g1pX2q
?
n ¨ ξ1

¨ g1pX1qg2pX1,X2q

*

1413

´
pr´ 1qit

ξ2
1

pn´ 2q ¨E
„

e
it

řn
i“1 g1pXiq?

n¨ξ1 ¨

"

g1pX3q
?
n ¨ ξ1

¨ g1pX1qg2pX1,X2q

*

1414

“´
pr´ 1qit
?
n ¨ ξ3

1

¨ϕn´2
n ptq ¨E rg1pX1qg1pX2qg2pX1,X2qs `O

´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

1415

´
pr´ 1qit
?
n ¨ ξ3

1

pn´ 2q ¨ϕn´3
n ptq ¨E

«

e
it
g1pX1q?
n¨ξ1 ¨

"

1`
itg1pX2q
?
n ¨ ξ1

´
t2g2

1pX2q

2nξ2
1

*

1416

¨

"

1`
itg1pX3q
?
n ¨ ξ1

´
t2g2

1pX3q

2nξ2
1

*

¨ g1pX1qg2pX1,X2qg1pX3q

ff

1417
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“´
pr´ 1qit
?
n ¨ ξ3

1

¨ϕn´2
n ptq ¨E rg1pX1qg1pX2qg2pX1,X2qs `O

´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

1418

´
pr´ 1qit
?
n ¨ ξ3

1

pn´ 2q ¨ϕn´3
n ptq ¨E

„

´t2

nξ2
1

¨ g1pX1qg1pX2qg2pX1,X2qg
2
1pX3q



1419

“
pr´ 1qipt3 ´ tq

?
n ¨ ξ3

1

¨ e´t
2{2 ¨E rg1pX1qg1pX2qg2pX1,X2qs `O

´

n´1 ¨ e´t
2{4t2 ¨ Poly(t)

¯

(8.74)

1420

Collecting terms (8.69), (8.73) and (8.74), we have1421

E
”

eitpU
#
n `

r∆n`∆n´
1

2
U#
n δnq

ı

1422

“e´t
2{2 ¨

#

1´

˜

E
“

g3
1pX1q

‰

2
` pr´ 1qE rg1pX1qg1pX2qg2pX1,X2qs

¸

¨
it

?
n ¨ ξ3

1

1423

`

˜

E
“

g3
1pX1q

‰

3
`
pr´ 1q

2
E rg1pX1qg1pX2qg2pX1,X2qs

¸

¨
it3

?
n ¨ ξ3

1

+

1424

`O
´

n´1 logn ¨ e´t
2{4 ¨ Polyptq

¯

(8.75)1425

The remainder term is clearly ignorable if plugged into the Esseen’s smoothing lemma.1426

It only remains to deal with the σ2
wt

2{pρn ¨ nq term and the σ4
wt

4{pρ2
n ¨ n

2q term in (8.64).1427

By (8.61), we have1428

E
„

eit
rTn ¨

σ2
wt

2

ρn ¨ n



1429

“

«

eit
rTn

˜

Erσ2
ws `

1

n

n
ÿ

i“1

gσ;1pXiq ` rOppn
´1 ¨ lognq

¸ff

¨
t2

ρn ¨ n
1430

“E
”

eit
rTn
ı

¨
Erσ2

wst
2

ρn ¨ n
`E

”

eit
rTn ¨ gσ;1pX1q

ı

¨
t2

ρn ¨ n
`O

ˆ

t2 logn

ρn ¨ n2

˙

1431

Now we discuss the three terms on the RHS. Term 1:1432

ż nε

0

ˇ

ˇ

ˇ

ˇ

E
”

eit
rTn
ı

¨
Erσ2

wst
2

ρn ¨ n
¨

1

t

ˇ

ˇ

ˇ

ˇ

dt“

ż nε

0
O
´

e´t
2{4 ¨ Polyptq

¯

¨ pρn ¨ nq
´1

1433

“O
´

pρn ¨ nq
´1
¯

1434

Term 2: by mimicking the derivations in our (8.72) and also referring to (2.11) in [21], we
see that

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ gσ;1pX1q

ı
ˇ

ˇ

ˇ
“O

´

e´t
2{4 ¨ Polyptq

¯

Therefore, it can be bounded in exactly the same way as term 1.1435

For term 3, we have1436

ż nε

0

t2

ρn ¨ n
¨

1

t
dt“ pρn ¨ nq

´1
¨ n2ε´1 ď pρn ¨ nq

´1
1437

where recall that εă 1{2. The σ4
wt

4{pρ2
n ¨ n

2q term can be bounded exactly similarly and1438

we omit the proof here. This finishes the proof of Lemma 8.3-(d).1439
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Now we return to the proof of Theorem 3.1. Plugging the results of Lemma 8.3 back into1440

Lemma 8.1 completes the proof of Theorem 3.1 with the assumption ρn “Opplognq´1q.1441

If Cramer’s condition holds instead of the upper bound on ρn, then the derivation steps1442

in (2.21)–(2.22) in [21] can be reproduced, where their tN can be understood as nr0 for any1443

fixed r0 P p0,1q. It would suffice for our purpose to use any r0 P p1{2,1q. Notice that their “r”1444

has different meaning than ours. This extends the integrative range that our Lemma 8.3-(c)1445

holds valid from the original range pnε,C1 ¨ n
1{2q to pnε, nr0q, and we only need to prove1446

Lemma 8.3-(b) on the integrative range pnr0 , nq instead of pC1 ¨ n
1{2, nq. Then our proof of1447

Lemma 8.3-(b) can be revised into1448

ˇ

ˇ

ˇ
E
”

eit
rTn ¨ e´pρn¨nq

´1σ2
wt

2{2
ıˇ

ˇ

ˇ
ď E

”ˇ

ˇ

ˇ
eit

rTn
ˇ

ˇ

ˇ
¨

ˇ

ˇ

ˇ
e´pρn¨nq

´1σ2
wt

2{2
ˇ

ˇ

ˇ

ı

1449

“E
”

e´n
´1σ2

wt
2{2

ı

ď E
”

e´n
2r0´1¨Erσ2

ws{4
ı

` P
`

σ2
w ă Erσ2

ws{4
˘

1450

ďe´C1¨n2r0´1

` e´C2n ă n´2(8.76)1451

where in the second line we replaced ρn by 1 to majorize.1452

1453

8.4. Proof of Theorem 3.2. It is easy to verify that1454

(8.77) rOpppnq rOppqnq “ rOpppnqnq, and rOpppnq ` rOppqnq “ rOpppn ` qnq

We also easily have Oppnq rOppqnq “ rOpppnqnq since Op¨q implies rOpp¨q, but it is not guar-1455

anteed that Opppnq rOppqnq “ rOpppnqnq if the distribution of Opppnq is heavy tailed. The1456

presence of edge-wise observational errors introduces extra technical complications to the1457

proof of Theorem 3.2 beyond the analysis for empirical Edgeworth expansions for noise-1458

less U-statistics such as [71, 96] and [110]. We shall carefully address this. By the proofs of1459

Lemma 3.1-(c) and (d), and recall that pξ2
1 “ n

pS2{r and ξ2
1 “ nσ

2
n{r, we have1460

ppξ1 ` ξ1qppξ1 ´ ξ1q

ρ2s
n

—
pξ2
1 ´ ξ

2
1

nσ2
n

— δn ` pδn “ rOppn
´1{2 log1{2 nq

Then noticing that pξ1{ξ1 “ 1` rOpp1q and thus pξ1 — ξ1 — ρsn with probability at least 1´1461

Opn´1q, we have pξ1 ´ ξ1 “ rOppρ
s
n ¨ n

´1{2 log1{2 nq. Therefore1462

pξ3
1 ´ ξ

3
1 “

rOppρ
3s
n ¨ n

´1{2 log1{2 nq

implying that
ˇ

ˇ

ˇ

1
?
nξ3

1

´
1

?
npξ3

1

ˇ

ˇ

ˇ
“ rOp

´ log1{2 n

ρ3s
n ¨n

¯

.

Recall that }F
pTn
pxq ´Gnpxq}8 “O pMpρn, n;Rqq, where1463

Gnpxq “Φpxq `
ϕpxq
?
n ¨ ξ3

1

¨

"

´x2

3
`

1

6

¯

Erg3
1pX1qs1464

`
r´ 1

2
px2 ` 1qErg1pX1qg1pX2qg2pX1,X2qs

*

.1465

As a result, in order to prove } pGnpxq ´ Gnpxq}8 “ rOp pMpρn, n;Rqq, it suffices to show1466

that1467

max
!

ˇ

ˇpEg3
1pX1q ´Eg3

1pX1q
ˇ

ˇ1468
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,
ˇ

ˇpE rg1pX1qg1pX2qg2pX1,X2qs ´E rg1pX1qg1pX2qg2pX1,X2qs
ˇ

ˇ

)

1469

“

#

rOppρ
3s´1
n ¨ n´1{2 log1{2 nq if R is acyclic

rOppρ
3s´2{r
n ¨ n´1{2 log1{2 nq if R is cyclic

1470

where we used the fact that supxPR |x|
3ϕpxq “ Op1q. We will show that the empiri-

cal moments pE
“

g3
1pX1q

‰

and pE rg1pX1qg1pX2qg2pX1,X2qs converge to E
“

g3
1pX1q

‰

and
E rg1pX1qg1pX2qg2pX1,X2qs, respectively, at rates no slower than rOppρ

3s´0.5
n ¨ n´1{2 log1{2 nq

for both acyclic and cyclic cases under respective network sparsity conditions. The conver-
gence of pE

“

g3
1pX1q

‰

to E
“

g3
1pX1q

‰

can be established using (8.43). Recall the definitions of
pai and ai from (8.26) and (8.27),

pErg3
1pX1qs “

1

n

n
ÿ

i“1

ppai ´ pUnq
3 and Erg3

1pX1qs “ E
”

`

ErhpX1, ¨ ¨ ¨ ,Xrq|X1s ´ µn
˘3
ı

.

Observe that1471

ˇ

ˇpErg3
1pX1qs ´Erg3

1pX1qs
ˇ

ˇď

ˇ

ˇ

ˇ

n
ÿ

i“1

ppai ´ pUnq
3 ´

n
ÿ

i“1

pai ´ µnq
3
ˇ

ˇ

ˇ
{n1472

`

ˇ

ˇ

ˇ

n
ÿ

i“1

pai ´ µnq
3{n´E

`

ErhpX1, ¨ ¨ ¨ ,Xrq|X1s ´ µn
˘3
ˇ

ˇ

ˇ
1473

“

ˇ

ˇ

ˇ

n
ÿ

i“1

pai ´ µnq
3{n´E

`

ErhpX1, ¨ ¨ ¨ ,Xrq|X1s ´ µn
˘3
ˇ

ˇ

ˇ
` rOp

´

ρ3s´1{2
n ¨ n´1{2 log1{2 n

¯

(8.78)

1474

where the last inequality is due to the facts ai — µn — ρsn, |pai´ai| “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq1475

and |pUn ´ µn| “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq due to the proof of Lemma 3.1 (a), (b) and (c).1476

Moreover, we have1477

ˇ

ˇ

ˇ

n
ÿ

i“1

pai ´ µnq
3{n´E

`

ErhpX1, ¨ ¨ ¨ ,Xrq|X1s ´ µn
˘3
ˇ

ˇ

ˇ
1478

ď

ˇ

ˇ

ˇ

n
ÿ

i“1

a3
i {n´E

`

ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
˘3
ˇ

ˇ

ˇ
1479

` ρsn ¨O
´ˇ

ˇ

ˇ

n
ÿ

i“1

a2
i {n´E

`

ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
˘2
ˇ

ˇ

ˇ

¯

1480

` ρ2s
n ¨O

´ˇ

ˇ

ˇ

n
ÿ

i“1

ai{n´E
`

ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
˘

ˇ

ˇ

ˇ

¯

(8.79)1481

Recall the definition of ai and notice that it is a U-statistic of order r´ 1 conditioned on Xi.
By the standard concentration inequality of U-statistic [97], we have

ˇ

ˇai ´ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
ˇ

ˇ“ rOp
`

ρsn ¨ n
´1{2 log1{2 n

˘

.

By decomposing ai “
`

ai ´ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
˘

`ErhpX1, ¨ ¨ ¨ ,Xrq|Xis, we have

ρ2s
n ¨O

´ˇ

ˇ

ˇ

n
ÿ

i“1

ai{n´E
`

ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
˘

ˇ

ˇ

ˇ

¯

“ rOppρ
3s
n ¨ n

´1{2 log1{2 nq
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where we used the facts
 

ErhpX1, ¨ ¨ ¨ ,Xrq|Xis
(n

i“1
are i.i.d. random variables so that

ˇ

ˇ

ˇ
n´1

n
ÿ

i“1

ErhpX1, ¨ ¨ ¨ ,Xrq|Xis ´ErhpX1, ¨ ¨ ¨ ,Xrqs

ˇ

ˇ

ˇ
“ rOppρ

3s
n n

´1{2 log1{2 nq.

By a similar strategy, we can prove that the bound rOppρ
3s
n ¨ n

´1{2 log1{2 nq also holds for the1482

other two terms in RHS of (8.79). Together with (8.78), we conclude that1483

(8.80)
ˇ

ˇpEg3
1pX1q ´Eg3

1pX1q
ˇ

ˇ“ rOp
`

ρ3s´0.5
n ¨ n´1{2 log1{2 n

˘

.

The proof of the convergence of pE rg1pX1qg1pX2qg2pX1,X2qs, however, needs separate care.1484

Recall that1485

pg1pXiq :“
1

`

n´1
r´1

˘

ÿ

1ďi1ă¨¨¨ăir´1ďn
i1,...,ir´1‰i

hpAi,i1,...,ir´1
q ´ pUn “ pai ´ pUn1486

pg2pXi,Xjq :“
1

`

n´2
r´2

˘

ÿ

1ďi1ă¨¨¨ăir´2ďn
i1,...,ir´2‰i,j

hpAi,j,i1,...,ir´2
q ´ pUn ´ pg1pXiq ´ pg1pXjq1487

Unlike that pg1pXiq converges to the corresponding g1pXiq, the randomness in hpAi,j,i1,...,ir´2
q1488

introduced by the edgeAij is not suppressed by an average over ti1, . . . , ir´2u : i1, . . . , ir´2 ‰1489

i, j. Therefore, the convergence of pE rg1pX1qg1pX2qg2pX1,X2qs has to be discussed as1490

a whole. We first show that given W , pE rg1pX1qg1pX2qg2pX1,X2qs converges to its1491

“population-sample” version replacing A by W in its definition, then show the convergence1492

of that version to the eventual expectation form. Observe that1493

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqpg2pXi,Xjq ´Eg1pX1qg1pX2qg2pX1,X2q1494

“
1
`

n
2

˘

ÿ

1ďiăjďn

“

pg1pXiqpg1pXjqpg2pXi,Xjq ´ g1pXiqg1pXjqg2pXi,Xjq
‰

1495

`
1
`

n
2

˘

ÿ

1ďiăjďn

g1pXiqg1pXjqg2pXi,Xjq ´Erg1pX1qg1pX2qg2pX1,X2qs.1496

It is easy to bound the second term. By the definition of g1pXiq, g2pXi,Xjq, we notice that1497

clearly
`

n
2

˘´1ř

1ďiăjďn g1pXiqg1pXjqg2pXi,Xjq is a degree-two U-statistic. By the stan-1498

dard concentration inequality of U-statistic [97],1499

ˇ

ˇ

ˇ

1
`

n
2

˘

ÿ

1ďiăjďn

g1pXiqg1pXjqg2pXi,Xjq ´Erg1pX1qg1pX2qg2pX1,X2qs

ˇ

ˇ

ˇ
1500

“ rOp
`

ρ3s
n n

´1{2 log1{2 n
˘

1501

where we used the fact g1pXiqg1pXjqg2pXi,Xjq “O
`

ρ3s
n

˘

a.s. Therefore, it suffices to upper1502

bound1503

(8.81) K1 :“
1
`

n
2

˘

ÿ

1ďiăjďn

“

pg1pXiqpg1pXjqpg2pXi,Xjq ´ g1pXiqg1pXjqg2pXi,Xjq
‰

.

The convergence of pg1pXiq to g1pXiq is straightforward. Indeed,1504

pg1pXiq ´ g1pXiq “ pai ´ErhpX1, ¨ ¨ ¨ ,Xrq|Xis ` pµn ´ pUnq.1505
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Recall from Lemma 3.1(a), (b) and (c), |pUn ´ µn| “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq. We then1506

prove the first term on RHS of above equation. Clearly,1507

|pai ´ErhpX1, ¨ ¨ ¨ ,Xrq|Xis| ď |pai ´ ai| ` |ai ´ErhpX1, ¨ ¨ ¨ ,Xrq|Xis|1508

“ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq1509

where the last inequality is due to the bounds of |pai´ ai| and |ai´ErhpX1, ¨ ¨ ¨ ,Xrq|Xis| as1510

shown above. Therefore, conditioned onXi, we have |pg1pXiq´g1pXiq| “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq.1511

Now, we re-express K1 from (8.81) as1512

K1 “
1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjq
“

pg2pXi,Xjq ´ g2pXi,Xjq
‰

1513

`
1
`

n
2

˘

ÿ

1ďiăjďn

“

pg1pXiqpg1pXjqg2pXi,Xjq ´ g1pXiqg1pXjqg2pXi,Xjq
‰

1514

“
1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjq
“

pg2pXi,Xjq ´ g2pXi,Xjq
‰

` rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq,1515

where we used the fact |g1pXiq| “ Opρsnq, a.s. It suffices to bound the first term on RHS.1516

Define1517

paij :“
1

`

n´2
r´2

˘

ÿ

1ďi1ăi2ă¨¨¨ăir´2ďn
i1,¨¨¨ ,ir´2‰i,j

hpAi,j,i1,i2,¨¨¨ ,ir´2
q(8.82)1518

aij :“
1

`

n´2
r´2

˘

ÿ

1ďi1ăi2ă¨¨¨ăir´2ďn
i1,¨¨¨ ,ir´2‰i,j

hpWi,j,i1,i2,¨¨¨ ,ir´2
q.1519

Then we can re-express the pg2pXi,Xjq ´ g2pXi,Xjq factor as follows1520

pg2pXi,Xjq ´ g2pXi,Xjq “ ppaij ´ aijq `
`

aij ´ErhpX1, ¨ ¨ ¨ ,Xrq|Xi,Xjs
˘

1521

´ ppUn ´ µnq ´
`

pg1pXiq ´ g1pXiq
˘

´
`

pg1pXjq ´ g1pXjq
˘

.1522

Similarly to our earlier derivations, using the concentration of U-statistics, we have
`

aij ´1523

ErhpX1, ¨ ¨ ¨ ,Xrq|Xi,Xjs
˘

“ rOp
`

ρsnn
´1{2 log1{2 n

˘

. Since pUn´µn “ rOppρ
s´1{2
n n´1{2 log1{2 nq1524

and pg1pXiq ´ g1pXiq “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq, we have1525

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjq
“

pg2pXi,Xjq ´ g2pXi,Xjq
‰

1526

“
1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqppaij ´ aijq ` rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq.1527

Therefore, we have1528

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqpg2pXi,Xjq ´Eg1pX1qg1pX2qg2pX1,X2q1529

“
1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqppaij ´ aijq ` rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq.1530
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Recall the definitions of pai and ai from (8.26) and (8.27). We write1531

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqppaij ´ aijq “
1
`

n
2

˘

ÿ

1ďiăjďn

paipajppaij ´ aijq1532

´
2

n

ÿ

1ďiďn

pUnpaippai ´ aiq ` pU2
np

pUn ´Unq1533

“
1
`

n
2

˘

ÿ

1ďiăjďn

paipajppaij ´ aijq ` rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq1534

where the last equation is due to ai — Un — ρsn a.s., |pai ´ ai| “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq,1535

|pUn ´Un| “ rOppρ
s´1{2
n ¨ n´1 log1{2 nq due to Lemma 3.1 (b). Therefore,1536

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqpg2pXi,Xjq ´Erg1pX1qg1pX2qg2pX1,X2qs1537

“
1
`

n
2

˘

ÿ

1ďiăjďn

paipajppaij ´ aijq ` rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq.(8.83)1538

It remains to bound the first term on RHS. We rewrite it as1539

1
`

n
2

˘

ÿ

1ďiăjďn

paipajppaij ´ aijq “
1

npn´ 1q

ÿ

1ďi‰jďn

paipajppaij ´ aijq1540

“
1

n

n
ÿ

i“1

pai ¨
´ 1

n´ 1

ÿ

j‰i

pajppaij ´ aijq
¯

.(8.84)1541

We then establish the upper bound for
ř

j‰i pajppaij ´ aijq{pn´ 1q for each fixed i. We have1542

1

n´ 1

ÿ

1ďjďn
j‰i

ppaj ´ ajqppaij ´ aijq1543

“
1

pn´ 1q2

ÿ

1ďjďn
j‰i

ÿ

1ďi1ďn
i1‰j

ppai1j ´ ai1jqppaij ´ aijq1544

“
1

pn´ 1q2

#

ÿ

1ďjďn
j‰i

ppaij ´ aijq
2 `

ÿ

1ďti1,juďn
i1‰i
j‰i,i1

ppai1j ´ ai1jqppaij ´ aijq

+

(8.85)1545

Similar to the derivation of (8.43) by expanding
ř

1ďi1ă¨¨¨ăirďn
ti,juĂti1,¨¨¨ ,iru

hpAi1,¨¨¨ ,irq, we have1546

paij “ Θ̊ijηij `
1

n´ 2

ÿ

1ďkďn
k‰i,j

´

Θ̊i,k;i,jηik ` Θ̊j,k;i,jηjk

¯

1547

` aij ` rOppρ
s´1
n ¨ n´1 lognq(8.86)1548

where

max
 

|Θ̊ij |, |Θ̊i,k;i,j |, |Θ̊j,k;i,j |
(

ĺ ρs´1
n , a.s.

We note that , similarly as the derivation of (8.43), the bound (8.86) holds under the sparsity1549

condition ρn “ ωpn´1q for acyclic R and ρn “ ωpn´2{rq for cyclic R.1550
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Now we discuss the two terms on the RHS of (8.85). For term 1 on the RHS of (8.85), we1551

have1552

1

pn´ 1q2

ÿ

1ďjďn
j‰i

ppaij ´ aijq
2

1553

“
1

pn´ 1q2

ÿ

1ďjďn
j‰i

$

’

’

&

’

’

%

Θ̊i,jηij `
1

n´ 2

ÿ

1ďkďn
k‰i,j

´

Θ̊i,k;i,jηik ` Θ̊j,k;i,jηjk

¯

,

/

/

.

/

/

-

2

1554

` rOppρ
2s´1
n ¨ n´2 lognq1555

—n´2

$

’

’

’

’

&

’

’

’

’

%

ÿ

1ďjďn
j‰i

Θ̊2
i,jη

2
ij `

2

n´ 2

ÿ

1ďtj,kuďn
j‰i
k‰i,j

Θ̊i,jηij

´

Θ̊i,k;i,jηik ` Θ̊j,k;i,jηjk

¯

1556

`
1

pn´ 2q2

ÿ

1ďjďn
j‰i

¨

˚

˚

˝

ÿ

1ďkďn
k‰i,j

´

Θ̊i,k;i,jηik ` Θ̊j,k;i,kηjk

¯

˛

‹

‹

‚

2,
/

/

.

/

/

-

` rOppρ
2s´1
n ¨ n´2 lognq(8.87)1557

Now we bound each term on the RHS of (8.87). Inspecting the expectation of term 1 on1558

the RHS of (8.87) and using Bernstein inequality, we know it is rOppρ
2s´1
n ¨ n´1 ` ρ

2s´3{2
n ¨1559

n´3{2 log1{2 nq. Term 2 on the RHS of (8.87) is mean zero so we can focus on the concen-1560

tration. Its ηijηik part can be bounded by inspecting the concentration averaging over j and1561

over k, respectively, and see that this part is bounded as rOppρ
2s´2
n ¨n´1pρnn

´1{2 log1{2 nq2q,1562

and this upper bound is dominated by the bound of term 1, thus it is ignorable. Using Theo-1563

rem 8.1, the ηijηjk part of term 2 can be bounded as follows1564

n´3
ÿ

1ďtj,kuďn
j‰i
k‰i,j

Θ̊i,jΘ̊j,k;i,jηijηjk“ rOp

¨

˝n´3 ¨ ρ2s´2
n ¨max

$

&

%

a

ρ2
n ¨ n

2 logn
looooooomooooooon

“Variance”

, ρn ¨ n logn
looooomooooon

“Ξ1”

,

.

-

˛

‚1565

and is thus ignorable. Now noticing that each η is bounded by 1, using Bernstein’s inequality,1566

term 3 on the RHS of (8.87) is rOppn
´4 ¨ ρ2s´1

n ¨ n2q “ rOppρ
2s´1
n ¨ n´2q and thus ignorable.1567

Therefore, term 1 on the RHS of (8.85) is rOppρ
2s´1
n ¨ n´1 logn` ρ

2s´3{2
n ¨ n´3{2 log1{2 nq.1568

Now we bound term 2 on the RHS of (8.85). By a similar treatment, we have1569

1

pn´ 1q2

ÿ

1ďti1,juďn
i1‰i
j‰i,i1

ppai1j ´ ai1jqppaij ´ aijq1570

“
1

pn´ 1q2

ÿ

1ďti1,juďn
i1‰i
j‰i,i1

$

’

’

&

’

’

%

Θ̊i1,jηi1j `
1

n´ 2

ÿ

1ďk1ďn
k1‰i1,j

´

Θ̊i1,k1;i1,jηi1k ` Θ̊j,k1;i1,jηjk1

¯

,

/

/

.

/

/

-

1571
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¨

$

’

’

&

’

’

%

Θ̊ijηij `
1

n´ 2

ÿ

1ďk2ďn
k2‰i,j

´

Θ̊i,k2;i,jηik2 ` Θ̊j,k2;i,jηjk2

¯

,

/

/

.

/

/

-

` rOppρ
2s´1
n ¨ n´1 lognq1572

—n´2

«

ÿ

1ďti1,juďn
i1‰i
j‰i,i1

Θ̊i1,jΘ̊i,jηi1jηij `
1

n´ 2

ÿ

1ďti1,j,k2uďn
i1‰i
j‰i,i1

k2‰i,j

´

Θ̊i1,jΘ̊i,k2;i,jηi1jηik2 ` Θ̊i1,jΘ̊j,k2;i,jηi1jηjk2

¯

1573

`
1

n´ 2

ÿ

1ďti1,j,k1uďn
i1‰i
j‰i,i1

k1‰i,j

´

Θ̊i,jΘ̊i1,k1;i1,jηijηi1k1 ` Θ̊i,jΘ̊j,k1;i1,jηijηjk1

¯

1574

` rOpppρ
s´1{2
n ¨ n´1{2 log1{2 nq2q ` rOppρ

2s´1
n ¨ n´1 lognq

ff

(8.88)

1575

Now we bound the RHS of (8.88). Again, by Theorem 8.1, the first term is bounded by1576

n´2
ÿ

1ďti1,juďn
i1‰i
j‰i,i1

Θ̊i1,jηi1j “ rOppρ
2s´1
n ¨ n´1 lognq.(8.89)1577

Terms 2 and 3 on the RHS of (8.88) can be bounded exactly similarly. Here we only present1578

the bounding of term 2. We have1579

1

pn´ 2q3

ÿ

1ďti1,j,k2uďn
i1‰i
j‰i,i1

k2‰i,j

Θ̊i1,jΘ̊i,k2;i,jηi1jηik2“
1

pn´ 2q3

ÿ

1ďi1ďn

¨

˝

ÿ

j‰i,i1

Θ̊i1,jηi1j
ÿ

k2‰i,j

Θ̊i,k2;i,jηik2

˛

‚1580

“n´3ρ2s´2
n

rOpppρ
1{2
n n1{2 log1{2q2q “ rOppρ

2s´1
n ¨ n´2 lognq

(8.90)
1581

and using Theorem 8.1, we have1582

1

pn´ 2q3

ÿ

1ďti1,j,k2uďn
i1‰i
j‰i,i1

k2‰i,j

Θ̊i1,jΘ̊j,k2;i,jηi1jηjk21583

“n´3ρ2s´2
n ¨ rOppmaxtρn ¨ n

3{2 log1{2 n,ρn ¨ n lognuq “ rOppρ
2s´1
n ¨ n´3{2 lognq(8.91)1584

Collecting all results, we see that term 2 on the RHS of (8.85) is rOppρ
2s´1
n ¨ n´1 logn `

ρ
2s´3{2
n ¨ n´3{2 lognq. We thus conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n´ 1

ÿ

1ďjďn
j‰i

ppaij ´ aijqppaj ´ ajq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ rOppρ
2s´1
n n´1 lognq
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under the given sparsity condition ρn “ ωpn´1{2q, which holds for both acyclic and cyclic1585

R.1586

Now we return to the main proof and continue (8.84). We have1587

1
`

n
2

˘

ÿ

1ďiăjďn

paipajppaij ´ aijq1588

“
1
`

n
2

˘

ÿ

1ďiăjďn

paiajppaij ´ aijq `
1
`

n
2

˘

ÿ

1ďiăjďn

paippaj ´ ajqppaij ´ aijq1589

“
1
`

n
2

˘

ÿ

1ďiăjďn

aiajppaij ´ aijq `
1
`

n
2

˘

ÿ

1ďiăjďn

ppai ´ aiqajppaij ´ aijq1590

` rOppρ
3s´1
n ¨ n´1 logn` ρ3s´3{2

n ¨ n´3{2 lognq1591

“ rOppρ
3s´1
n ¨ n´1 lognq ` rOppρ

3s´1
n ¨ n´1 logn` ρ3s´3{2

n ¨ n´3{2 lognq1592

“ rOppρ
3s´1
n ¨ n´1 logn` ρ3s´3{2

n ¨ n´3{2 lognq(8.92)1593

where the second to last line is due to1594

1
`

n
2

˘

ÿ

1ďiăjďn

aiajppaij ´ aijq1595

“
1
`

n
2

˘

ÿ

1ďiăjďn

aiaj

$

’

’

&

’

’

%

Θ̊i,jηij `
1

n´ 2

ÿ

1ďkďn
k‰i,j

´

Θ̊i,k;i,jηik ` Θ̊j,k;i,jηjk

¯

,

/

/

.

/

/

-

1596

` rOppρ
3s´1
n ¨ n´1 lognq1597

“
1
`

n
2

˘

ÿ

1ďiăjďn

aiajΘ̊i,jηij `
1
`

n
2

˘

ÿ

1ďti,j,kuďn
i‰j;j‰k;k‰i

aiaj
Θ̊i,k;i,jηik
n´ 2

` rOppρ
3s´1
n ¨ n´1 lognq1598

(Bernstein)“ rOppρ
3s´1
n ¨ n´1 lognq `

1
`

n
2

˘

ÿ

1ďti,kuďn
i‰k

ai

¨

˚

˚

˝

ÿ

1ďjďn
j‰i,k

aj
Θ̊i,k;i,j

n´ 2

˛

‹

‹

‚

ηik1599

“ rOppρ
3s´1
n ¨ n´1 lognq

(8.93)
1600

Now we may conclude that1601

ˇ

ˇ

ˇ

ˇ

ˇ

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pXiqpg1pXjqpg2pXi,Xjq ´Erg1pX1qg1pX2qg2pX1,X2qs

ˇ

ˇ

ˇ

ˇ

ˇ

1602

“ rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq(8.94)1603

This completes the proof of Theorem 3.2.1604

8.5. Proof of Theorem 3.3. We will inherit the notation of pai from (8.27) in the proof of1605

Lemma 3.1. It suffices to show (3.15), which would then imply the closeness between F
pTn

1606
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and F
pTn;bootstrap

by repeating our arguments for proving (8.54) and (8.55) using Lemma 8.2.1607

Observe that1608
ˆ

n

r

˙

¨ pUn “
ÿ

1ďi1ă...ăirďn

hpAi1,...,irq1609

(For any i)“
ÿ

1ďi1ă...ăir´1ďn
i1,...,ir´1‰i

hpAi,i1,...,ir´1
q `

ÿ

1ďi1ă...ăirďn
i1,...,ir‰i

hpAi1,...,irq1610

“

ˆ

n´ 1

r´ 1

˙

¨ pai `

ˆ

n´ 1

r

˙

¨ pU p´iqn1611

Simplifying both sides, we have1612

(8.95) pU p´iqn ´ pUn “´
r

n´ r

´

pai ´ pUn

¯

Therefore,1613

n
´

pS2
n ´

pS2
n;jackknife

¯

1614

“
r2

n

n
ÿ

i“1

ppai ´ pUnq
2 ´ pn´ 1q

n
ÿ

i“1

´

pU p´iqn ´ pUn

¯2
1615

“
1

n

n
ÿ

i“1

„

r2
´

pai ´ pUn

¯2
´ npn´ 1q ¨

r2

pn´ rq2

´

pai ´ pUn

¯2


1616

“
1

n

n
ÿ

i“1

r2

"

1´
npn´ 1q

pn´ rq2

*

´

pai ´ pUn

¯2
“OppS2

nq(8.96)1617

where in the last line, recall that pS2
n :“ r2

řn
i“1ppai ´

pUnq
2{n2. Therefore,

pS2
n ´

pS2
n;jackknife “Op

pS2
n{nq ùñ |pSn ´ pSn;jackknife| “OppSn{nq.

This proves (3.15) and thus completes the proof of Theorem 3.3.1618

PROOF OF THEOREM 3.4. It suffices to prove the Berry-Esseen bound for the normal ap-1619

proximation. By definition, }Gnpuq´Φpuq}8 “Opn
´1{2q and by the proof of Theorem 3.2,1620

we know that } pGnpuq´Gnpuq}8 “ rOp pMpρn, n;Rqq ¨n´1{2 “ rOp pMpρn, n;Rqq
Ź

opp1q.1621

The proof is partitioned into two parts, for O pMpρn, n;Rqq and op1q bounds, respectively.1622

Part I: proof of the O pMpρn, n;Rqq bound when ρnną log1{2 n (acyclic) or ρr{2n ną log1{2 n (cyclic).1623

We begin by recalling the decomposition of pTn and inspect whether each component de-1624

pends on ρn or not. Using Lemma 3.1 for the sparse regime, we have1625

pTn “

#

U#
n `∆n

loooomoooon

No ρn

` p∆n
loomoon

Depend on ρn

` rOppn
´1 log3{2 nq

looooooooomooooooooon

No ρn

+

¨

˜

1` δn
loomoon

No ρn

` pδn
loomoon

Depend on ρn

¸

1626

“

#

U#
n `

rOppn
´1{2 log1{2 nq ` p∆n ` rOppn

´1 log3{2 nq

+

1627

¨

#

1` rOppn
´1{2 log1{2 nq ` rOp pMpρn, n;Rqq

+

1628
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“U#
n `

p∆n

`

1` rOppMpρn, n;Rqq
˘

` rOp pMpρn, n;Rqq(8.97)1629

To see that last equality of (8.97), it is not difficult to prove that U#
n ¨ pδn is also1630

rOp pMpρn, n;Rqq using the method for proving that pδn “ rOp pMpρn, n;Rqq, but due to its1631

involvement we omit the proof here.1632

Now we use (8.97) for this proof. First, we discuss the term p∆n ¨ rOp pMpρn, n;Rqq. By1633

an ordinary Bernstein’s inequality, we have1634

Pp|q∆n| ą uq ď 2 exp

"

´
C1u

2n4

C2n2 ¨ ρn ¨ ρ
´2
n ¨ n`C3ρ

´1
n ¨ n1{2 ¨ u ¨ n2

*

1635

ď 2 exp
 

´C4pρn ¨ nq ¨ u
2
(

1636

Therefore, q∆n “ rOpppρn ¨ nq
´1{2 log1{2 nq. Therefore, we have1637

p∆n ¨ rOp pMpρn, n;Rqq1638

“pq∆n ` qRnq ¨ rOp pMpρn, n;Rqq1639

“

!

rOpppρn ¨ nq
´1{2 log1{2 nq ` rOp pMpρn, n;Rqq

)

¨ rOp pMpρn, n;Rqq1640

Therefore, the term p∆n ¨ rOp pMpρn, n;Rqq is ignorable compared to rOp pMpρn, n;Rqq.
Thus, recalling qRn “ rOp pMpρn, n;Rqq, we have

pTn “ U
#
n `

q∆n ` rOp pMpρn, n;Rqq

Now it only remains to show that

}F
U#
n `q∆n` rOppMpρn,n;Rqq

puq ´Φpuq}8 “O pMpρn, n;Rqq

Similar to the proof of Theorem 3.1, we are going to break this down into three steps. Recall1641

the definition of r∆n from the proof of Theorem 3.1, we shall prove1642

›

›

›
F
U#
n `q∆n` rOppMpρn,n;Rqq

puq ´ F
U#
n `q∆n

puq
›

›

›

8
“ rOp pMpρn, n;Rqq(8.98)1643

›

›

›
F
U#
n `q∆n

puq ´ F
U#
n `r∆n

puq
›

›

›

8
“Opρ´1{2

n ¨ n´1q(8.99)1644

›

›

›
F
U#
n `r∆n

puq ´Φpuq
›

›

›

8
“Oppρn ¨ nq

´1 log1{2 nq(8.100)1645

We start from proving (8.100). Notice that this part of the proof only requires that ρnn ą1646

log1{2 n regardless of the shape of the motif, since the asymptotic orders U#
n — 1 and r∆n —1647

pρn ¨ nq
´1{2 do not depend on the motif. The stronger condition ρ

r{2
n n ą log1{2 n is still1648

necessary to deduce (8.98) from (8.99) and (8.100) using Lemma 8.2; a second reason is1649

that the error bound Mpρn, n;Rq for cyclic motifs would not diminish to zero if ρr{2n n ĺ1650

log1{2 n. We are going to apply the Esseen’s smoothing lemma on the interval t P r´ρn ¨1651

n log´1{2 n,ρn ¨ n log´1{2 ns. The integral we shall need to bound is1652

(8.101)
ż ρn¨n log´1{2 n

´ρn¨n log´1{2 n

ˇ

ˇ

ˇ

ˇ

ˇ

EreitpU#
n `

r∆nqs ´ e´t
2{2

t

ˇ

ˇ

ˇ

ˇ

ˇ

dt

The following intermediate result in the proof of Lemma 8.3-(c) remains valid:1653

E
”

eitpU
#
n `

r∆nq
ı

“ E
”

eitU
#
n ¨ e´pρn¨nq

´1σ2
wt

2{2
ı

1654

“ E
”

eitU
#
n ¨ e´pρn¨nq

´1t2{2tErσ2
ws`

1

n

řn
i“1 gσ;1pXiqu ¨ p1` rOppρ

´1
n n´2 logn ¨ t2qq

ı

1655
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For tď ρn ¨ n log´1{2 n! n1{2, the remainder’s contribution to the integral (8.101) is1656

(8.102)
ż ρn¨n log´1{2 n

0
ρ´1
n n´2 logn ¨ t2{tdt“Opρnq ! n

´1{2

Therefore, for the rest of the proof in this part, we can directly ignore the remainder term’s1657

contribution according to (8.102). Now we bound the main part. Suppose C0 ą 0 is a very1658

large constant. We discuss two cases1659

• Case 1: ρn ¨n log´1{2 ně tC0 logpρn ¨nqu
1{2. In this case, we break the integral in (8.101)

into two parts:
ż tC0 logpρn¨nqu1{2

0
`

ż ρn¨n log´1{2 n

tC0 logpρn¨nqu1{2

By (8.102), we can ignore the remainder. Similar to the intermediate step in the proof of1660

Lemma 8.3-(d), using Section VI, Lemma 4 of [108], we have1661

E
”

eitU
#
n ¨ e´pρn¨nq

´1pt2{2qtErσ2
ws`

1

n

řn
i“1 gσ;1pXiqu

ı

1662

“ e´pρn¨nq
´1pt2{2q¨Erσ2

ws ¨E
”

eit
řn
i“1

g1pXiq{p
?
nξ1q´pρnnq´1t2{p2nq¨

řn
i“1

gσ;1pXiq
ı

1663

“ e´pρn¨nq
´1pt2{2q¨Erσ2

ws ¨E

«

eit
řn
i“1

g1pXiq{p
?
nξ1q ¨

´

1` rOp

˜

t2 log1{2 n

ρnn3{2

¯

¸ff

1664

“ e´pρn¨nq
´1pt2{2q¨Erσ2

ws ¨E
”

eit
řn
i“1

g1pXiq{p
?
nξ1q

ı

`O
´ t2 log1{2 n

ρnn3{2

¯

1665

“ e´pρn¨nq
´1pt2{2q¨Erσ2

ws ¨E
!

e´t
2{2 `Opn´1{2t3e´t

2{2q

)

`O
´ t2 log1{2 n

ρnn3{2

¯

1666

Therefore,1667

ˇ

ˇ

ˇ
E
”

eitU
#
n ¨ e´pρn¨nq

´1t2{2tErσ2
ws`

1

n

řn
i“1 gσ;1pXiqu

ı

´ e´t
2{2

ˇ

ˇ

ˇ
1668

ďe´t
2{2

ˇ

ˇ

ˇ
e´Cpρn¨nq

´1t2 ´ 1
ˇ

ˇ

ˇ
`Opn´1{2t3e´t

2{2q `O
´ t2 log1{2 n

ρnn3{2

¯

1669

ďe´t
2{2 ¨Oppρn ¨ nq

´1t2q `Opn´1{2t3e´t
2{2q `O

´ t2 log1{2 n

ρnn3{2

¯

1670

Consequently,1671

(8.103)
ż tC0 logpρn¨nqu1{2

0

ˇ

ˇ

ˇ

ˇ

ˇ

EreitpU#
n `

r∆nqs ´ e´t
2{2

t

ˇ

ˇ

ˇ

ˇ

ˇ

dt“Oppρn ¨ nq
´1q

where we recall (8.102) to simplify notation. For the second part of the integral, we can1672

reproduce the steps in the proof of Theorem 3.1 and obtain1673

E
”

eitU
#
n ¨ e´pρn¨nq

´1pt2{2qtErσ2
ws`

1

n

řn
i“1

gσ;1pXiqu
ı

1674

“ e´pρnnq
´1pt2{2qErσ2

ws ¨E
”

eitU
#
n ¨ e´pρnnq

´1t2{2t 1

n

řn
i“1 gσ;1pXiqu

ı

1675

ď p1´C1 ¨ t
2{nqn ď e´C2t2 ď e´C2¨C0 logpρn¨nq ď pρn ¨ nq

´2.1676
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Therefore we have1677

ż pρnnq log´1{2 n

tC0 logpρnnqu1{2

ˇ

ˇ

ˇ

”

eitU
#
n ¨ e´pρn¨nq

´1pt2{2qtErσ2
ws`

1

n

řn
i“1

gσ;1pXiqu
ıˇ

ˇ

ˇ
¨ t´1dt1678

ď

ż pρnnq log´1{2 n

tC0 logpρnnqu1{2

ˇ

ˇ

ˇ

”

eitU
#
n ¨ e´pρn¨nq

´1pt2{2qtErσ2
ws`

1

n

řn
i“1

gσ;1pXiqu
ıˇ

ˇ

ˇ
dt1679

ď

ż pρnnq log´1{2 n

tC0 logpρnnqu1{2
pρn ¨ nq

´2dtď pρn ¨ nq
´1

1680

Moreover, we choose C0 ě 4 so that1681

ż pρnnq log´1{2 n

tC0 logpρnnqu1{2

e´t
2{2

t
dtď

ż pρnnq log´1{2 n

tC0 logpρnnqu1{2
e´t

2{2dt1682

ď pρnnq log´1{2pnq ¨ e´pC0{2q¨logpρnnq ď
ρnn

pρnnqC0{2
ď

1

ρnn
.1683

Therefore, we have1684

(8.104)
ż pρnnq log´1{2 n

tC0 logpρnnqu1{2

ˇ

ˇ

ˇ

ˇ

ˇ

EreitpU#
n `

r∆nqs ´ e´t
2{2

t

ˇ

ˇ

ˇ

ˇ

ˇ

dt“Opppρn ¨ nq
´1q

Combining (8.103) and (8.104) proves (8.101).1685

• Case 2: ρn ¨n log´1{2 nă tC0 logpρn ¨nqu
1{2. The proof in this case is even easier, since1686

(8.103) remains valid and implies (8.101).1687

Plugging (8.101) back into the Esseen’s smoothing lemma proves (8.100). Notice that the1688

log1{2 n factor in the eventual error bound comes from the second term on the RHS of (8.53).1689

Next, reproducing the proof (8.55), we prove (8.99) by combining (8.100) and Lemma1690

3.1-(b).1691

Finally, the proof of (8.98) is done by combining (8.55) and Lemma 8.2. The proof of this1692

part is exactly similar to the proof of (8.54). This completes the proof of theO pMpρn, n;Rqq1693

bound.1694

Part II: proof of the op1q bound when 1 ă ρnnĺ log1{2 n (acyclic) or 1 ă ρ
r{2
n nĺ log1{2 n (cyclic).1695

The error bounds we derived in Part I of this proof focused on establishing finite sample
error rates, and consequently need to bound the tail probability at the price of a log1{2 n
factor multiplied on the error bound. Taking the acyclic motif setting as an example, to
counter the log factor in the error bound, we also need to assume ρn “ ωpn´1 log1{2 nq rather
than ρn “ ωpn´1q. For ρn : n´1 ă ρn ĺ n´1 log1{2 n, despite establishing an explicit finite-
sample error bound is still possible, the formula and derivation are rather complicated. For
cleanness of presentation, in this paper, we slightly lower the goal and only aim at deriving
uniform consistency. Consequently, the proof can be done by slightly varying the proof of
the first part of Theorem 3.4. In this proof, we do not need to show an explicit error rate, so
we do not need “ rOp” any more, and “op” would suffice for our purpose. For the convenience
of narration, we define

ĂMpρn, n;Rq :“

#

pρn ¨ nq
´1{2 ` n´1 ¨ log3{2 n, For acyclic R

pρ
r{2
n ¨ nq´1{2 ` n´1 ¨ log3{2 n, For cyclic R

We first present a variant of Lemma 3.1.1696
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LEMMA 8.4. Under the conditions of Theorem 3.4, we have the following results:1697

(a) Identical to Lemma 3.1-(a).1698

(b) We have

p∆n :“
pUn ´Un
σn

“ q∆n ` qRn

where q∆n and qRn satisfy1699

qRn “ oppĂMpρn, n;Rqq(8.105)1700

and the original (3.12) in Lemma 3.1-(b) holds for q∆n, where the definition and asymp-1701

totic order of σw is identical to that in Lemma 3.1,1702

(c) pδn “ oppĂMpρn, n;Rqq,1703

(d) Identical to Lemma 3.1-(d).1704

PROOF OF LEMMA 8.4. The proof of this lemma can be obtained by slightly varying the1705

proof of Lemma 3.1.1706

(a) (No additional proof needed.)1707

(b) The only change we need to make to the proof of Lemma 3.1-(b) to make it a valid proof1708

here is to replace (8.18) by the following concentration inequality:1709

P

˜

qRn :“
R̊

`

n
r

˘

¨ σn
ěC ¨ ĂMpρn, n;Rq

¸

(8.106)

1710

ĺ

$

&

%

max
!

exp
´

´
ppρn¨nq´1¨pρn¨nq1{2q2

pρn¨nq´2

¯

, exp
´

´
pρn¨nq´1¨pρn¨nq1{2

pρn¨nq´1¨n´1{2

¯)

, for acyclic R;

max
!

exp
´

´
ppρ´r{2n ¨n´1q¨pρr{2n ¨nq1{2q2

pρ
´r{2
n ¨n´1q2

¯

, exp
´

´
pρ´r{2n ¨n´1q¨pρr{2n ¨nq1{2

ρ´3
n n´5{2

¯)

, for cyclic R;
1711

“op1q1712

The proof of this part is completed.1713

(c) We only need to change how we use Theorem 3 of Schudy and Sviridenko [116] in (8.42),
into the following way

ÿ

All possible pv,pq:
vě2,pě3

p∆pi;v,pq “ oppρ
s
n ¨ n

r´1 ¨ ĂMpρn, n;Rqq

and for the rest of the proof of Lemma 3.1-(c), replace every remainder term in the format1714

of “ rOpp¨ ¨ ¨ ˆMpρn, n;Rqq” by “opp¨ ¨ ¨ ˆ ĂMpρn, n;Rqq”. This completes the proof.1715

(d) (No additional proof needed.)1716

1717

Now we return to the proof of the second part of Theorem 3.4. The proof is completed by
slightly varying (8.97) in the proof of the first part of this theorem by

pTn “ U
#
n `

p∆np1` oppĂMpρn, n;Rqqqq ` oppĂMpρn, n;Rqqq

Then recall the definition of “op” and apply Lemma 2 of Maesono [96] (setting T “ pTn,1718

rT “ U#
n and α“ ĂMpρn, n;Rq and Hpxq “Φpxq). We have1719

}F
pTn
puq ´Φpuq}8 ď}FU#

n
puq ´Φpuq}8 ` P

!

| pTn ´U
#
n | ě

ĂMpρn, n;Rq
)

1720

`OpĂMpρn, n;Rqq “ op1q ` op1q ` op1qÑ 01721
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This completes the proof of the second part and thus the proof of the error bound of the1722

population version Edgeworth expansion in Theorem 3.4.1723

Next, we prove the error bound for the empirical version Edgeworth expansion in Theorem1724

3.4. Similar to the proof of the population version, we discuss two cases.1725

Part I: the proof of the rOp
`

Mpρn, n;Rq
˘

bound when ρnną log1{2 n (acyclic) or ρr{2n ną1726

log1{2 n (cyclic) is easily done by citing the following intermediate results from the proof of1727

Theorem 3.2.1728

pξ3
1 ´ ξ

3
1 “

rOppρ
3s
n ¨ n

´1{2 log1{2 nq,(8.107)1729

ˇ

ˇpErg3
1pX1qs ´Erg3

1pX1qs
ˇ

ˇ“ rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq,(8.108)1730

ˇ

ˇ

ˇ

ˆ

n

2

˙´1
ÿ

1ďiăjďn

pg1pX1qpg1pX2qpg2pX1,X2q ´Erg1pX1qg1pX2qg2pX1,X2qs

ˇ

ˇ

ˇ
1731

“ rOppρ
3s´1{2
n ¨ n´1{2 log1{2 nq.(8.109)1732

The proof of this part is then instantly done by combining these results with the statement1733

about the population Edgeworth expansion in the sparse case that we just proved above.1734

Part II: proof of the opp1q bound when 1 ă ρnn ĺ log1{2 n (acyclic) or 1 ă ρ
r{2
n n ĺ1735

log1{2 n. To prove for this regime, we only need to slightly vary the proof of Theorem 3.2.1736

Set a series %nÑ8 as follows:1737

(8.110) %n :“

#

ρn ¨ n, for acyclic R,
ρ
r{2
n ¨ n, for cyclic R.

By replacing the log1{2 n factor in all the “u” values that we set in Theorem 8.1 by %n, where1738

we apply it in the proof of Lemma 3.1-(c),(d) and in the proof of Theorem 3.2, we establish1739

the following analogous intermediate results:1740

pξ3
1 ´ ξ

3
1 “Oppρ

3s
n ¨ n

´1{2 ¨ %nq “ oppρ
3s
n q(8.111)1741

ˇ

ˇpErg3
1pX1qs ´Erg3

1pX1qs
ˇ

ˇ“Oppρ
3s´1{2
n ¨ n´1{2 ¨ %nq “ oppρ

3s´1{2
n q(8.112)1742

ˇ

ˇ

ˇ

ˆ

n

2

˙´1
ÿ

1ďiăjďn

pg1pX1qpg1pX2qpg2pX1,X2q ´Erg1pX1qg1pX2qg2pX1,X2qs

ˇ

ˇ

ˇ
1743

“Oppρ
3s´1{2
n ¨ n´1{2 ¨ %nq “ oppρ

3s´1{2
n q(8.113)1744

This implies }Gnpuq ´ pGnpuq}8 “ op
`

pρnnq
´1{2

˘

“ opp1q (thus immediately completes1745

the proof of Part II) by simply reproducing the rest of the proof of Theorem 3.2. The proof1746

of the entire Theorem 3.4 is now complete.1747

1748

8.6. Proof of Theorem 4.1. We will mainly prove for the node sub-sampling network
bootstrap scheme [17], and the corresponding conclusion for the re-sampling scheme can
be obtained easily by slightly varying the proof for sub-sampling. Conditioned on A, since
the sub-sampling objects in network models are nodes rather than latent variables Xj’s3,

3In other words, Xj ’s in the bootstrap procedure are deemed fixed.
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we change the notation for simplicity. Define V‹ “ t1 ď v1 ă v2 ă ¨ ¨ ¨ ă vn˚ ď nu to be
uniformly sampled from all size-n˚ subsets of rns. That is,

P
´

V‹ “ ti1, ¨ ¨ ¨ , in˚u
¯

“
1

`

n
n˚

˘ @1ď i1 ă ¨ ¨ ¨ ă in˚ ď n.

Define the bootstrap expectation E˚ to be taken with respect to the randomness of V‹.
The sub-sampling bootstrap sample network moment pU bn˚ calculated from the sub-network
AV‹,V‹ calculated according to [17] is

pU bn˚ “
1

`

n˚

r

˘

ÿ

i1ă¨¨¨ăirĂV‹

hpAi1,i2,¨¨¨ ,irq.

To emphasize that the randomness in this bootstrap setting is solely due to V˚ and simplify1749

notation, we define pgb1pv1q, taking the argument v1 rather than Xv1 , as follows1750

pgb1pv1q :“
n´ 1

n´ n‹

"

1
`

n˚´1
r´1

˘E˚
”

ÿ

i1,¨¨¨ ,ir´1ĂV‹zv1

hpAv1,i1,¨¨¨ ,ir´1
q|v1

ı

´ pUn

*

(8.114)

1751

pgb2pv1, v2q :“
n´ 3

n´ n˚ ´ 1

ˆ

n´ 2

n´ n˚

!

E˚
” 1
`

n˚´2
r´2

˘

ÿ

i1,¨¨¨ ,ir´2ĂV‹ztv1,v2u
hpAv1,v2,i1,¨¨¨ ,ir´2

q

ˇ

ˇ

ˇ
v1, v2

ı

1752

´ pUn

)

´ pgb1pv1q ´ pgb1pv2q

˙

(8.115)

1753

where the finite population correction term pn´ 1q{pn´ n˚q comes from [23, (1.2)]. where1754

again the finite population correction term pn´ 3q{pn´ n˚ ´ 1q is due to [23, (1.3)]. Recall1755

that pS˚n˚ is a jackknife estimator of Var˚
´

pU bn˚ |A
¯

and that the bootstrap test statistic as1756

(8.116) pT ˚n˚ “
pU bn˚ ´

pUn
pS˚n˚

By our proof of Theorem 3.3, the difference between a jackknife estimator and an estimator1757

based on ξ˚1 is ignorable, and we are free to choose either. Here we use the jackknife estimator1758

in order to better connect with Bloznelis [23]. To start, we check that E˚rpU bn˚s “ pUn where1759

the expectation is taken with respect to the randomness of V‹, so that (8.116) is an valid1760

studentization of the U-statistic. To see this, notice that1761

E˚rpU bn˚s “
1

`

n
n˚

˘

ÿ

V‹Ărns

pU bn˚ “
1

`

n
n˚

˘

1
`

n˚

r

˘

ÿ

V‹Ărns

ÿ

i1ă¨¨¨ăirĂV‹

hpAi1,i2,¨¨¨ ,irq.1762

On the RHS, each summand hpAi1,¨¨¨ ,irq appears
`

n´r
n˚´r

˘

times. Therefore,1763

ÿ

V‹Ărns

ÿ

i1ă¨¨¨ăirĂV‹

hpAi1,i2,¨¨¨ ,irq “

ˆ

n´ r

n˚ ´ r

˙

ÿ

1ďi1ă¨¨¨ăirďn

hpAi1,¨¨¨ ,irq1764

“

ˆ

n´ r

n˚ ´ r

˙ˆ

n

r

˙

pUn.1765
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As a result,1766

E˚rpU bn˚s “
1

`

n
n˚

˘

1
`

n˚

r

˘

ÿ

V‹Ărns

ÿ

i1ă¨¨¨ăirĂV‹

hpAi1,i2,¨¨¨ ,irq1767

“
1

`

n
n˚

˘

1
`

n˚

r

˘

ˆ

n´ r

n˚ ´ r

˙ˆ

n

r

˙

¨ pUn “ pUn1768

To investigate the distribution of pT ˚n˚ under the finite-population sampling obeying V‹, we1769

define the bootstrap Edgeworth expansion by1770

G˚n˚pxq :“Φpxq `
ϕpxq

a

n˚p1´ n˚{nq ¨ pξ˚1 q
3 ¨

#

2x2 ` 1

6
¨E˚

!

pgb1pv1q

)3
1771

`
r´ 1

2
¨
`

x2 ` 1
˘

E˚rpgb1pv1qpg
b
1pv2qpg

b
2pv1, v2qs

+

(8.117)1772

where recall the definitions of pgb1p¨q,pg
b
2p¨, ¨q from (8.114) and (8.115), respectively. Here,1773

pξ˚1 q
2 :“Var˚ppgb1pv1q|Aq “ E˚rppgb1pv1qq

2s.1774

Next, we are going to apply Theorem 1 of [23]. The Cramer’s condition (1.11) in Theorem1775

1 in [23] is different from the conventional version, and we need to check that it indeed1776

holds in our setting. Specifically, in our setting, it suffices to prove that there exists a positive1777

sequence ttnuÑ8 and a universal constant M1 : 0ăM1 ă 1, such that1778

P

˜

sup
tPp0,tnq

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

j“1

eitnpg1pXjq{
pξ1

ˇ

ˇ

ˇ

ˇ

ˇ

ďM1 ă 1

¸

p
Ñ 1

because our eventual bounds are Op bounds, and in the proof we can choose to discuss only1779

events that will happen with high probability. Recall from the proof of Theorem 3.2 that we1780

have shown the following facts1781

|pg1pXiq ´ g1pXiq| “ rOppρ
s´1{2
n ¨ n´1{2 log1{2 nq1782

|pξ1 ´ ξ1| “ rOppρ
s
n ¨ n

´1{2 log1{2 nq1783

and the simple fact that ξ1 — ρ
s
n a.s. Therefore, we have

|pg1pXjq{pξ1 ´ g1pXjq{ξ1| “ rOppρ
´1{2
n ¨ n´1{2 log1{2 nq

Recall that our assumption implies ρnnÑ8 throughout this paper (regardless of R shapes,1784

all assumptions we made imply this). Choosing tn “ pρn ¨ nq1{4, we have1785

sup
tPp0,tnq

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eitg1pXjq{ξ1 ´
1

n

n
ÿ

j“1

eitpg1pXjq{
pξ1

ˇ

ˇ

ˇ

ˇ

ˇ

1786

ď sup
tPp0,tnq

t ¨ max
1ďjďn

ˇ

ˇ

ˇ
g1pXjq{ξ1 ´ pg1pXjq{pξ1

ˇ

ˇ

ˇ
¨ et¨|g1pXjq{ξ1´pg1pXjq{

pξ1|
1787

(w.p. 1´Cn´1)ď sup
tPp0,tnq

tpρn ¨ nq
´1{2 log1{2 n ¨ etpρn¨nq

´1{2 log1{2 n ĺ tnpρn ¨ nq
´1{2

1788

under the specified sparsity conditions.1789
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It suffices to bound suptPp0,tnq

ˇ

ˇ

ˇ
n´1

řn
j“1 e

itg1pXjq{ξ1
ˇ

ˇ

ˇ
. For every given t P Tn :“ tk{n : k P1790

N, k{nď tnu, by Bernstein’s inequality, we have1791

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

j“1

eitg1pXjq{ξ1 ´E
”

eitg1pX1q{ξ1
ı

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

ď 2e´Cnε
2

1792

Therefore, setting M1 :“ lim suptÑ8 |E
“

eitg1pX1q{ξ1
‰

|, by the Cramer’s condition we as-1793

sumed in Theorem 4.1, we have M1 P p0,1q and p1`M1q{2 P p0,1q. Therefore1794

P

˜

sup
tPTn

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

j“1

eitg1pXjq{ξ1

ˇ

ˇ

ˇ

ˇ

ˇ

ą p1`M1q{2

¸

ď |Tn| ¨ 2e´C3npM1{2q2 ď e´C4n
1795

for some universal constants C3,C4 ą 0. Now noticing that for any t P p0, tnq, let t1 be the1796

best approximation to t in Tn, we have1797

sup
tPp0,tq

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

j“1

eitg1pXjq{ξ1 ´
1

n

n
ÿ

j“1

eit
1g1pXjq{ξ1

ˇ

ˇ

ˇ

ˇ

ˇ

1798

(w.h.p.)ď|t´ t1|pρn ¨ nq´1{2 ¨ e|t´t
1|pρn¨nq´1{2

ĺ tn ¨ pρn ¨ nq
´1{2 Ñ 01799

The verification that our ordinary Cramer’s condition implies the sample version in [23] is1800

thus finished.1801

By Theorem 1 of [23], the sampling distribution of pT ˚n˚ by node sub-sampling enjoys the1802

following uniform bound1803

(8.118)
›

›

›
F

pT˚n
puq ´G˚n˚puq

›

›

›

8
“ opppn

˚q´1{2q

It then suffices to establish the connection between G˚n˚puq and pGn˚p1´n˚{nqpuq. The1804

proof strategy is to show that (8.117) can be transcribed, with E˚ replaced by pE’s and1805

pgb1pv1q,pg
b
2pv1, v2q replaced with pg1pX1q,pg2pX1,X2q, respectively. Then the comparison of1806

the Edgeworth coefficients in G˚n˚puq and pGn˚p1´n˚{nqpuq would complete the proof. To1807

proceed, now we focus on analyzing the core quantities pgb1pv1q and pgb2pv1, v2q. For pgb1pv1q,1808

since conditioning on v1 P V‹, the rest indexes tv2, ¨ ¨ ¨ , vn˚u are uniformly sampled from1809
 

ti1, ¨ ¨ ¨ , in˚´1u Ă rnszv1

(

, we have1810

1
`

n˚´1
r´1

˘ ¨E˚
»

–

ÿ

i1,¨¨¨ ,ir´1ĂV‹zv1

hpAv1,i1,¨¨¨ ,ir´1
q

ˇ

ˇ

ˇ
v1

fi

fl1811

“
1

`

n˚´1
r´1

˘

1
`

n´1
n˚´1

˘

ÿ

V‹Ărns:v1PV‹

ÿ

i1,¨¨¨ ,ir´1PV‹zv1

hpAv1,i1,¨¨¨ ,ir´1
q1812

(By (8.26))“
1

`

n˚´1
r´1

˘

1
`

n´1
n˚´1

˘

ˆ

n´ r

n˚ ´ r

˙ˆ

n´ 1

r´ 1

˙

¨ pav1 “ pav1 .1813

where in the second equality, we noticed that each hpAv1,i1,¨¨¨ ,ir´1
q appears

`

n´r
n˚´r

˘

times in1814

the first line. Therefore,1815

(8.119) pgb1pv1q “
n´ 1

n´ n˚
rpav1 ´ pUns “

n´ 1

n´ n˚
¨ pg1pXv1q
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where pg1pXv1q appeared (in “pE” terms) in Theorem 3.2. Then we have1816

E˚
”

tpgb1pv1qu
3
ı

“
1

n

n
ÿ

i“1

´ n´ 1

n´ n˚

¯3
ppai ´ pUnq

3 “

´ n´ 1

n´ n˚

¯3
pErg3

1pX1qs1817

pξ˚1 q
2 “Var˚ppgb1pv1q|Aq “ E˚rppgb1pv1qq

2s “
pn´ 1q2

pn´ n˚q2
¨ pξ2

11818

where the definitions of pξ1 and pEg3
1pX1q can also be recalled by reviewing Theorem 3.2.1819

Now we turn to analyzing E˚rtpgb1pv1qpg
b
1pv2qpg

b
2pv1, v2qus. The main part of the definition of1820

pgb2pv1, v2q can be re-expressed as follows1821

E˚
«

1
`

n˚´2
r´2

˘

ÿ

i1,¨¨¨ ,ir´2ĂV‹ztv1,v2u
hpAv1,v2,i1,¨¨¨ ,ir´2

q

ˇ

ˇ

ˇ
v1, v2

ff

1822

“
1

`

n´2
n˚´2

˘

1
`

n˚´2
r´2

˘

ÿ

V‹Ărns:v1,v2PV‹

ÿ

i1,¨¨¨ ,ir´2ĂV‹ztv1,v2u
hpAv1,v2,i1,¨¨¨ ,ir´2

q1823

“
1

`

n´2
n˚´2

˘

1
`

n˚´2
r´2

˘

ˆ

n´ 2

r´ 2

˙ˆ

n´ r

n˚ ´ r

˙

pav1v2 “ pav1v21824

where we recall the definition of paij from (8.82). Combining this with (8.119), we have1825

pgb2pv1, v2q “
n´ 3

pn´ n˚ ´ 1q

” n´ 2

n´ n˚
ppav1v2 ´ pUnq ´

n´ 1

n´ n˚
ppav1 ´ pUnq ´

n´ 1

n´ n˚
ppav2 ´ pUnq

ı

1826

“
pn´ 3qpn´ 1q

pn´ n˚ ´ 1qpn´ n˚q

”

ppav1v2 ´ pUnq ´ ppav1 ´ pUnq ´ ppav2 ´ pUnq
ı

1827

´
pn´ 3q

pn´ n˚ ´ 1qpn´ n˚q
ppav1v2 ´ pUnq.1828

Then we have1829

E˚rpgb1pv1qpg
b
1pv2qpg

b
2pv1, v2qs “

1
`

n
2

˘

ÿ

1ďv1ăv2ďn

pgb1pv1qpg
b
1pv2qpg

b
2pv1, v2q1830

“
pn´ 3qpn´ 1q3

pn´ n˚ ´ 1qpn´ n˚q3
pErg1pX1qg1pX2qg2pX1,X2qs1831

´
pn´ 3qpn´ 1q2

pn´ n˚ ´ 1qpn´ n˚q3
¨

1
`

n
2

˘

ÿ

1ďiăjďn

pg1pX1qpg1pX2qrpg2pX1,X2q ` pg1pX1q ` pg1pX2qs1832

“
pn´ 3qpn´ 1q3

pn´ n˚ ´ 1qpn´ n˚q3
pErg1pX1qg1pX2qg2pX1,X2qs ` rOp

ˆ

pn´ 3qpn´ 1q2

pn´ n˚ ´ 1qpn´ n˚q3
¨ ρ3s´1
n log1{2 n

˙

1833

where in the last line, we used that, pg1pX1q
p
— ρsn,pg2pX1,X2q

p
— ρs´1

n with probability at1834

least 1´Opn´1q by the proof of Theorem 3.2. Define αn˚ “ pn´ 1q{pn´n˚q. Now we can1835

rewrite (8.117) as follows1836

G˚n˚pxq “Φpxq `
ϕpxq

a

n˚p1´ n˚{nq ¨ α3
n˚

pξ3
1

"

2x2 ` 1

6
¨ α3

n˚
pErg3

1pX1qs1837

`
r´ 1

2
¨ α3

n˚px
2 ` 1qpErg1pX1qg1pX2qg2pX1,X2qs1838
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´
n´ 3

pn´ n˚ ´ 1qpn´ n˚q

r´ 1

2
¨ α2

n˚px
2 ` 1q ¨ rOppρ

3s´1
n log1{2 nq

*

1839

“ pGn˚p1´n˚{nqpuq ` rOp

#

log1{2 n
a

n˚p1´ n˚{nqpn´ n˚qρn

+

1840

where recall that pGnpuq was defined Theoem 3.2. Finally, we have1841

›

›

›
G˚n˚puq ´

pGn˚p1´n˚{nqpuq
›

›

›

8
“ rOp

#

log1{2pnq
a

n˚p1´ n˚{nqpn´ n˚qρn

+

1842

where the last equation is due to ρn “ ωpn´1{rq and n´n˚ — n. Combining this with Theo-1843

rem 3.1 and Theorem 3.2, by a triangular inequality, we have1844

(8.120)
›

›

›
F

pT˚n
puq ´ F

pTn˚p1´n˚{nq
puq

›

›

›

8
“ opppn

˚q´1{2q.

This completes the proof of Theorem 4.1 for sub-sampling, since the uniform convergence1845

rate of the Edgeworth expansion is governed by the worst convergence rate of its coefficient1846

terms.1847

Now we discuss the re-sampling scheme. Sampling tv1, ¨ ¨ ¨ , vn˚u with replacement from1848

a finite population rns is equivalent to sampling without replacement from a population in1849

which each of rns are repeated infinite many times with the same infinite cardinality such1850

that a uniform sampler will still take each of rns with equal probabilities. This amounts1851

to set the “n” in Bloznelis [23] to “n “ 8”4. Notice, however, the “n” in [23] should1852

not be confused with our network size n in the expressions of ξ˚1 , E˚r
 

pgb1pv1q
(3
s and1853

E˚rpgb1pv1qpg
b
1pv2qpg

b
2pv1, v2qs. Therefore, the re-sampling bootstrap Edgeworth expansion is1854

the following slight-modification of (8.117):1855

G˚n˚pxq :“Φpxq `
ϕpxq

?
n˚ ¨ pξ˚1 q

3 ¨

#

2x2 ` 1

6
¨E˚

!

pgb1pv1q

)3
1856

`
r´ 1

2
¨
`

x2 ` 1
˘

E˚rpgb1pv1qpg
b
1pv2qpg

b
2pv1, v2qs

+

(8.121)1857

The rest of the proof is exactly similar to that for sub-sampling and thus will be omitted. The1858

proof of Theorem 4.1 is completed.1859

PROOF OF THEOREM 4.2. The key to this proof is to establish the local monotonic-1860

ity of the function Gnp¨q. The local curvature of Gn is handier to use than that of F
pTn

,1861

because the distribution of pTn may not be exactly continuous, and the classical result1862

FZpZq „ Uniformr0,1s (thus PpFZpZq ď uq “ u for any u P r0,1s) for a continuous ran-1863

dom variable Z does not necessarily apply. On the other hand, by construction, Gn is always1864

smooth.1865

Now notice that not only Gnp¨q uniformly converges to the Np0,1q CDF Φp¨q, but further,1866

these two functions are both smooth and supu |G
1
npuq ´Φ1puq| Ñ 0 (while the CDF F

pTn
p¨q1867

is not necessarily continuous). Therefore, there exists a large enough constant n0 and small1868

constants ε0 ą 0, δ0 ą 0, such that the following two properties hold simultaneously1869

4Here, we clarify that the “n” in “n“8” should be understood as the size of the finite population for boot-
strapping, among the notation system of [23], not the “n” in most of this paper as the network size.
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(i). For all ně n0, we have Gnpuq ě α{2` ε0 for all uě zα{2 ` δ0; and Gnpuq ď α{2´ ε01870

for all uď zα{2 ´ δ01871

(ii). For all ně n0, on the interval u P rzα{2 ´ δ0, zα{2 ` δ0s, we have 0ăCα{2 ďG
1
npuq ď1872

Dα{2 and constants Cα{2,Dα{2 only depend on α.1873

Properties (ii) implies thatGn is strictly monotone and thus invertible in rzα{2´δ0, zα{2`δ0s,1874

and specifically, G´1
n pα{2q is well-defined. Then by (i), we have G´1

n pα{2q P rzα{2 ´1875

δ0, zα{2 ` δ0s, and by (ii), we know that G´1
n pu

1q is also Lipschitz on u1 P rGnpzα{2 ´1876

δ0q,Gnpzα{2 ` δ0qs.1877

Now we are ready to begin the main proof for Type-I error rate. We have1878

Type-I error rate :“PH0

´

2 ¨min
!

pGnp pTnq,1´ pGnp pTnq
)

ă α
¯

1879

(α is small)“EH0

”

1
r pGnp pTnqďα{2s

` 1
r pGnp pTnqą1´α{2s

ı

1880

(Theorems 3.1 + 3.2)“EH0

”

1
rGnp pTnqďα{2s

` 1
rGnp pTnqą1´α{2s

ı

1881

`EH0

”

1
r pGnp pTnqďα{2s

´ 1
rGnp pTnqďα{2s

ı

1882

`EH0

”

1
r pGnp pTnqą1´α{2s

´ 1
rGnp pTnqą1´α{2s

ı

1883

“PH0

´

Gnp pTnq ď α{2
¯

` PH0

´

Gnp pTnq ě 1´ α{2
¯

(8.122)1884

`O pMpρn, n;Rqq,1885

where the last equality is due to (recall from the proof of Theorem 3.2 that } pGnpxq ´1886

Gnpxq}8 “ rOppρ
´1
n n´1q)1887

EH0

ˇ

ˇ

ˇ
1
r pGnp pTnqďα{2s

´ 1
rGnp pTnqďα{2s

ˇ

ˇ

ˇ
1888

“PH0

`

pGnp pTnq ď α{2,Gnp pTnq ą α{2
˘

` PH0

`

pGnp pTnq ą α{2,Gnp pTnq ď α{2
˘

1889

“PH0

`

Gnp pTnq ď α{2`Opρ
´1
n n´1q,Gnp pTnq ą α{2

˘

1890

` PH0

`

Gnp pTnq ą α{2´Opρ
´1
n n´1q,Gnp pTnq ď α{2

˘

`Opn´1q1891

(Invertibility of Gnp¨q)“PH0

´

G´1
n pα{2´Opρ

´1
n n´1qq ď pTn ďG

´1
n pα{2`Opρ

´1
n n´1qq

¯

1892

`Opn´1q1893

pTheorem 3.1q “GnpG´1
n pα{2`Opρ

´1
n n´1qqq ´GnpG

´1
n pα{2´Opρ

´1
n n´1qqq1894

`O pMpρn, n;Rqq “O pMpρn, n;Rqq.1895

Now we continue (8.122) and bound P
´

Gnp pTnq ď α{2
¯

. We have1896

P
´

Gnp pTnq ďα{2
¯

“ P
´

Gnp pTnq ď α{2, pTn P rzα{2 ´ δ0, zα{2 ` δ0s

¯

1897

` P
´

Gnp pTnq ď α{2, pTn ą zα{2 ` δ0

¯

1898

` P
´

Gnp pTnq ď α{2, pTn ă zα{2 ´ δ0

¯

1899

(Property (i))“P
´

Gnp pTnq ď α{2, pTn P rzα{2 ´ δ0, zα{2 ` δ0s

¯

` P
´

pTn ă zα{2 ´ δ0

¯

1900



NETWORK EDGEWORTH EXPANSION 77

“P
´

pTn ďG
´1
n pα{2q,

pTn P rzα{2 ´ δ0, zα{2 ` δ0s

¯

` P
´

pTn ă zα{2 ´ δ0

¯

1901

(Since G´1
n pα{2q ězα{2 ´ δ0q “ P

´

pTn ďG
´1
n pα{2q

¯

“ F
pTn
pG´1

n pα{2qq1902

“GnpG
´1
n pα{2qq `O pMpρn, n;Rqq “ α{2`O pMpρn, n;Rqq1903

The other term P
´

Gnp pTnq ě 1´ α{2
¯

can be handled exactly similarly, and the proof of1904

part 1 of Theorem 4.2 is completed.1905

Now we move on to prove part 2 of the theorem. |cn ´ dn| “ ωpρsn ¨ n
´1{2q. When Ha is

true, we have µn “ dn, and rewrite

pTn :“
pUn ´ dn

pSn
`
dn ´ cn

pSn

Since pSn “ rOppρ
s
n ¨ n

´1{2q, we have
ˇ

ˇ

ˇ

ˇ

dn ´ cn
pSn

ˇ

ˇ

ˇ

ˇ

p
Ñ8, and therefore, | pTn|

p
Ñ8

By definition of Type-II error, this finishes the proof of part 2 of Theorem 4.2.1906

1907

PROOF OF THEOREM 4.3. We first prove (4.6). By definition, we have1908

ˇ

ˇ

ˇ
F

pTn
pq

pTn;α
q ´ α

ˇ

ˇ

ˇ
“F

pTn
pq

pTn;α
q ´ αď F

pTn
pq

pTn;α
q ´ F

pTn
pq

pTn;α
´ 0`q1909

ď

ˇ

ˇ

ˇ
F

pTn
pq

pTn;α
q ´Gnpq

pTn;α
q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
Gnpq

pTn;α
q ´Gnpq

pTn;α
´ 0`q

ˇ

ˇ

ˇ
1910

`

ˇ

ˇ

ˇ
Gnpq

pTn;α
´ 0`q ´ F

pTn
pq

pTn;α
´ 0`q

ˇ

ˇ

ˇ
1911

ďO pMpρn, n;Rqq ` 0` “O pMpρn, n;Rqq1912

where 0` represents an arbitrarily small positive number that may depend on n, and in the1913

last line we used the fact that Gnpxq is globally uniformly Lipschitz. This proves (4.6).1914

Then we prove the horizontal bound (4.7). Define1915

rq
pTn;α

:“ zα ´
1

?
n ¨ ξ3

1

¨

#

2z2
α ` 1

6
¨Erg3

1pX1qs1916

`
r´ 1

2
¨
`

z2
α ` 1

˘

Erg1pX1qg1pX2qg2pX1,X2qs

+

1917

For convenience, let us simply denote the n´1{2 term in the Edgeworth expansion by Γpxq:1918

Γpxq :“
1

ξ3
1

¨

#

2x2 ` 1

6
¨Erg3

1pX1qs `
r´ 1

2
¨
`

x2 ` 1
˘

Erg1pX1qg1pX2qg2pX1,X2qs

+

1919

pΓpxq :“
1

pξ3
1

¨

#

2x2 ` 1

6
¨ pErg3

1pX1qs `
r´ 1

2
¨
`

x2 ` 1
˘

pErg1pX1qg1pX2qg2pX1,X2qs

+

1920

We have1921

Gnpxq “Φpxq ` n´1{2 ¨ Γpxqϕpxq1922
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rq
pTn;α

“ zα ´ n
´1{2 ¨ Γpzαq1923

pq
pTn;α

“ zα ´ n
´1{2 ¨ pΓpzαq1924

Then the proof of Theorem 3.2 immediately implies that
ˇ

ˇ

ˇ
pq
pTn;α

´ rq
pTn;α

ˇ

ˇ

ˇ
“ rOppρ

´1
n n´1 log1{2 nq.1925

Mimicking the inversion formula in [65], we have1926

Gn

ˆ

x´
1
?
n
¨ Γpxq

˙

“Φ

ˆ

x´
1
?
n
¨ Γpxq

˙

`
1
?
n
¨ Γ

ˆ

x´
1
?
n
¨ Γpxq

˙

ϕ

ˆ

x´
1
?
n
¨ Γpxq

˙

1927

“Φpxq `O
`

n´1
˘

.(8.123)1928

Also notice that the remainder bound in (8.123) holds uniformly over all x P R. As [65]1929

pointed out, in a more general setting, the inversion formula (8.123) might not always have1930

a uniform Opn´1q error bound, when the leading term in the Edgeworth expansion contains1931

a jump function component, in which case the uniform error bound of the Cornish-Fisher1932

expansion is just Opn´1{2q. But in our setting, Γpxq is always continuous, and moreover,1933

Lipscitz, so [65]’s remark would not be a concern.1934

We continue our proof. By Theorem 3.1 and (8.123), we have1935

Gnprq
pTn;α
q “ α`Opn´1q(8.124)1936

Gnpq
pTn;α
q “ F

pTn
pq

pTn;α
q `O pMpρn, n;Rqq(8.125)1937

Since for any given α and large enough n, properties (i) and (ii) of Gnp¨q, with “α{2, ε0,1938

δ0, n0” replaced by “α, ε10, δ10, n10”, around a neighborhood of zα. This yields that for large1939

enough n, both q
pTn;α

and rq
pTn;α

belong to rzα ´ ε10, zα ` ε
1
0s. Then using the invertibility and1940

the Lipschitz property of the inverse function of Gnp¨q within this compact neighborhood,1941

we have1942

|rq
pTn;α

´ q
pTn;α
|ĺ |Gnprq

pTn;α
q ´Gnpq

pTn;α
q|1943

“O pMpρn, n;Rqq(8.126)1944

Combining this with the error bound on |rq
pTn;α

´ pq
pTn;α
| we obtained earlier finishes the proof1945

of the horizontal error bound (4.7).1946

Now we prove the vertical error bound (4.8). Here we should be careful that Pp pTn ď pq
pTn;α
q

does not equal F
pTn
ppq

pTn;α
q, as the former is non-random and the latter is random. In order to

study Pp pTn ď pq
pTn;α
q, we seek the help from rq

pTn;α
and appeal to the basic definition. By the

horizontal error bound, we know that with probability 1´Opn´1q, we have

|rq
pTn;α

´ pq
pTn;α
| ďC ¨Mpρn, n;Rq

for some constant C ą 0. This yields that under the above event1947

F
pTn
prq

pTn;α
´C ¨Mpρn, n;Rqq “ Pp pTn ď rq

pTn;α
´C ¨Mpρn, n;Rqq1948

ďPp pTn ď pq
pTn;α
q1949

ďPp pTn ď rq
pTn;α

`C ¨Mpρn, n;Rqq “ F
pTn
prq

pTn;α
`C ¨Mpρn, n;Rqq1950

Recall that Gnp¨q is globally Lipscitz for large enough n, we have1951

F
pTn
prq

pTn;α
`C ¨Mpρn, n;Rqq “Gnprq

pTn;α
`C ¨Mpρn, n;Rqq `O pMpρn, n;Rqq1952

“Gnprq
pTn;α
q `O pMpρn, n;Rqq “ α`O pMpρn, n;Rqq1953

This proves the vertical error bound (4.8) and concludes the proof of Theorem 4.3.1954

1955
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9. Additional simulation results.1956

9.1. Additional results in Simulation 5.1. In this section, we show additional simulation1957

results under different network sparsity settings. We tested ρn — n´1{4, n´1{3 and n´1{2.1958

Notice that some of these settings constitute violations of our assumptions ρn assumptions.1959

We adjusted the constant factors in ρn such that all settings start with roughly equal network1960

densities for n“ 10. Results are shown in Figures 6–8 (errors) and Figures 9–11 (time costs),1961

where error bars show standard deviations.1962

The plots show that the accuracy of all methods depreciate as the network becomes sparser.1963

Recall that our loss function is the error in approximating F
pTn

, and that pTn is normalized by1964

the denominator pSn — ρsn ¨ n
´1{2, it is therefore understandable that sparser networks are1965

more difficult. Apart from that error bounds would depreciate with a smaller ρn, as in our1966

Theorems 3.1 and 3.2; the performances of our method in some scenarios also seemed to be1967

limited by numerical accuracy, possibly in the Monte Carlo evaluations of the true F
pTn

. But1968

overall, our method remains the best performer and higher-order accurate in scenarios where1969

the sparsity assumptions are satisfied. The time cost plots can be interpreted similarly to that1970

in the main paper text.1971

9.2. Additional results in Simulation 5.2. In this subsection we present the results for1972

more settings, including n “ 160 and more sparsity levels. Results are reported in Tables1973

6–23.1974

TABLE 6
Performance measures of 95% confidence intervals

n“ 80, ρn — n´1{4, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.960p0.196q
Length “ 0.084p0.009q

LogTime “´8.419p0.135q

0.954p0.209q
0.024p0.005q
´7.450p0.118q

0.957p0.203q
0.144p0.024q
´7.404p0.108q

0.953p0.212q
0.087p0.020q
´6.405p0.774q

Norm. Approx.
0.953p0.212q
0.084p0.009q
No time cost

0.935p0.247q
0.024p0.005q
No time cost

0.944p0.230q
0.144p0.024q
No time cost

0.933p0.251q
0.087p0.020q
No time cost

Bhattacharyya and Bickel [17]
0.830p0.376q
0.058p0.008q
´2.599p0.028q

0.856p0.351q
0.019p0.004q
´2.137p0.020q

0.832p0.374q
0.106p0.019q
´2.195p0.031q

0.858p0.349q
0.069p0.016q
´0.987p0.015q

Green and Shalizi [61]
0.934p0.249q
0.082p0.011q
´1.202p0.019q

0.936p0.245q
0.027p0.006q
0.548p0.051q

0.942p0.234q
0.145p0.028q
0.085p0.052q

0.938p0.241q
0.089p0.023q
0.353p0.012q

Levin and Levina [93]
0.954p0.210q
0.085p0.011q
´1.193p0.014q

0.956p0.205q
0.026p0.006q
0.574p0.040q

0.956p0.205q
0.150p0.028q
0.074p0.044q

0.952p0.214q
0.094p0.023q
0.403p0.006q

9.3. Additional results in Simulation 5.3. In this simulation, all settings are carried over1975

from Simulation 5.3 except that n“ 80. The results are shown in Figure 12. We observed the1976

anticipated depreciation in the performances of all methods, while our method maintains a1977

consistent advantage over the closest competitors.1978

The impact of ρn on the computation time is a subtle topic. Since our simulation runs1979

across dense and sparse regimes, for simplicity and wide-applicability of the code, we did1980

not engage sparse matrix computation procedures. Consequently, the time cost for all ρn’s1981

are nearly the same for all methods. Here, we only show the time costs for n“ 80 in Figure1982

13, and the analogous plot for n “ 160 looks exactly similar and is thus omitted here. We1983

leave the study of improving computational efficiency for sparse ρn’s to future work.1984
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Fig 6: CDF approximation errors, ρn — n´1{4. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 7: CDF approximation errors, ρn — n´1{3. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 8: CDF approximation errors, ρn — n´1{2. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 9: CDF approximation times, ρn — n´1{4. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 10: CDF approximation times, ρn — n´1{3. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 11: CDF approximation times, ρn — n´1{2. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 12: Impact of sparsity on approximation errors, n “ 80. Both axes are log(e)-scaled.
Motifs: row 1: Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid
curve marked circle: our method (empirical Edgeworth); black dashed curve marked down-
triangle: Np0,1q approximation; green dashed curve marked up-triangle: re-sampling of A
in [61]; blue dashed curve marked plus: [17] sub-sampling — n nodes; magenta dashed line
with square markers: ASE plug-in bootstrap in [93]. We regarded Np0,1q as zero time cost
so does not appear in the time cost plot.
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Fig 13: Impact of sparsity on time cost, n“ 80. We used regular (non-sparse) matrix variables
in MATLAB. Both axes are log(e)-scaled. Motifs: row 1: Edge; row 2: Triangle; row
3: Vshape; row 4: ThreeStar. Red solid curve marked circle: our method (empirical
Edgeworth); green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93]. We regarded Np0,1q as zero time cost so does not appear in
the time cost plot.
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TABLE 7
Performance measures of 95% confidence intervals
n“ 80, ρn — n´1{4, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.961p0.193q
Length “ 0.078p0.008q

LogTime “´8.226p0.044q

0.942p0.234q
0.013p0.003q
´7.468p0.116q

0.955p0.208q
0.101p0.018q
´7.439p0.073q

0.945p0.229q
0.050p0.013q
´6.599p0.687q

Norm. Approx.
0.953p0.211q
0.078p0.008q
No time cost

0.922p0.268q
0.013p0.003q
No time cost

0.939p0.239q
0.101p0.018q
No time cost

0.923p0.266q
0.050p0.013q
No time cost

Bhattacharyya and Bickel [17]
0.822p0.383q
0.056p0.007q
´2.562p0.008q

0.850p0.357q
0.011p0.003q
´2.111p0.099q

0.852p0.355q
0.079p0.015q
´2.198p0.044q

0.848p0.359q
0.045p0.012q
´0.995p0.012q

Green and Shalizi [61]
0.928p0.259q
0.078p0.010q
´1.148p0.010q

0.948p0.222q
0.015p0.004q
0.504p0.057q

0.934p0.249q
0.105p0.021q
0.104p0.102q

0.944p0.230q
0.054p0.015q
0.322p0.017q

Levin and Levina [93]
0.942p0.234q
0.082p0.010q
´1.146p0.004q

0.960p0.196q
0.015p0.004q
0.514p0.048q

0.954p0.210q
0.111p0.022q
0.056p0.055q

0.962p0.191q
0.058p0.016q
0.387p0.011q

TABLE 8
Performance measures of 95% confidence intervals
n“ 80, ρn — n´1{4, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.960p0.196q
Length “ 0.101p0.008q

LogTime “´7.996p0.058q

0.961p0.193q
0.083p0.007q
´7.652p0.145q

0.961p0.193q
0.310p0.022q
´7.611p0.133q

0.963p0.189q
0.329p0.029q
´6.789p0.618q

Norm. Approx.
0.957p0.202q
0.101p0.008q
No time cost

0.955p0.208q
0.083p0.007q
No time cost

0.957p0.204q
0.310p0.022q
No time cost

0.956p0.206q
0.329p0.029q
No time cost

Bhattacharyya and Bickel [17]
0.832p0.374q
0.070p0.008q
´2.559p0.048q

0.838p0.369q
0.059p0.007q
´2.151p0.029q

0.834p0.372q
0.216p0.023q
´2.129p0.029q

0.838p0.369q
0.233p0.027q
´1.000p0.042q

Green and Shalizi [61]
0.930p0.255q
0.097p0.011q
´1.152p0.027q

0.934p0.249q
0.083p0.009q
0.488p0.054q

0.944p0.230q
0.301p0.030q
0.144p0.041q

0.950p0.218q
0.323p0.036q
0.341p0.033q

Levin and Levina [93]
0.962p0.191q
0.101p0.011q
´1.145p0.027q

0.972p0.165q
0.086p0.010q
0.479p0.052q

0.966p0.181q
0.314p0.031q
0.141p0.040q

0.970p0.171q
0.338p0.038q
0.463p0.023q

9.4. Additional simulation results for degree-corrected stochastic block models. Here
we present the simulation results under a degree-corrected stochastic block model [83]. We
generate data from the stochastic block model BlockModel that we tested in Section 5,
with the following degree correction function

θpxq :“ | cosπ¨px´ 1{2q|.

The results are reported in Figures 14 – 17. We observe the clear advantage of our method1985

over benchmarks, as predicted by our theory.1986
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Fig 14: CDF approximation errors for degree-corrected stochastic block model. Sparsity:
column 1: ρn — 1; column 2: ρn — n´1{4 Both axes are log(e)-scaled. Motifs: row 1: Edge;
row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle:
our method (empirical Edgeworth); black dashed curve marked down-triangle: Np0,1q ap-
proximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 15: CDF approximation errors for degree-corrected stochastic block model. Sparsity:
column 1: ρn — n´1{3; column 2: ρn — n´1{2 Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle:Np0,1q
approximation; green dashed curve marked up-triangle: re-sampling ofA in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 16: CDF approximation times for degree-corrected stochastic block model. Sparsity: col-
umn 1: ρn — 1; column 2: ρn — n´1{4 Both axes are log(e)-scaled. Motifs: row 1: Edge;
row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle:
our method (empirical Edgeworth); black dashed curve marked down-triangle: Np0,1q ap-
proximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].



92 ZHANG AND XIA

Fig 17: CDF approximation times for degree-corrected stochastic block model. Sparsity: col-
umn 1: ρn — n´1{3; column 2: ρn — n´1{2 Both axes are log(e)-scaled. Motifs: row 1: Edge;
row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle:
our method (empirical Edgeworth); black dashed curve marked down-triangle: Np0,1q ap-
proximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling — n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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TABLE 9
Performance measures of 95% confidence intervals

n“ 80, ρn — n´1{2, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.969p0.172q
Length “ 0.046p0.005q

LogTime “´8.335p0.153q

0.956p0.206q
0.003p0.001q
´7.139p0.113q

0.964p0.187q
0.037p0.007q
´7.212p0.104q

0.953p0.212q
0.011p0.003q
´7.153p0.338q

Norm. Approx.
0.967p0.180q
0.046p0.005q
No time cost

0.946p0.226q
0.003p0.001q
No time cost

0.956p0.206q
0.037p0.007q
No time cost

0.945p0.229q
0.011p0.003q
No time cost

Bhattacharyya and Bickel [17]
0.824p0.381q
0.031p0.005q
´2.588p0.008q

0.848p0.359q
0.003p0.001q
´2.107p0.084q

0.840p0.367q
0.027p0.006q
´2.123p0.009q

0.852p0.355q
0.009p0.003q
´1.027p0.008q

Green and Shalizi [61]
0.952p0.214q
0.044p0.007q
´1.159p0.010q

0.936p0.245q
0.004p0.001q
0.500p0.039q

0.940p0.238q
0.035p0.008q
0.199p0.045q

0.910p0.286q
0.010p0.003q
0.341p0.021q

Levin and Levina [93]
0.972p0.165q
0.047p0.007q
´1.148p0.005q

0.966p0.181q
0.004p0.001q
0.521p0.036q

0.966p0.181q
0.040p0.009q
0.220p0.027q

0.962p0.191q
0.012p0.004q
0.444p0.009q

TABLE 10
Performance measures of 95% confidence intervals
n“ 80, ρn — n´1{2, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.967p0.179q
Length “ 0.042p0.005q

LogTime “´8.213p0.047q

0.931p0.253q
0.002p0.001q
´7.618p0.111q

0.956p0.205q
0.026p0.005q
´7.152p0.107q

0.930p0.256q
0.006p0.002q
´7.147p0.318q

Norm. Approx.
0.963p0.189q
0.042p0.005q
No time cost

0.932p0.252q
0.002p0.001q
No time cost
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TABLE 11
Performance measures of 95% confidence intervals
n“ 80, ρn — n´1{2, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.974p0.159q
Length “ 0.059p0.005q

LogTime “´8.196p0.051q

0.974p0.159q
0.011p0.002q
´7.297p0.134q

0.974p0.160q
0.087p0.009q
´7.314p0.140q

0.973p0.164q
0.045p0.006q
´7.011p0.405q

Norm. Approx.
0.973p0.162q
0.059p0.005q
No time cost

0.969p0.174q
0.011p0.002q
No time cost

0.973p0.164q
0.087p0.009q
No time cost

0.970p0.171q
0.045p0.006q
No time cost

Bhattacharyya and Bickel [17]
0.850p0.357q
0.040p0.005q
´2.543p0.115q

0.852p0.355q
0.008p0.001q
´2.118p0.022q

0.852p0.355q
0.060p0.008q
´2.195p0.021q

0.860p0.347q
0.033p0.006q
´0.965p0.047q

Green and Shalizi [61]
0.944p0.230q
0.055p0.006q
´1.135p0.058q

0.942p0.234q
0.011p0.002q
0.590p0.089q

0.950p0.218q
0.082p0.011q
0.134p0.041q

0.946p0.226q
0.041p0.008q
0.383p0.038q

Levin and Levina [93]
0.966p0.181q
0.059p0.006q
´1.130p0.059q

0.972p0.165q
0.012p0.002q
0.556p0.029q

0.968p0.176q
0.090p0.011q
0.121p0.036q

0.968p0.176q
0.048p0.008q
0.498p0.024q

TABLE 12
Performance measures of 95% confidence intervals

n“ 80, ρn — n´1, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.987p0.115q
Length “ 0.016p0.002q

LogTime “´8.487p0.176q

0.000p0.000q
0.000p0.000q
´7.230p0.105q

0.949p0.219q
0.003p0.001q
´7.422p0.114q

0.646p0.478q
0.000p0.000q
´7.183p0.322q

Norm. Approx.
0.983p0.129q
0.016p0.002q
No time cost

0.708p0.455q
0.000p0.000q
No time cost

0.959p0.199q
0.003p0.001q
No time cost

0.914p0.280q
0.000p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.904p0.295q
0.011p0.002q
´2.579p0.005q

0.620p0.486q
Inf(NaN)

´2.121p0.050q

0.898p0.303q
Inf(NaN)

´2.137p0.015q

0.906p0.292q
Inf(NaN)

´1.080p0.006q

Green and Shalizi [61]
0.972p0.165q
0.015p0.002q
´1.158p0.005q

0.672p0.470q
Inf(NaN)

0.489p0.050q

0.896p0.306q
0.002p0.001q
0.203p0.030q

0.768p0.423q
0.000p0.000q
0.299p0.015q

Levin and Levina [93]
0.984p0.126q
0.019p0.024q
´1.146p0.004q

0.706p0.456q
0.000p0.000q
0.509p0.031q

0.996p0.063q
Inf(NaN)

0.223p0.026q

0.996p0.063q
Inf(NaN)

0.434p0.006q
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TABLE 13
Performance measures of 95% confidence intervals
n“ 80, ρn — n´1, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.984p0.126q
Length “ 0.014p0.002q

LogTime “´8.205p0.054q

0.000p0.000q
0.000p0.000q
´7.243p0.071q

0.909p0.287q
0.002p0.001q
´7.276p0.103q

0.503p0.500q
0.000p0.000q
´7.098p0.400q

Norm. Approx.
0.981p0.138q
0.014p0.002q
No time cost

0.426p0.495q
0.000p0.000q
No time cost

0.948p0.223q
0.002p0.001q
No time cost

0.875p0.331q
0.000p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.910p0.288q
0.009p0.001q
´1.632p0.005q

0.300p0.461q
Inf(NaN)

´1.182p0.044q

0.910p0.288q
Inf(NaN)

´1.181p0.041q

0.920p0.273q
Inf(NaN)

´0.141p0.009q

Green and Shalizi [61]
0.940p0.239q
0.013p0.002q
´0.217p0.010q

0.380p0.488q
Inf(NaN)

1.553p0.030q

0.900p0.302q
0.001p0.001q
1.142p0.042q

0.750p0.435q
0.000p0.000q
1.167p0.016q

Levin and Levina [93]
0.980p0.141q

41.865p418.438q
´0.213p0.008q

0.380p0.488q
Inf(NaN)

1.567p0.019q

0.970p0.171q
Inf(NaN)

1.120p0.018q

0.990p0.100q
Inf(NaN)

1.245p0.014q

TABLE 14
Performance measures of 95% confidence intervals
n“ 80, ρn — n´1, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.989p0.103q
Length “ 0.022p0.002q

LogTime “´8.242p0.096q

0.896p0.305q
0.000p0.000q
´7.355p0.085q

0.980p0.139q
0.007p0.001q
´7.356p0.088q

0.911p0.285q
0.001p0.000q
´7.101p0.343q

Norm. Approx.
0.989p0.106q
0.022p0.002q
No time cost

0.963p0.189q
0.000p0.000q
No time cost

0.980p0.142q
0.007p0.001q
No time cost

0.962p0.192q
0.001p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.894p0.308q
0.015p0.002q
´2.571p0.015q

0.908p0.289q
Inf(NaN)

´2.171p0.012q

0.916p0.278q
0.005p0.001q
´2.128p0.020q

0.908p0.289q
0.001p0.000q
´1.043p0.007q

Green and Shalizi [61]
0.964p0.186q
0.020p0.002q
´1.191p0.012q

0.968p0.176q
Inf(NaN)

0.567p0.120q

0.936p0.245q
0.006p0.001q
0.219p0.024q

0.848p0.359q
0.001p0.000q
0.343p0.012q

Levin and Levina [93]
0.986p0.118q
0.023p0.003q
´1.183p0.010q

0.984p0.126q
0.000p0.000q
0.529p0.083q
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0.008p0.002q
0.236p0.034q

0.992p0.089q
0.001p0.000q
0.450p0.013q
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TABLE 15
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1{4, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.957p0.204q
Length “ 0.048p0.004q

LogTime “´7.068p0.086q

0.954p0.211q
0.010p0.001q
´6.643p0.137q

0.954p0.210q
0.070p0.008q
´6.161p0.337q

0.951p0.216q
0.036p0.006q
´6.132p0.241q

Norm. Approx.
0.954p0.209q
0.048p0.004q
No time cost

0.943p0.232q
0.010p0.001q
No time cost

0.949p0.221q
0.070p0.008q
No time cost

0.943p0.232q
0.036p0.006q
No time cost

Bhattacharyya and Bickel [17]
0.828p0.378q
0.033p0.003q
´1.198p0.004q

0.834p0.372q
0.007p0.001q
0.547p0.042q

0.828p0.378q
0.049p0.007q
0.138p0.079q

0.836p0.371q
0.026p0.004q
0.328p0.021q

Green and Shalizi [61]
0.934p0.249q
0.047p0.005q
0.574p0.006q

0.940p0.238q
0.010p0.002q
2.077p0.047q

0.940p0.238q
0.069p0.010q
2.548p0.041q

0.940p0.238q
0.035p0.006q
2.099p0.005q

Levin and Levina [93]
0.948p0.222q
0.048p0.005q
0.582p0.005q

0.952p0.214q
0.010p0.002q
2.096p0.042q

0.952p0.214q
0.070p0.010q
2.541p0.039q

0.952p0.214q
0.036p0.006q
2.268p0.005q

TABLE 16
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1{4, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.958p0.200q
Length “ 0.045p0.003q

LogTime “´7.305p0.064q

0.949p0.220q
0.005p0.001q
´6.596p0.222q

0.954p0.209q
0.049p0.006q
´6.151p0.328q

0.951p0.215q
0.020p0.004q
´6.117p0.240q

Norm. Approx.
0.954p0.209q
0.045p0.003q
No time cost

0.941p0.236q
0.005p0.001q
No time cost

0.946p0.225q
0.049p0.006q
No time cost

0.941p0.235q
0.020p0.004q
No time cost

Bhattacharyya and Bickel [17]
0.850p0.357q
0.032p0.003q
´1.151p0.003q

0.856p0.351q
0.004p0.001q
0.512p0.045q

0.842p0.365q
0.036p0.005q
0.126p0.107q

0.860p0.347q
0.016p0.003q
0.314p0.021q

Green and Shalizi [61]
0.948p0.222q
0.044p0.004q
0.624p0.013q

0.946p0.226q
0.005p0.001q
2.004p0.050q

0.944p0.230q
0.049p0.007q
2.533p0.040q

0.950p0.218q
0.020p0.004q
2.103p0.010q

Levin and Levina [93]
0.956p0.205q
0.046p0.004q
0.625p0.009q

0.956p0.205q
0.006p0.001q
2.036p0.036q

0.964p0.186q
0.051p0.007q
2.536p0.040q

0.970p0.171q
0.022p0.004q
2.260p0.009q

[29] CAI, T. T. and MA, Z. (2013). Optimal hypothesis testing for high dimensional covariance matrices.2041

Bernoulli 19 2359–2388.2042

[30] CALLAERT, H. and JANSSEN, P. (1978). The Berry-Esseen Theorem for U -statistics. The Annals of Statis-2043

tics 6 417–421.2044

[31] CALLAERT, H., JANSSEN, P. and VERAVERBEKE, N. (1980). An Edgeworth Expansion for U -Statistics.2045
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[32] CALLAERT, H. and VERAVERBEKE, N. (1981). The Order of the Normal Approximation for a Studentized2047

U -Statistic. The Annals of Statistics 9 194–200.2048

[33] CANDES, E. J. and PLAN, Y. (2010). Matrix completion with noise. Proceedings of the IEEE 98 925–936.2049

[34] CHAN, S. and AIROLDI, E. (2014). A consistent histogram estimator for exchangeable graph models. In2050

International Conference on Machine Learning 208–216.2051

[35] CHATTERJEE, S. (2015). Matrix estimation by universal singular value thresholding. The Annals of Statis-2052

tics 43 177–214.2053

[36] CHEN, X. and KATO, K. (2019). Randomized incomplete U -statistics in high dimensions. The Annals of2054

Statistics 47 3127–3156.2055

[37] CHEN, S. and ONNELA, J.-P. (2019). A bootstrap method for goodness of fit and model Selection with a2056

Single observed network. Scientific reports 9 1–12.2057
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TABLE 17
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1{4, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.959p0.198q
Length “ 0.058p0.003q

LogTime “´7.164p0.080q

0.961p0.194q
0.034p0.002q
´6.145p0.477q

0.961p0.195q
0.150p0.007q
´6.043p0.343q

0.962p0.192q
0.134p0.008q
´5.933p0.330q

Norm. Approx.
0.958p0.201q
0.058p0.003q
No time cost

0.958p0.201q
0.034p0.002q
No time cost

0.959p0.198q
0.150p0.007q
No time cost

0.960p0.196q
0.134p0.008q
No time cost

Bhattacharyya and Bickel [17]
0.830p0.376q
0.040p0.004q
´1.160p0.005q

0.854p0.353q
0.024p0.002q
0.489p0.054q

0.840p0.367q
0.104p0.009q
0.158p0.046q

0.854p0.353q
0.093p0.009q
0.339p0.018q

Green and Shalizi [61]
0.938p0.241q
0.056p0.005q
0.640p0.011q

0.936p0.245q
0.033p0.003q
2.058p0.067q

0.936p0.245q
0.145p0.013q
2.727p0.036q

0.946p0.226q
0.130p0.012q
2.164p0.022q

Levin and Levina [93]
0.952p0.214q
0.058p0.005q
0.640p0.013q

0.952p0.214q
0.034p0.003q
2.059p0.060q

0.954p0.210q
0.150p0.013q
2.727p0.037q

0.952p0.214q
0.135p0.012q
2.345p0.015q

TABLE 18
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1{2, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.969p0.173q
Length “ 0.022p0.002q

LogTime “´7.301p0.074q

0.964p0.186q
0.001p0.000q
´6.859p0.116q

0.965p0.183q
0.012p0.002q
´6.461p0.416q

0.962p0.192q
0.003p0.000q
´6.281p0.245q

Norm. Approx.
0.966p0.182q
0.022p0.002q
No time cost

0.960p0.195q
0.001p0.000q
No time cost

0.961p0.195q
0.012p0.002q
No time cost

0.954p0.210q
0.003p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.836p0.371q
0.015p0.002q
´1.155p0.006q

0.852p0.355q
0.001p0.000q
0.555p0.056q

0.830p0.376q
0.009p0.001q
0.192p0.114q

0.864p0.343q
0.002p0.000q
0.360p0.038q

Green and Shalizi [61]
0.948p0.222q
0.021p0.002q
0.624p0.008q

0.944p0.230q
0.001p0.000q
2.060p0.067q

0.938p0.241q
0.011p0.002q
2.850p0.058q

0.916p0.278q
0.002p0.000q
2.142p0.028q

Levin and Levina [93]
0.970p0.171q
0.022p0.002q
0.630p0.009q

0.968p0.176q
0.001p0.000q
2.073p0.057q

0.970p0.171q
0.013p0.002q
2.853p0.052q

0.968p0.176q
0.003p0.001q
2.345p0.026q
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[46] CRANE, H. (2018). Probabilistic foundations of statistical network analysis. CRC Press.2073
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TABLE 19
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1{2, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.967p0.178q
Length “ 0.020p0.002q

LogTime “´7.279p0.075q

0.959p0.198q
0.000p0.000q
´6.744p0.149q

0.964p0.186q
0.009p0.001q
´6.337p0.377q

0.955p0.208q
0.001p0.000q
´6.378p0.215q

Norm. Approx.
0.966p0.183q
0.020p0.002q
No time cost

0.951p0.216q
0.000p0.000q
No time cost

0.958p0.201q
0.009p0.001q
No time cost

0.949p0.220q
0.001p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.852p0.355q
0.014p0.001q
´1.145p0.006q

0.870p0.337q
0.000p0.000q
0.533p0.082q

0.882p0.323q
0.006p0.001q
0.225p0.116q

0.880p0.325q
0.001p0.000q
0.452p0.012q

Green and Shalizi [61]
0.938p0.241q
0.019p0.002q
0.611p0.009q

0.956p0.205q
0.000p0.000q
1.997p0.116q

0.940p0.238q
0.008p0.001q
2.856p0.071q

0.920p0.272q
0.001p0.000q
2.328p0.012q

Levin and Levina [93]
0.962p0.191q
0.020p0.002q
0.619p0.013q

0.976p0.153q
0.000p0.000q
1.987p0.074q

0.966p0.181q
0.009p0.001q
2.848p0.055q

0.972p0.165q
0.002p0.000q
2.405p0.008q

TABLE 20
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1{2, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.972p0.164q
Length “ 0.028p0.002q

LogTime “´7.007p0.080q

0.974p0.159q
0.003p0.000q
´6.635p0.252q

0.974p0.161q
0.029p0.002q
´6.126p0.364q

0.975p0.157q
0.011p0.001q
´5.835p0.471q

Norm. Approx.
0.972p0.166q
0.028p0.002q
No time cost

0.973p0.163q
0.003p0.000q
No time cost

0.972p0.166q
0.029p0.002q
No time cost

0.973p0.161q
0.011p0.001q
No time cost

Bhattacharyya and Bickel [17]
0.852p0.355q
0.018p0.002q
´1.159p0.005q

0.868p0.339q
0.002p0.000q
0.565p0.048q

0.858p0.349q
0.019p0.002q
0.149p0.076q

0.874p0.332q
0.007p0.001q
0.376p0.022q

Green and Shalizi [61]
0.948p0.222q
0.026p0.002q
0.636p0.019q

0.954p0.210q
0.003p0.000q
2.079p0.101q

0.956p0.205q
0.027p0.003q
2.505p0.041q

0.946p0.226q
0.009p0.001q
2.241p0.015q

Levin and Levina [93]
0.956p0.205q
0.028p0.002q
0.640p0.013q

0.974p0.159q
0.003p0.000q
2.062p0.050q

0.966p0.181q
0.029p0.003q
2.519p0.038q

0.974p0.159q
0.011p0.001q
2.462p0.015q
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TABLE 21
Performance measures of 95% confidence intervals

n“ 160, ρn — n´1, graphon: block model

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.989p0.106q
Length “ 0.006p0.000q

LogTime “´7.284p0.063q

0.000p0.000q
0.000p0.000q
´6.939p0.150q

0.975p0.157q
0.000p0.000q
´6.462p0.321q

0.813p0.390q
0.000p0.000q
´6.293p0.247q

Norm. Approx.
0.988p0.109q
0.006p0.000q
No time cost

0.738p0.440q
0.000p0.000q
No time cost

0.976p0.154q
0.000p0.000q
No time cost

0.948p0.221q
0.000p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.872p0.334q
0.004p0.000q
´1.157p0.017q

0.652p0.477q
Inf(NaN)

0.495p0.039q

0.912p0.284q
0.000p0.000q
0.187p0.099q

0.920p0.272q
Inf(NaN)

0.271p0.018q

Green and Shalizi [61]
0.966p0.181q
0.005p0.001q
0.619p0.014q

0.708p0.455q
Inf(NaN)

2.030p0.038q

0.768p0.423q
0.000p0.000q
2.855p0.072q

0.568p0.496q
0.000p0.000q
2.150p0.015q

Levin and Levina [93]
0.980p0.140q
0.006p0.001q
0.626p0.009q

0.728p0.445q
0.000p0.000q
2.041p0.030q

0.990p0.100q
0.001p0.000q
2.874p0.060q

0.992p0.089q
0.000p0.000q
2.371p0.017q

TABLE 22
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1, graphon: smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.989p0.105q
Length “ 0.005p0.000q

LogTime “´7.290p0.076q

0.000p0.000q
0.000p0.000q
´6.949p0.103q

0.964p0.186q
0.000p0.000q
´6.458p0.388q

0.651p0.477q
0.000p0.000q
´6.277p0.333q

Norm. Approx.
0.987p0.115q
0.005p0.000q
No time cost

0.437p0.496q
0.000p0.000q
No time cost

0.968p0.177q
0.000p0.000q
No time cost

0.926p0.262q
0.000p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.870p0.338q
0.003p0.000q
´0.193p0.061q

0.290p0.456q
Inf(NaN)

1.592p0.024q

0.910p0.288q
0.000p0.000q
1.132p0.038q

0.900p0.302q
Inf(NaN)

1.146p0.012q

Green and Shalizi [61]
0.970p0.171q
0.005p0.001q
1.543p0.035q

0.380p0.488q
Inf(NaN)

2.949p0.030q

0.760p0.429q
0.000p0.000q
3.809p0.034q

0.560p0.499q
0.000p0.000q
3.020p0.005q

Levin and Levina [93]
0.980p0.141q
0.005p0.001q
1.541p0.033q

0.390p0.490q
0.000p0.000q
2.968p0.033q

0.990p0.100q
0.000p0.000q
3.803p0.038q

0.990p0.100q
0.000p0.000q
3.069p0.009q
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TABLE 23
Performance measures of 95% confidence intervals
n“ 160, ρn — n´1, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star

Our method
Coverage “ 0.992p0.090q
Length “ 0.008p0.001q

LogTime “´7.275p0.072q

0.947p0.223q
0.000p0.000q
´6.576p0.324q

0.987p0.112q
0.001p0.000q
´6.121p0.356q

0.960p0.197q
0.000p0.000q
´6.304p0.268q

Norm. Approx.
0.991p0.097q
0.008p0.001q
No time cost

0.974p0.159q
0.000p0.000q
No time cost

0.984p0.127q
0.001p0.000q
No time cost

0.974p0.158q
0.000p0.000q
No time cost

Bhattacharyya and Bickel [17]
0.880p0.325q
0.005p0.001q
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