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Network method of moments [20] is an important tool for nonparametric
network inference. However, there has been little investigation on accurate
descriptions of the sampling distributions of network moment statistics. In
this paper, we present the first higher-order accurate approximation to the
sampling CDF of a studentized network moment by Edgeworth expansion. In
sharp contrast to classical literature on noiseless U-statistics, we show that the
Edgeworth expansion of a network moment statistic as a noisy U-statistic can
achieve higher-order accuracy without non-lattice or smoothness assumptions
but just requiring weak regularity conditions. Behind this result is our surpris-
ing discovery that the two typically-hated factors in network analysis, namely,
sparsity and edge-wise observational errors, jointly play a blessing role, con-
tributing a crucial self-smoothing effect in the network moment statistic and
making it analytically tractable. Our assumptions match the minimum re-
quirements in related literature. For sparse networks, our theory shows that
our empirical Edgeworth expansion and a simple normal approximation both
achieve the same gradually depreciating Berry-Esseen type bound as the net-
work becomes sparser. This result also significantly refines the best previous
theoretical result.

For practitioners, our empirical Edgeworth expansion is highly accurate
and computationally efficient. It is also easy to implement and convenient for
parallel computing. We demonstrate the clear advantage of our method by
several comprehensive simulation studies. As a byproduct, we also provide a
finite-sample analysis of the network jackknife.

We showcase three applications of our results in network inference. We
prove, to our knowledge, the first theoretical guarantee of higher-order accu-
racy for some network bootstrap schemes, and moreover, the first theoreti-
cal guidance for selecting the sub-sample size for network sub-sampling. We
also derive a one-sample test and the Cornish-Fisher confidence interval for
a given moment with higher-order accurate controls of confidence level and
type I error, respectively.

1. Introduction.

1.1. Overview. Network moments are the frequencies of particular patterns, called motifs,
that repeatedly occur in networks [102, 7, 114]. Examples include triangles, stars and wheels.
They provide succinct and informative sketches of potentially very high-dimensional network
population distributions. Pioneered by [20, 95], the method of moments for network data has
become a powerful tool for frequentist nonparametric network inferences [8, 101, 131, 6, 99].
Compared to model-based network inference methods [91, 128, 94], moment method enjoys
several unique advantages.

First, network moments play important roles in network modeling. They are the build-
ing blocks of the well-known exponential random graph models (ERGM) [78, 135]. More
generally, under an exchangeable network assumption, the deep theory by [20] (Theorem
3) and [26] (Theorem 2.1) show that knowing all population moments can uniquely deter-
mine the network model up to weak isomorphism, despite no explicit inversion formula is
yet available. From the perspective of statistical inference, evaluation of network moments

MSC2020 subject classifications: Primary 62E17, 91jD30; secondary 60F05.
Keywords and phrases: network inferences, method of moments, Edgeworth expansion, noisy U-statistic, net-
work bootstrap, network jackknife.
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2 ZHANG AND XIA

is completely model-free, making them objective evidences for specification, validation and
comparison of network models [27, 117, 125, 106]. Second, network moments can be very
efficiently computed, easily allowing parallel computing. This is a crucial advantage in a big
data era, where business and industry networks could contain 105 ~ 107 or even more nodes
[43, 92] and computation efficiency becomes a substantive practicality concern. Model-fitting
based network inference methods might face challenges in handling huge networks, while
moment method equipped with proper sampling techniques [112, 46] will scale more com-
fortably (also see our comment in Section 6). Third, many network moments and their derived
functionals are important structural features of great practical interest. Examples include clus-
tering coefficient [76, 130], degree distribution [109, 122], transitivity [113], and more listed
in Table A.1 in [114].

Despite the importance and raising interest in network moment method, the answer to the
following core question remains under-explored:

What is the sampling distribution of a network moment?

For a given network motif R!, let ﬁn denote its sample relative frequency (see (2.3) for a
formal definition) with expectation iy, := E[U,]. Let 52 be an estimator of Var(U,) that
we shall specify later. We are mainly interested in finding the distribution of the studentized
form fn = (ﬁn — )/ §n It is well-known that under the widely-studied exchangeable

network model framework (see formal definition in Section 2.1), we have T, n 4N (0,1)
uniformly for “not too sparse” networks [20, 17, 61], but usually, N(0,1) only provides a
rough characterization of the CDF F , and one naturally yearns for a finer approximation.
To this end, several network bootstrap methods have been recently proposed [20, 17, 61, 93]
in an attempt to address this question. They quickly inspired many follow-up works [124,
123, 60, 37] that clearly reflect data analysts’ need of an accurate approximation method.
However, compared to their empirical effectiveness, the theoretical foundation of network
bootstraps remains weak. Almost all existing justifications of network bootstraps critically
depend on the following type of results

|ﬁ: _Un| =Op(n—1/2)7 and ]ﬁn_Un| =Op(n_1/2);

or similarly,

f:—fn‘:opu), and [T, — T| = 0,(1);

where ﬁ;’; or f,’f are bootstrapped statistics and U, or T}, are noiseless versions (see for-
mal definitions in Section 2.2). Then the validity of network bootstraps is implied by the
well-known asymptotic normality of U,, or T}, [17, 61]. However, this approach cannot show
whether network bootstraps have any accuracy advantage over a simple normal approxima-
tion, especially considering the much higher computational costs of bootstraps.

In this paper, we propose the first provable higher-order accurate approximation to the
sampling distribution of a given studentized network moment. Our paper uncovers, for the
first time, that in fact the noisy ﬁn and f’n are usually more analytically tractable than the
noiseless versions U,, and 7T,,. This enables our original analysis that sharply contrasts the
common approach in existing network bootstrap literature that studies ﬁn by approximately
reducing it to U,,.

Now, we briefly summarize our main results by an informal theorem here. Before present-
ing the main results, we make a few preparatory definitions.

'Without confusion, in this paper, we use R to represent both the motif as a subgraph pattern and its corre-
sponding adjacency matrix representation.
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NETWORK EDGEWORTH EXPANSION 3

DEFINITION 1.1 (Acyclic and cyclic motifs, see also [20, 17,61,93]). A motif R is called
acyclic, if its edge set is a subset of an r-tree. The motif is called cyclic, if it is connected and
contains at least one cycle. In other words, a cyclic motif is connected but not a tree.

DEFINITION 1.2.  To simplify the narration of our method’s error bounds under different
motif shapes, especially in Table 2 and proof steps, define the following shorthand

(pn - n)_1 ~log1/2 n+n-t- log3/2 n, Foracyclic R

(1.1 M(pn,n; R) = {p_r/Q.

n~t logl/2 n+n7t. log?’/2 n, Forcyclic R
To simplify the narration of tail-probability control, we define the following symbol.

DEFINITION 1.3. For a sequence of random variables {Z,} and a deterministic se-
quence {o,}, define Op(-) as follows

(1.2)  Wewrite Z,, := ép(an), if P(|Z,| = Cay) = O(n™1) for some constant C > 0.

Our “ Np” is similar to “o0,” in [96] (see the remark beneath its Lemma 2) and Assumption
(A1) in [90]. For technical reasons, in this paper, we do not need to define a 0,(-) sign.
Now we are ready to present the informal statement of our main results.

THEOREM 1.1 (Informal statement of main results). Assume the network is generated
by an exchangeable network model. Define the population Edgeworth expansion for a given
network moment R with r nodes and s edges as follows:

x .CUZ
o) 1= b(o) + AT {2 LBl x0)]

1

% (2? +1) E[gl(Xl)gl(Xﬂg?(Xl’X2)]}’

where ® and ¢ are the CDF and PDF of N (0, 1), respectively, and the estimable coefficients
components &1, E[g3(X1)] and E[g1(X1)g1(X2)g2(X1, X2)] will be defined in Section 3
and they only depend on the graphon f and the motif R. Let p,, denote the network sparsity
parameter. For dense networks, under the assumptions:

1. p, 2% Var(g1(X1)) = constant > 0;
2. (Dense regime) p,, = w(n /2 for acyclic R, or pp = w(n=Y'") for cyclic R;
3. Either p, < (logn)™', or limsup,_,, [E [eﬂtgl(Xl)/fl]’ <1;

we have
(1.3) |Fr, (1) = Galw)] = O (M(pn,n: ),
where |H (u)| o := supyer | H (w)], and M(pp,n; R) (defined in (1.1)) satisfies M(pp,n; R) <

n~Y2. Under the same conditions, the empirical Edgeworth expansion G, with estimated co-
efficients (see (3.14)) satisfies
(1.4) Pz (w) = Gu(w)| = Op(M(pn,n: R)).

for a large enough absolute constant C.
For sparse networks, we replace condition 2 by:
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4 ZHANG AND XIA

2/r

2’. (Sparse regime) n~! < p, < n~Y2 for acyclic R, or n=?" < p, < n=V" for cyclic R,

The population Edgeworth expansion and a simple N (0, 1) approximation both achieve the
following Berry-Esseen bound”:

15 | By ()= Gulw)| = |Fp ()= 0(w)| =0 M(paini B)) /\ol1).
The empirical Edgeworth expansion achieves
|B7, () = Gulw)| =0y (M(pasi B) /\ 0y(1):

That is, in the sparse regime, the empirical Edgeworth expansion has the same proved error
rate bound as N (0, 1).

0

1.2. Our contributions. Our contributions are three-fold. First, we establish the first
provably higher-order accurate distribution approximations for network moments (1.3) and
provide the first finite-sample error rate guarantee. The results originated from our discovery
of the surprisingly blessing roles that network noise and sparsity jointly play in this setting.
Our work reveals a new dimension to the understanding of these two components in net-
work analysis. Second, we propose a provably highly accurate and computationally efficient
empirical Edgeworth approximation (1.4) for practical use. Our method not only enjoys a sig-
nificantly improved error control than network bootstrap methods in existing literature, but
also computes much faster. Third, our results enable accurate and fast nonparametric network
inference procedures.

To understand the strength of our main results (1.3) and (1.4), notice that for dense net-
works (see Assumption (ii) of Lemma 3.1), we achieve higher-order accuracy in distribution
approximation without non-lattice or smoothness assumption. To our best knowledge, the
non-lattice assumption is universally required to achieve higher-order accuracy in all liter-
ature for similar settings. However, this assumption is violated by some popular network
models such as stochastic block model, arguably one of the most important and widely-used
network models. Waiving the graphon smoothness assumption makes our approach a pow-
erful tool for model-free exploratory network analysis and analyzing networks with high
complexity and irregularities, see our discussion in Section 3.4.

Apart from the first higher-order approximation for dense networks, for sparse networks,
we also establish a novel modified Berry-Esseen bound (1.5) for both our method and normal
approximation — this is also the sharpest result to date. These results significantly improve
over the previous best known o(1) bound in literature [20, 17, 61, 93] and fills a large blank
in the big picture. As the network sparsity p,, declines from n~'/2 towards n~! for acyclic R,
or from n~'/" towards n =2/ for cyclic R, our result reveals a gradually depreciating uniform
error bound. In the boundary case, where p,, = w(n ") (acyclic), or p, = w(n=") (cyclic),
our result matches the uniform consistency result in classical literature.

The key insight of our method is to view the sample network moment ﬁn as a noisy
U-statistic, where “noise” refers to edge-wise observational errors in the adjacency matrix
A. Our analysis reveals the connection and differences between the noisy and the conven-
tional noiseless U-statistic settings. We discover the surprisingly blessing roles that the two
typically-hated factors, namely, edge-wise observational errors and network sparsity jointly
play in this setting, roughly summarized by the following intuitions:

2Belrry-Esseen bound for an asymptotically normal random variable Yy, 4 N(p, 02) refers to the finite error
bound 7, such that || Fy; (u) — F N(u,02) (u) oo < 7. This bound is typically discussed for CLT where Yy, is a
centered and rescaled sample mean. Berry-Esseen bound for U-statistics: see [30].
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NETWORK EDGEWORTH EXPANSION 5

1. The edge-wise errors behave like a smoother that tames potential distribution discontinuity
due to a lattice or discrete network population®;

2. Network sparsity elevates the smoothing effect of the observational error term to a suffi-
cient level, such that Fﬁ becomes analytically tractable.

At first sight, the smoothing effect of edge-wise errors is rather counter-intuitive. For in-
stance, generating a binary A from the probability matrix W is discretizing the edge proba-
bilities drawn from a continuum [0, 1] into binary entries. How could this eventually yield a
smoothing effect? In Section 3.1, we present two simple examples to illustrate the intuitive
reason. In our proofs, we present original analysis to carefully quantify the impact of such
smoothing effect. Our analysis techniques are very different from those in network bootstrap
papers [17, 61, 93]. Also, it seems unlikely that our assumptions can be substantially relaxed
since they match the well-known minimum conditions in related settings in [89].

Our empirical Edgeworth expansion (1.4) is model-free, assuming only weak regularity
conditions; has the sharpest finite-sample error bound guarantees to date; computes very fast,
much more scalable than network bootstraps; and easily permits parallel computing.

We showcase three applications of our main results. We present the first proof of the
higher-order accuracy of some mainstream network bootstrap techniques under certain condi-
tions, which their original proposing papers did not prove. Our results also enable rich future
works on accurate and computationally very efficient network inferences. We present two
immediate applications to testing and Cornish-Fisher type confidence interval for network
moments with explicit accuracy guarantees.

1.3. Paper organization. The rest of this paper is organized as follows. In Section 2, we
formally set up the problem and provide a detailed literature review. In Section 3, we present
our core ideas, derive the Edgeworth expansions and establish their uniform approximation
error bounds. We discuss different versions of the studentization form. We also present our
modified Berry-Esseen theorem for the sparse regime. In Section 4, we present three appli-
cations of our results: bootstrap accuracy, one-sample test, and one-sample Cornish-Fisher
confidence interval. In Section 5, we conduct three simulations to evaluate the performance
of our method from various aspects. Section 6 discusses interesting implications of our results
and future work.

1.4. Big-O and small-o notation system. In this paper, we will make frequent references
to the big-O and small-o notation system. We use the same definitions of O(-), o(-), (-)
and w(-) as that in standard mathematical analysis, and the same O, (-) and o,(-) as that in
probability theory. For two deterministic series a,, and b,, we write a,, < b,, to stand for
an = O(by), n — o0; and use a,, < by, or a,, < by, to stand for a,, = o(by, ), n — o0; similarly
define >, > and ».

2. Problem set up and literature review.

2.1. Exchangeable networks and graphon model. The base model of this paper is ex-
changeable network model [49, 19]. Exchangeability describes the unlabeled nature of many
networks in social, knowledge and biological contexts, where node indices do not carry
meaningful information. It is a very rich family that contains many popular models as spe-
cial cases, including the stochastic block model and its variants including degree-corrected

3More precisely speaking, such irregularity is jointly induced by both the network population distribution and
the shape of the motif, but the former is usually the determining factor.
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6 ZHANG AND XIA

stochastic block model and overlapping memberships 4175, 141, 139, 140, 3, 83, 137, 82, 571,
the configuration model [42, 103], latent space models [74, 62] and general smooth graphon
models [41, 56, 136]°. In this paper, we base our study on the following exchangeable net-
work model called graphon model. The framework is closely related to the Aldous-Hoover
representation for infinite matrices [5 77] Under a graphon model, the n nodes correspond

to latent space positions X1,..., X, S Umform[O 1]. Network generation is governed by
a measurable latent graphon function f(-,-) : [0,1]?> — [0,1], f(z,y) = f(y,x) that encodes
all structures. The edge probability between nodes (i, j) is

(2.1 Wij=Wjii=pn- f(Xi,X;); 1<i<j<n,

where the sparsity parameter p,, € (0, 1) absorbs the constant factor, and we fix S[o 12 f (u,v)dudv = con-

stant. We only observe the adjacency matrix A with conditionally independent edges:
(22) Aij = AJZ|W ~ Bernou]li(W ) Vi<i< ]

The model defined by (2.1) and (2.2) has a well-known issue that both f and {X,..., X}
are only identifiable up to equivalence classes [34]. This may pose significant challenges
for model-based network inference, especially those based on parameter estimations. On
the other hand, network moments are permutation-invariant and thus clearly immune to this
identification issue. This makes network moments attractive study objectives.

2.2. Network moment statistics. 'To formalize network moments, it is more convenient
to first define the sample version and then the population version. Each network moment is
indexed by the corresponding motif R. For simplicity, we focus on connected motifs. Slightly
abusing notation, here let R represent the adjacency matrix of a motif with r nodes and s
edges. For any r-node sub-network Ail,m,irﬁ of A, define

(2.3) WA, i) =14, or, foralll<ii<---<i,<n,

115.-

Here, “A;, i, 2R” means there exists a permutation map 7 : {1,...,r} — {1,...,7}, such
that A;, ;. >R, where the “>" is entry-wise and R is defined as (R );; := Ry (iyx(j)- Our
definition of h(A;, . ;.) here corresponds to the “Q(R)” defined in [20]. One can similarly
define

(2.4) h(Aj,..i) =1, =g, foralll1<ip<--<i.<n,

where “A;, ; =~ R” means there exists a permutation map 7 : {1,...,r} — {1,...,r}, such
that A;, ; = R,. The definition of h corresponds to the “P(R)” studied in [20, 17], and
[61]. As noted by [20], each h can be explicitly expressed as a linear combination of h terms,

and vice versa. Therefore, they are usually treated with conceptual equivalence in literature,
and most existing papers would choose one of them to study. For technical cleanness, in this

“Here we adopt the convention of [3, 19, 1] and view community memberships and degree corrections as ran-
dom samples from their respective fixed hyper-distributions. There is a distinct understanding that memberships
and degree corrections are completely free unknown model parameters [59], which our study does not cover.

>Smooth graphon: we can simply think that a graphon is called “smooth” if f(-,-) is a smooth function. In
the rigorous definition, f is smooth if f(¢(-),%(-)) is smooth under some measure-preserving map ¢ : [0,1] —
[0,1], see [19, 56, 136].

SWe write Ay - i, to denote the sub-matrix of A with rows and columns indexed by {i1, -+ yir}.

7Since we consider an arbitrary but fixed R throughout this paper, without causing confusion, we drop the
dependency on R in symbols such as A to simplify notation.
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NETWORK EDGEWORTH EXPANSION 7

paper we focus on h. We believe our analysis also applies to 1, but the analysis is much more
complicated and we leave it to future work. Define the sample network moment as

~ 1
(2.5) Up:i= -~ 2 h(As . i)

7
(T 1<y < <i,.<n

Then we define the sample-population version and population version of U to be U,

E[U,|W] and p, := E[U,] = E[U,], respectively. We refer to U, as the noisy U- statlstlc
and call Uy (7‘) 121<11< <i.<n h(Wi17-~-7i'P) = (n) Zl<21< <ip<n h(th s X, )8
the conventlonal noiseless U-statistic, where we define h(W;, . ; ) = E[h(AZ i) |W], thus
pn =E[h(X1, -+, X,)]. Similar to the insight that studentization is key to achieve higher-
order accurate approximations in the i.i.d. setting (Section 3.5 of [129]), we study

where gn will be specified later in (3.3) and (3.4). We can similarly standardize or studentize
the noiseless U-statistic Uy, by T}y := (Up, — pt) Jop, and T, (U — ltn)/Sh, respectively,
where o2 := Var(U,,) and S? is a y/n-consistent estimator’ for o2, for instance, a jackknife
variance estlmator for the noiseless U-statistic U,,, c.f. [71, 96].

2.3. Edgeworth expansions for i.i.d. data and noiseless U-statistics. Edgeworth expan-
sion [51, 127] refines the central limit theorem. It is the supporting pillar in the justification of
bootstrap’s higher-order accuracy, while itself is of great independent interest. In this subsec-
tion, we review the literature on Edgeworth expansions for i.i.d. data and conventional noise-
less U-statistics, due to their close connection. Under mild conditions, the one-term Edge-
worth expansion for the sample mean of n ii.d. Xy, ..., Xy reads Fyu2(x g[x,))/ox, (u) =

®(u) —n Y2 E[X?](u® - 1)p(u)/(60%,) + O(n~t), where ® and ¢ are the CDF and PDF
of N(0,1), respectively. Edgeworth terms of even higher orders can be derived [68] but are
not meaningful in practice unless we know a few true population moments. The minimax
rate for estimating E[X7] is O,(n~1/2), so O(n™") is the best practical remainder bound for
an Edgeworth expansion. For further references, see [18, 115, 16, 66, 67, 10] and textbooks
[68, 47, 129].

The literature on Edgeworth expansions for U-statistics concentrates on the noiseless ver-
sion. In early 1980’s, [30, 79, 32] established the asymptotic normality of the standarized
and the studentized U-statistics, respectively, both with O(nil/ 2) Berry-Esseen type bounds.
Then [31, 21, 90] approximated degree-two (i.e. r = 2) standardized U-statistics with an
o(n™') remainder with known population moments, and [14] established an O(n~!) bound
under relaxed conditions for more general symmetric statistics. Later, [71, 110] studied em-
pirical Edgeworth expansions (EEE) with estimated coefficients and established o(n_l/ 2
bounds. For finite populations, [11, 24, 25, 23] established the earliest results, and we will
use some of their results in our analysis of network bootstraps. An incomplete list of other
notable works on Edgeworth expansions for noiseless U-statistics with various finite moment
assumptions includes [13, 70, 80, 96, 15, 81].

8Here, without causing confusion, we slightly abused the notation of h(-), letting it take either W or X
as its argument, noticing that W is determined by X1,..., Xpn. To elucidate h(W;,  ; ), we first explicitly
re-express h(A;; . ;.) as a polynomial of Ay  ; °s edges, then replace “A” by “W”. For example, with
R = triangle, we have h(W193) = W1aW13Wo3 = p%f(Xl ,X9)f(X1,X3)f(X9,X3). Notice that generally,
h(Wzl, JAr )?ﬁjl[Wz1 77777 i 3R]

9 /n-consistency of S2 means that f(Sn — 0%) =op(1), see [17, 93] for definition.
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8 ZHANG AND XIA

2.4. The non-lattice condition and lattice Edgeworth expansions in the i.i.d. setting. A
major assumption called the non-lattice condition is critical for achieving o(n_l/ 2) accu-
racy in Edgeworth expansions and is needed by all results in the i.i.d. setting without oracle
moment knowledge and all results for noiseless U-statistics, but this condition is clearly not
required for an O(n~1/2) accuracy bound'®. A random variable X is called lattice, if it is
supported on {a + bk : k € Z} for some a,b € R where b # 0. General discrete distributions
are “nearly lattice” ''. A distribution is essentially non-lattice if it contains a continuous
component. In many works, the non-lattice condition is replaced by the stronger Cramer’s
condition [45]:

lim sup ‘E [eﬂtXl]‘ <1.
t—00
For U-statistics, this condition is imposed on g¢1(X7) := E[h(X1,..., X;)|X1] — pin.
Cramer’s condition can be relaxed [9, 100, 119, 120] towards a non-lattice condition, but
all existing relaxations come at the price of essentially depreciated error bounds '>. There-
fore, for simplicity, in Theorems 3.1 and 4.1, we use Cramer’s condition to represent the
non-lattice setting.

However, in network analysis, Cramer’s condition may be a strong assumption, for the
following reasons. First, it is violated by stochastic block model, a very popular and im-
portant network model. In a block model, g;(X;) only depends on node 1’s community
membership, thus is discrete. Second, this condition is difficult to check in practice. Third,
some smooth models may even induce a lattice g;(X;) under certain motifs and a non-
lattice g1 (X7) under a different motif. For example, under the graphon model f(z,y) :=
0.3+ 0.1 Ips1/25>1/2) +0.1sin (27(z +y)), g1(X1) is lattice when R is an edge, but it is
non-lattice when R is a triangle.

Next, we review existing treatments of Edgeworth expansion in the lattice case that will
spark the key inspiration to our work. In current literature, in the lattice case, we could ap-
proximate the CDF of an i.i.d. sample mean at higher-order accuracy, where the lattice Edge-
worth expansion would contain an order n~/2 jump function; whereas to our best knowl-
edge, no analogous result exists for U-statistics. Available approaches can be categorized into
two mainstreams: (1) adding an artificial error term to the sample mean to smooth out lattice-
induced discontinuity [118, 89]; and (2) formulating the lattice version Edgeworth expansion
with a jump function [118]. The seminal work [118] adds a uniform error of bandwidth n /2,
and by inverting its impact on the smoothed distribution function, it explicitly formulates the
lattice Edgeworth expansion with an O(n~!) remainder. Another classical work [89] uses
a normal artificial error instead of uniform and shows that the Gaussian bandwidth must be
w((logn/n)'/?) and o(1) to provide sufficient smoothing effect without causing an w(n~"/?)
distribution distortion. Other notable works include [132, 86, 12], in which, [132] and [86]
also formulate lattice Edgeworth expansions in the i.i.d. univariate setting, and [12] studies
Edgeworth expansions for the sample mean of i.i.d. random vectors, where some dimensions
are lattice and the others are non-lattice.

10Simply use a Berry-Esseen theorem.

ep discrete distribution is nearly-lattice”: a discrete distribution, if not already lattice, can be viewed as a
lattice distribution with diminishing periodicity.

1276 our knowledge, existing results assuming only non-latticeness achieve no better than o(n_l/ 2) approx-
imation errors. For example, [14] replaces the RHS “1” in Cramer’s condition by 1 — ¢ and assumes it holds for
t< nl/2, They obtain an error bound proportional to q72. Another example is [25]. It replaces [14]’s ¢ range by
t < 7 (their 7 is a variable) and obtains an error bound proportional to q_27r_2. Also see the comment beneath
equation (4.7) of [110].
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305 Despite the significant achievements of these treatments, latticeness remains an obstacle
as in practice. The difficulties are two-fold. On one hand, if we introduce an artificial error
37 to smooth the distribution, it will unavoidably bring an Q(n_l/ 2) distortion to the original
ss  distribution!®. On the other hand, the exact formulation of a lattice Edgeworth expansion
3s contains an n_l/ 2 jump term. In many examples such as bootstrap, the jump locations depend
s10 on the true population variance, laying an uncrossable Q(n -1/ 2) barrier for practical CDF
s approximation. For more details, see page 91 of [68].

312 3. Edgeworth expansions for network moments. Our approach to formulate the Edge-
a3 worth expansion can be summarized into the following progressive steps. We naturally start
ais with decomposing U, and study the stochastic variation of each term in its expansion. Based
a1s  on this understandmg, we can demgn S2 to estimate Var(U ), studentize U,, and formulate
w6 Ty = (Un — fin)/Sy. But using S,, on the denominator of 7}, introduces additional first or-
a7 der (i.e. O(n -1/ %)) bias in the eventual distribution approximation formula and also alters
ais  the approximately-Gaussian error term that contributes the key self-smoothing effect. Bear-
ats  ing this in mind, we expand f’n and study the impact of the terms in this decomposition.
a0 The outcome of this part of analysis is the Edgeworth expansion formula. We then present
221 our main theoretical results on explicit uniform and finite-sample error bounds for population
222 and sample Edgeworth expansions, for dense and sparse networks, respectively. We conclude
223 this section by a comprehensive comparison table of our results to existing literature and fur-
a4 ther discussions on the assumptions and results of our theory.

325 3.1. Decomposition of the stochastic variations of U and design of the variance estimator
a26 52 The starting point of all analysis is the decomposition of U,,. This would allow us to
327 design a variance estimator of ﬁn for studentization. The studentized form, T n, has a related
a2s  but different decomposition, which will be formulated and analyzed next in Section 3.2. Now
a2 let us inspect ﬁn

330 The stochastic variations in (A]n — pin = (Up — pin) + (ﬁn — U,) stem from two sources:
a1 (1) the randomness in U, — u, due to W and ultimately Xi,...,X,,; and (2) the ran-
=2 domness in U, — U, due to A|W, the edge-wise observational errors. In Var(ﬁ ) =
333 E[Var(ﬁnmi)] + Var(E[U,|W)), by Lemma 3.1, we observe Var(U,|W) = p2—1 . n2

334 and Var(E[U,|W]) = Var(U,,) = p2* - . We shall universally assume p,, - n — 00, so
335 Var(U )= Var(E[(Afn\W]) dominates. Therefore, our design of the variance estimator
336 52 for Var(U,,) should align with the formulation of Var (U, — ).
337 Now we inspect the main term U,, — u,. It is a conventional noiseless U-statistic that
a8 admits the well-known Hoeffding’s decomposition [73]:
= (3.1) Un— fin 291 rir 1)> >, 92X, X)) +Oy(p;, - n*log?? n)
1<i<j<n .
%,_/ N -— Higher-degree part
Linear part Quadratic part
a0 where g1,...,g, are defined as follows. To avoid complicated subscripts, without confu-
a1 sion we define gi’s for special indexes (iy,...,%.) = (1,...,r). For indexes 1 and k €

sz {2,...,7 — 1} (only when r > 3) and r, define ¢;(z1) := E[h(X1,..., X;)| X1 = z1] — pttns

343 gk(.%'l, oo ,l'k) = E[h(Xl, oo 7Xr)‘X1 =T1,--- ,Xk = l'k]—,u,n—lez,_:ll Zl<i1<...<ik/<rgk'(xil7 ous ,.%'Z‘k,)
ss for 2< k<r—1and g (x1,...,2,) := h(z1,...,2,) — . From classical literature,

1370 see this, simply notice that the original distribution contains n~1/2 jumps, but the smoothed distribution
does not, so an o(n_l/ 2) approximation error is impossible [21].
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we know that E[gr(X;,,..., X5, ){Xi 1 i € I < {i1,...,ix}}] = 0, where the strict sub-
set Zj, could be ¢, and Cov (gr(Xi,,...,Xi,),9¢(Xj,,...,X;,)) = 0 unless k = ¢ and

{i1,... ik} = {J1,...,je}. Consequently, the linear part in the Hoeffding’s decomposition
makes dominating contribution to Var(U,, — i, )'*. Define
(3.2) €1 += Var(g1(X1)).

Now we are ready to design S,, and thus can fully specify T, = (ﬁn — )/ S,,. There
are two main choices of 5,,. The conventional choice for studentizing noiseless U-statistics
[32, 71, 110] uses the jackknife estimator

(3.3) n: S?L;jackknife =(n-1) i (ﬁ}fi) - ﬁn>27
i1

where (,Af,(fl) is ﬁn calculated on the induced sub-network of A with node 7 removed.
Despite conceptual straightforwardness, the jackknife estimator unnecessarily compli-
cates analysis. In this paper, we propose an estimator with a simpler formulation. In
Var(U,,) = o2 + O(p2~In=2) = r2¢2 /n + O(p25~'n~2), replace &1 by its moment esti-
mator. Specifically, recall that €2 = Var(g1(X1)) = E[(E[h(X1, ..., Xn)|X1] — tin)?]. Re-
placing E[h(X1,...,X,,)|X1] and p, by their estimators based on observable data, we can

design S, as follows

2
~ 2 1 ~
(3.4) n-S2 = % 3 { &) N (A ) — Un} :

i=1 r—1/ 1<i; < <t,_1<n
Ul yereylp—1 71

>

Estimates £=Var(g:(X1))

We will show in Theorem 3.3 that the |S; — 52 An Jackknife| 15 1gnorable, but our estimator S is
computationally much more efficient than the jackknife estimator. See our discussion right
following Theorem 3.3.

3.2. Expansion of fn and self-smoothing phenomenon.  The studentization fn can be ex-
panded using a similar method to our study of U, but certain into a very different expression.
The analysis in Section 3.1 already gives us a good understanding of the expansion of fn’s
numerator, namely, recall that

. T — r(r—1) 2 .
(3.5 U, —pn= - Z 91(X;) + PYY Z 92(Xi, X;) + (U, — Uy) + remainder

(n— 1<i<j<n

Where we shall prove that the remainder terms contributed by gx, k > 3 are dominated by
U — Up. Now, to handle T s denominator, we follow the method in Maesono [96] and
re-express T, as:

~ ~ A~

~ n — Hn n — Mn 52_ 2 —1/2
(3.6) 7= Un—tn _Un—p SR
On

Sh On

14Hoeffding’s decomposition reveals that the asymptotic behavior of the noiseless U-statistic Ur, is largely
determined by the linear part and bears some similarity to the i.i.d. case. But we should also notice that the
quadratic part, i.e. go terms, plays a non-ignorable role in the Edgeworth expansion of Ur,. For more details, see
[21,71, 96, 110]
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and use Taylor expansion (1 + 2)"Y2 ~ 1 — 2/2 + O(2?) with z := (52 — ¢2)/02 =
5p(n*1/ 2). In fact, just like our earlier decomposition of U, — L, into two parts that repre-
sent the random variations originated from W (or X1,..., X,,) and A|W, respectively; here,
it is also technically beneficial to do the same for §,2L — 02. Define an auxiliary intermediate

term &2 to insert in between S2 and o2:

r? o 1 ’
n- 8‘3 = ; 2 { (n—l) Z h(Wi7i17,..7i7,71) - Un} .

=1 r—1) 1<i1<-<ip_1<n
U1 yeenybr—1 70

and also define the following convenience shorthand

1 < r—1
3.7 U# = — X)), Api=—— X;, X5),
S & ;gl( ) Vn(n—1)& KZ 2( i)

1<j<n
Api=Up—Up)/on, b= (62—02)/02, and &,:=(52—52)/02,

n n n’

Recall that in Section 3.1 we observed that o2 := Var(U,,) = r2£% /n. We now obtain the key
expansion of T}, as follows:

T, = (U# + A, + A, + Op(n~tog®? n)) . <1 i 5n>—1/2

(3.8) = Tn + En + Remainder,
in which we define
(3.9) Ty = UijrAn—%U#-én,
~ n -1 A~
(3.10) A, = <2> 2 N
1<i<j<n

where we define 7;; := A;; — W;;, and the formal definition of (:)ij is lengthy and sunk
to Supplemental Material (see (8.19)). The gist is that (:)ij is a function of W (thus all its
randomness comes from X1, ..., X,,) and does not depend on the conditional randomness in
A|W, and also that (:)ij = p1-n'/2. The term A, encodes the “linear part” (linear in nij’S)
of ﬁn (see Lemma 3.1-(c)). The remainder in (3.8) consists of the remainder terms from the
two expansions of U, — u, and U,, — U, respectively. We will show that the remainder is
5p(./\/l (pn,n; R)), where we recall the definition of 5p from Section 1.4.

To give readers a quick preview of the roles of the main constituent terms in the expansion
of T, n, We present a summary table, see Table 1. The full quantitative justification of its
contents will be provided soon in Lemma 3.1. Notice that despite smoother En is Q(nfl/ 2),
it does not distort any smooth order-n /2 term in the Edgeworth expansion formula. Similar
phenomenon is observed in the i.i.d. setting, see [118] (equation (2.8)) and [89] (Section 2.2).

Our decomposition (3.8) is a renaissance of the spirits of [118] and [89], but with the
following crucial conceptual distinctions. First and most important, the error term A, in our
formula is not artificial, but a natural constituent component of fn Therefore, the smoother
does not distort the objective distribution, that is, fn is self-smoothed. The second distinction
lies in the bandwidth of the smoothing error term. Since the smoothing error terms in [118]
and [89] are artificial, the user is at the freedom to choose these bandwidths. In our setting,
the bandwidth of the smoothing term (p,, - n)*l/ 2 is not managed by the user, but governed
by the network sparsity. Therefore, when Cramer’s condition fails, we make the very mild
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12 ZHANG AND XIA
TABLE 1 R
Summary of the main components in T,

Component Order of std. dev. E dgevf/I:rIt)ﬁcft;rmula Sme(;;)iltmg
i 1 Yes No
An — %U# - 0n, n1/2 Yes No
An N (pn - n)_l/2 No Yes
Remainder Op (M(pn,n; R)) No No

sparsity assumption that p, = O((logn)~!) to ensure enough smoothing effect. This echoes
the lower bound on Gausssian bandwidth in [89]. This upper bound can be easily enforced
by a data pre-processing step. See our discussion in Section 6. We also need p,, to be lower
bounded to effectively bound the remainder term, see Lemma 3.1-(b). Third, our error term
En is dependent on T, through W. Last, the proof technique of [118] is inapplicable to our
setting due to the quadratic part (go(X;, X;) terms) in Tn; and [89] obtains an o(n_l/ 2) error
bound'®, while we aim at stronger results under a more complicated U-statistic setting with
degree-two terms. In our proofs, we carefully manage these challenges with original analysis.

A key difference between our noisy U-statistic setting and the conventional noiseless set-
ting is carried by the A,, term, which is unique to network data. Prior to our paper, the typical
treatment in network bootstrap literature is to simply bound and ignore this component, such
as Lemma 7 in [61]. In sharp contrast, by carefully quantifying the impact of A, we shall
reveal its key smoothing effect by a refined analysis. Therefore, before advancing to the state-
ment of our main lemma, we present two concrete examples to give the general audience an
intuitive impression of the asymptotic orders of each constituent term in (3.10). For sim-
plicity of illustration, in these examples, we would standardize ﬁn using its true variance
o2, rather than the estimator @% The impact of this simplification is that the expansion of
the standardization would not have the —(1 /2)U# - 0p, term, and an altered (:)ij at the same
asymptotic order as the original (:)ij, and a different remainder term; but all these differences
are non-essential for demonstrating our core ideas. For the moment, let us bear in mind that
0n =S, =pS -n~1/2 by Lemma 3.1. We first study the simplest motif R = Edge.

EXAMPLE3.1.  Let R be an edge withr =2 and s = 1, and ﬁn is simply the sample edge
density py := A. By definition, all h(A;, ;,) — (Wi, 4,) terms are mutually conditionally
independent given W. Then the asymptotic behavior of the self-smoother term is

U, — U,

On

Wb N <0702ﬁn—un W= (pn - n)1>

on

at a uniform O(py, vz, n‘l) Berry-Esseen CDF approximation error rate.
The next example shows that the key insight of Example 3.1 also applies to general motifs.

EXAMPLE 3.2.  Let R be a triangular motif with r = 3,s = 3, and 0n is the empirical
triangle frequency. We can decompose U,, — Uy, as follows:

ﬁn - Un o i Z {h’(Aih’L'z,’is) B h’(Wil,iz,iz)}

o (5)
n 3) 1<iy<iz<is<n

On

15The o(n_l/ 2) error bound in [89] holds on some B < R with “diminishing boundary”, while our error
bounds hold on the entire R.
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:L Z (Wiliz + 77i1i2) (Wili:s + 77@'11'3) (Wl'ﬂs + 771‘22‘3) B Wiﬂé mliswizis

(3) 1<i1 <i2<iz<n In

:1{ 3 Wisis Wiais Nivie + WisiaTiris i D mlizmliamzis}

n
(3) 1<iyi<ia<n In 1<y <ia<is<n In
1<iz<n
13711,02
1 321k<k<nWiijk . W
#1,J ij
:ﬁ Z (n—2)o 77¢j+ﬁ Z o MikTjk
2/ 1<i<j<n n 3/ 1<i<j<n
~ 1sksn
Linear part ki,

~
Quadratic part

1 1
+ [@) Z —MijNikNjk

1<i<j<k<n "

Cubic part

where recall that we define n;; := A;; — W;j. Recall that we are conditioning on W, so
on = py, ~1/2 is treated as a constant. The linear part is = p, 172
part is 5p(p;1 -n~Ylog'?n) and the cubic part is 61,(/);3/2 -n~log!/?n). We make two
observations. First, the linear part in this example has the same asymptotic order as the linear
part in Example 3.1. This is not a coincidence and will be formalized by Lemma 3.1-(b). In
other words, regardless of the shape of R, the linear part in such decomposition always
provides smoothing effect at the same magnitude. Second, different from Example 3.1, we
now have higher-degree remainder consisting of products of quadratic and cubic 1 terms.
The linear part nicely always dominates the quadratic part; but it only dominates the cubic
part when p, = w(n=Y2log!?n).

S

-n . n_1/2, the quadratic

For readers’ convenience, we now link the terms in the two examples to items in Table 1.
The entire (U,, — Uy,) /o, in Example 3.1 and the linear part of the expansion in Example 3.2

both map to A, in Table 1; and the quadratic and cubic parts of the expansion in Example
3.2 correspond to the remainder part in Table 1.

Readers who are familiar with the martingale CLT (c.f. [69]) see immediately that the
cubic part in Example 3.2 is also asymptotically normal and naturally question why our study
would stick to p,, regimes such that this term is ignorable. In other words, when the network
is very sparse that the cubic part dominates the linear part, can the asymptotic normality of
the former take over the role of self-smoother? The reason why the cubic part is much more
challenging to characterize than the linear part lies in its very slow convergence to its limiting
normal distribution. In Example 3.2, the CDF of the linear part converges to its limiting
distribution at a uniform rate of O(p,, vz, n~1) (See (3.12) in our Lemma 3.1-(b)). In sharp
contrast, the convergence rate of the cubic part as a martingale is much slower. The reported
uniform convergence rate for martingale CLT across various different settings in literature
are all significantly slower than n~1/2, see [72, 64, 107, 29] and so on. This is not surprising
considering the lack of independence between summands in the scenarios that martingale
CLT addresses. Our discussion here does not disprove the possibility that a sharper analysis
might show that the higher-degree n-product terms in fact can serve as the self-smoother,
but required analysis might be difficult. Considering the already existing complexity of this
paper, we simply control the stochastic magnitude of the cubic part in Example 3.2.

On the other hand, however, the asymptotic normality of the cubic part provides a unrig-
orous but helpful intuitive understanding of the logl/ 2, factor in the first term of our error
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bound (1.2). If we roughly treat Z.,p;. := the cubic part in Example 3.2 as normal, then
P(| Zeubic| > C(Var(Zeupic) /2 - log"?n)) = O(n=1) for a large enough constant C.. The
log3/ 2 n factor in the second term of (1.2) comes from a different source, namely, the tail
probability control of gi : k > 3 terms in the Hoeffding’s decomposition of U,, — p,, (not
presented by Example 3.2) in a similar spirit.

The insights of the two examples will be generalized in part (b) of our main lemma below.
When the network is sufficiently dense, among the expansion terms of ﬁn — Uy, the linear
part dominates. Consequently, the overall contribution of the stochastic variations in A|W
approximates Gaussian at an O(p,, vz, n~1) Berry-Esseen error rate. Now recalling the defi-
nition of acyclic and cyclic R shapes from Definition 1.1, the definition of M (p,,,n; R) from
definition 1.2 in Section 1, and the definition of 5p, we are ready to state our main lemma.

LEMMA 3.1. Assume the following conditions hold:

(1). p,° & > C >0, where C > 0 is a universal constant,
(ii). pn =w(n=") for acyclic R, or p, = w(n=2/") for cyclic R,
We have the following results:

(a) Un=tin _ U + A, + 5p(n_1 log®?n),

On
(b) We have
A, = Un=Un) X i

where A, and the remainder R,, satisfy

3.11) R, = O, (M(pn,n; R))
(3.12) HFATJW(U)_ FN(()’(pn.n)flo—i)(u) Hoc = 6p <p;1/2 . n‘l)

where the order control in (3.12) is 5p(-) rather than O(-) due to the randomness in W.
The definition of 0., is lengthy and formally stated in Section 7 in Supplemental Material.
Asn — 0, we have o, £ 1.

(©) 0p = Op (M(Pn,n; R))’

(d) We have

1l @EX) - 20r—1) 91(Xi)ga(Xi, Xj) | ~
6n_ﬁ¢:21 e +n(n_1 Z e 12+ Op(n~" logn).

1<{i,j}<n
i#]
Overall, Lemma 3.1 clarifies the asymptotic orders of the leading terms in the expansion of

T’,. In fact, Lemma 3.1 has a parallel version for the jackknife \S,.jackknife in view of Theorem

3.3, but we do not present it due to page limit. We spend the rest of this section on discussing
the conditions and results of Lemma 3.1.

REMARK 3.1. Assumption (i) is a standard non-degeneration assumption in literature.
It is different from a smoothness assumption on graphon f'°. A globally smooth Erdos-Renyi
graphon leads to a degenerate g1(X1) that £2 = Var(g1(X1)) = 0. In the degenerate setting,

16Smooth graphon: f is called smooth, if there exists a measure-preserving map o : [0,1] — [0, 1] such that
f(o(+), 0(+)) is a smooth function. See [56, 136] for more details.
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both the standardization/studentization and the analysis would be very different. Asymptotic
results for r = 2, 3 motifs under an Erdos-Renyi graphon have been established by [54, 55].
Degenerate U-statistics are outside the scope of this paper.

REMARK 3.2. We note that Lemma 3.1 only requires the weak assumption on p,, (see
Assumption ii). This assumption matches the classical sparsity assumptions in network boot-
strap literature [20, 17, 61]. Using Lemma 3.1, we prove a higher-order error bound of the
Edgeworth expansion in Theorem 3.1 with a stronger density assumption; while in Theo-
rem 3.4 on sparse networks, we prove a novel modified Berry-Esseen bound for the normal
approximation. Both downstream theorems significantly improve over existing best results.

REMARK 3.3. Lemma 3.1-(a) and (d) are similar to results in classical literature on
Edgeworth expansion for noiseless U-statistics [71, 96], but here we account for p,. Parts
(b) and (c) are new results unique to the network setting. Especially in the proof of part (b),
we significantly refine the analysis of the randomness in A\W in [17] and [61].

3.3. Population and empirical Edgeworth expansions for network moments. In this sub-
section, we present our main theorems.

THEOREM 3.1 (Population network Edgeworth expansion). Define

x LITQ
) = B(a) + 20 {2 Bl (x)

+T—1
2

(3.13) (2% + 1) E[g1(X1) g1 (Xa)gz(Xl,Xz)]},

where ®(z) and p(x) are the CDF and PDF of N(0,1), respectively. Assume condition (i)
of Lemma 3.1 hold, and replace condition (ii) by a stronger assumption that either R is
acyclic and p, = w(n=?), or R is cyclic and p, = w(n='/"). Additionally, assume either

pn = O((logn)~1) or Cramer’s condition limsup,_, ., ‘E [eﬁtgl(Xl)fl_l] ‘ < 1 holds. We have

B, (@) = Gul@)| = O(Mpnni ).
REMARK 3.4.  The assumed py,’s upper bound in absence of Cramer’s condition serves
to sufficiently boost the smoothing power of A, quantified in Lemma 3.1-(3.12). This as-
sumption seems minimal in presence of a lattice g1(X1), since it corresponds to a normal
smoother with variance (p, - n)~' = Q(logn - n=1). This matches the minimum standard
deviation requirement Q((logn)"/? - n=/2) in Remark 2.4 in [89] for the i.i.d. setting.

In (3.13), the Edgeworth coefficients depend on true population moments. In practice, they
need to be estimated from data. Define

~ 1
91(Xi) = ¢ 2 h(Aig,,.i i) = Un,
(T‘—].) 1<i1<...<ip_1<n
E

~ 1 ~ ~
92(Xian) il N Z h(Ai,j,il,---,irfz) —Un —91(X3) — gl(Xj)’
(r—2) 1<y <...<ip_2<n
1 yeenyin 270, ]
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where we write “g; (X;)” rather than “g@)” for cleanness. We stress that the evaluation of
91(X;) and g2(X;, X;) does not require knowing the latent X;, X;. The Edgeworth coeffi-
cients can be estimated by

?._R'S’\%_
1- TQ

~ 1

THEOREM 3.2 (Empirical network Edgeworth expansion). Define the empirical Edge-
worth expansion as follows:

202 +1 -
5 -E[g3 (X1)]

énx:=©x #(2) {
(@)= Blo) + 2

1
(3.14) + 7

(27 +1) I@[gl(Xl)gl(XQ)gQ(Xl,Xz)]},

Under the conditions of Theorem 3.1, we have

|Fp, (@) = Gul@)] = Op(M(pnymi R)).

REMARK 3.5.  Another approach to estimate the unknown coefficients in Edgeworth ex-
pansion is bootstrap. The concentration of G,, — Gy, should not be confused with the con-
centration G}, — G, where G is the expansion with bootstrap-estimated coefficients. See
literature regarding the i.i.d. setting [71, 96]. In @;"L — @n, the convergence rate is not a
concern, because without constraining computation cost, one can let the number of bootstrap
samples grow arbitrarily fast. Hence, establishing consistency would suffice for the analysis
of G — Gy, whereas our proof concerning Gy, — G,, requires careful rate calculations.

Next, we show that different choices of the variance estimators for studentization represent
no essential discrepancy.

THEOREM 3.3 (Studentizing by a jackknife variance estimator (3.3)). Define

~

= . Un — pin
Tn;jackknife = =
n;jackknife

Under the assumptions of Theorem 3.1, we have

(3.15) 1S, — S\n;jackknife’ =0(S5,-n7 Y,
1B, @) = Cal@)] = O (M, ),
Bz, @) = Ga@)]| = Op(M (o, B)).

Theorem 3.3 states that on statistical properties, one does not need to differentiate between
T, and T}, jackknife- The evaluation of Sy, jackknife COStS O(n’"*l) time because each individual

U7 costs O(n"); whereas our estimator S,, costs O(n"). Our estimator also has a more
convenient form for theoretical analysis.
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3.4. Remarks on non-smooth graphons. Our results do not assume graphon smoothness
or low-rankness. This aligns with the literature on noiseless U-statistics but sharply con-
trasts network inferences based on model parameter estimation such as [74, 91] and network
bootstraps based on model estimation [61, 93]. Notice that the concept “non-smoothness”
usually emphasizes “not assuming smoothness” rather than explicitly describing irregularity.
It is a very useful tool for modeling networks with high structural complexity or unbalanced
observations, examples include: (1) a small group of outlier nodes that behave differently
from the main network patterns [28]; (2) in networks that exhibit “core-periphery” structures
[48, 138], we may wish to relax structural assumptions on periphery nodes due to scarcity of
observations; and (3) networks generated from a mixture model [104, 82] with many small-
probability mixing components may appear non-smooth in these parts. Unfortunately, ex-
isting research on practical methods for non-smooth graphons is rather limited due to the
obvious technical difficulty, but exceptions include [40].

Our results send the surprising message that under mild conditions, the sampling distri-
bution of a network moment is still smooth and can be accurately approximated, even if the
graphon is non-smooth.

3.5. Sparse networks. We have been focusing on discussing dense networks, but many
networks tend to be sparse [63]. In this section, we investigate the following sparsity regime

2

n~t<p,<n~Y2  foracyclic R

n=%" < p, <n~Y"  forcyclic R

(3.16) Pn {

It turns out that the Berry-Esseen bound in this setting would be slower than n~ /2, unlike
that in i1.i.d. and noiseless U-statistic settings. The exact reason is technical and will be better
seen in the proof of Theorem 3.4, but the intuitive explanation is that if p, is too small,
the higher degree (> 2) random errors in ﬁn — U,, diminishes too slowly compared to the
scale of the demoninator of fn. If the network sparsity p,, falls below the typically assumed
lower bounds: n~! for acyclic R and n=2" for cyclic R [20, 17, 61], no known consistency
guarantee exists. In fact, in this case we do not even know if fn is asymptotically normal.

THEOREM 3.4. Under the conditions of Lemma 3.1, except replacing Condition (ii) by
(3.16), we have the following modified Berry-Esseen bound

By (0) = Gulw)| =] Fp, () = @) =0 (M(pnni R)) /\ o(1),
where recall that ®(-) is the CDF of N(0,1). Moreover,

(B, () = Gulw)| =0y (M(pa,ni B) /\ 0y(1)

In the sparse regime, the current upper bound on the remainder terms would dominate
the n—1/2 leading term in the Edgeworth expansion. In other words, in sparse networks,
the Edgeworth expansion is guaranteed by the same error rate bound as a simple N (0,1)
approximation. On the other hand, the conclusion of Theorem 3.4 connects the error bound
results for dense and sparse regimes. Interestingly, as the order of p,, decreases from n =2 to
n~" for acyclic R, or from n~ /" to n=2/" for cyclic R, we see a gradual depreciation in the
uniform CDF approximation error from the order of n~'/2 to merely uniform consistency.
The classical literature only studied the boundary cases (p, = w(n™1) or p, = w(n="),
depending on R), and our result here reveals the complete picture.

A natural question is whether a higher-order approximation would be possible in the sparse
regime. We conjecture not. We also conjecture that the Berry-Esseen bound that both empir-
ical Edgeworth expansion and /N (0, 1) approximation achieve is either sharp or nearly sharp,
but we do not know an answer for sure. This would be an interesting future work.
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597 3.6. Comparison table of our method to benchmarks. We conclude this section by com-
see  paring our results to some representative works in classical and very recent literature.

TABLE 2
Comparison of CDF approximation methods for noisy/noiseless studentized U-statistics
U-stat. Popul. Smooth Non lat. Network sparsity CDF approx.
Method type momt.!” graphon /Cramer assumpti 18
. ption on pp, error rate
Our method If yes w(n72/r)(C); w(rfl)(A<:)19 51; (M(pn,n; R)) A op(1) H)>°
. Noisy No No —2/r . —1
(empirical Edgeworth) w(n )(©); w(n™")(Ac) ~
If no Op (M(pn,n; R)) A op(l) (H
andO((logn)_l)(C, Ac) p (M(pn,n; R)) A op(1) (H)
Node re-/sub- sampling . —1/r . —1/2 —1/2
justified by our theory Noisy No No Yes w(n )(C); w(n )(Ac) op(n ) (H)
Bickel, Chen and Levina [20] | Noisy No?! No No w(n"2"Y(©); w(n~ 1) (Ac) Consistency
Bhattacharyya and Bickel [17] Noisy No No No w(n_2 ™)(C); w n_l)(Ac) Consistency
Green and Shalizi [61] Noisy No Mixed?? No R is Ac; or cu(rf1 (2r) )(C)23 Consistency
Levin and Levina [93] Noisy No Low-rank>" No w(n_1 -logn) (Ac”‘)25 Consistency
Bickel, Gotze and Zwet [21] Noiseless Yes No Yes Not applicable o(n_l) (H)
Bentkus, Gotze and Zwet [14] | Noiseless Yes No Yes Not applicable O(nil) (H)
Putter and Zwet [110] Noiseless No No Yes Not applicable op(rf1 2) (H)
Bloznelis [23] Noiseless No No Yes Not applicable op(n_1 2) (H)

599 4. Theoretical and methodological applications.

600 4.1. Higher-order accuracy of node sub- and re-sampling network bootstraps. One im-
o1 portant corollary of our results is first higher-order accuracy proof of some network bootstrap
sz schemes. For a network bootstrap scheme that produces an estimated [72* and its jackknife”®
s variance estimator §;’;*, define fj; = (ﬁg* — ﬁn) /3”;1“* We are going to establish the first
s« explicit rate guarantees for following two schemes.

s0s (a). Sub-sampling [17]: randomly sample n* nodes from {1,...,n} without replacement,
606 and compute ﬁ’f* from the induced sub-network of A.

sov  (b). Re-sampling [61]: random sample n nodes from {1,...,n} with replacement, and com-
608 pute f’:* from the induced sub-network of A.

17«Yes” means need to know the population moments that appear in Edgeworth coefficients, i.e. £,
E[g}(X1)] and E[gy (X1)g1(X2)g2(X1, X2)].

B0 compare ppn, assumptions, see our Remark 3.2

19(C): cyclic R; (Ac): acyclic R.

20Recall M (pn,n; R) defined in (1.1) and 6p defined in Section 1.4. (H): higher-order accuracy results.
“Consistency”: only convergence, no error rate.

2lIn [20, 17], Un— pn was rescaled by pn, and n. Whether assuming the knowledge of the true pp, or not does
not matter for their op(1) error bound, but it would make a difference if an op (nil/ 2) or finer bound is desired.

22The bootstrap based on denoised A requires smoothness. See Theorem 2 of [61].

21t seems their assumption for cyclic R was a typo, and pp = w(n_z/r) should suffice. Also, they used [17]
in their proof, which requires pp, = w(n_l) for (Ac).

24[93] assumed the graphon rank is low and known.

2 (Ac*): They require the motif to be either acyclic or an r-cycle, see their Theorem 4. Their Theorem 3
requires condition (8) that only holds when R is a clique.

26Here, we use jackknife variance estimator in bootstraps to better connect with existing literature in the proof.
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609 REMARK 4.1. Notice that [61] did not study the studentized form, and [17] propoosed a
s10 different variance estimator (what they call “Gg,”). Our justifications focus on the sampling
s11 schemes combined with some natural formulation, not necessarily the same formulation as

sz In these two papers.

613 REMARK 4.2. As noted in [61], scheme (b) can be viewed as our data generation pro-
sta  cedure described in Sections 2.1 and 2.2 but with the graphon f replaced by the adjacency-
o1 induced graphon A(u,v) = Ajpy) [no], Where [y] := Ceiling(y). This may seem similar to
s16  f-based data generaion, but in fact they are distinct. The graphon A(-,-) inherits the binary
s17 nature of A and will necessarily yield a lattice g5 (X{) regardless of the original graphon f
s1s and the motif R, rendering most classical Edgeworth analysis techniques inapplicable. But
s19  the real obstacle is that the bootstrapped network data from A(-,-) have no edge-wise ob-
s20 Servational errors (i.e. no counterpart to the randomness in A|W ). Consequently, T e loses

621 the self-smoothing feature that C/A’n enjoys. For this reason, when justifying the higher-order
e22 accuracy of network bootstraps, we cannot simply reproduce the proof of our main theorem
23 that crucially benefits from the self-smoothing effect. Aligned with this observation, the even-
e« tual error rates that we established for network bootstraps are significantly worse than our
&5 population and empirical Edgeworth expansions. We conjecture that further improving the
26 error guarantee for network bootstraps beyond Theorem 4.1, if possible, might require much
e27 more sophisticated analysis.

628 THEOREM 4.1.  Assume g1(X1) satisfies a Cramer’s condition such that lim sup,_, ., ’]E [eﬁtgl(xl)ffl] ’ <

e29 1. Under the conditions of Theorem 3.2, we conclude for the following bootstrap schemes:

s0 (a). Sub-sampling: choosing n* =n and n —n* = n, we have

@.1) HFf** (u) — F; — o, ((n*)_1/2) = 0,(n"12).

n¥ (1—n* /n) 0

st (b). Re-sampling: choosing n* = n, we have

4.2) HFT** (u) — Fp (u)HOO =0, ((n*)—1/2> - op(n—l/Z).

632 REMARK 4.3.  In the proof of Theorem 4.1, we combined our main results with the results
ss  of [23] for finite population U-statistics. It is important to notice that all existing works
sas under the finite populations did assume non-lattice with population size growing to infinity,
5 see condition (1.13) in Theorem 1 of [23]. Consequently, the higher-order accuracy of some
&6 network bootstraps is only proved under Cramer’s condition by so far.

637 Part (a) of Theorem 4.1 quantifies the effective sample size in the sub-sampling network
s bootstrap: sampling n* out of n nodes without replacement, the resulting bootstrap JA’;* ap-
sss proximates the distribution of Ty, where m = {n*/n-(1—-n*/n)} x n. Consequently, in
ss0 order to approach the sampling distribution of fn with higher-order accuracy using sub-
ss1  sampling [17], one must have an observed network of at least 4n nodes, from which she shall
sz repeatedly sub-sample 2n nodes without replacement.

643 4.2. One-sample t-test for network moments under general null graphon models. In this
s«« and the next subsections, we showcase how our results immediately lead to useful inference
sss  procedures for network moments. For a given motif R, we test on its population mean fre-
s6  quUeNcy (. Since u, depends on n through p,,, we formulate the hypotheses as follows

647 Hy: piy, = ¢y, versus Hy : iy, # Cp.-
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where ¢, is a speculated value of p,, = E[h(Al,._,,r)]. In practice, ¢, may come from a prior
study on a similar data set or fitting a speculated model to the data (for concrete examples on
cn, guesses, see Section 6.1 of [17]).

Here for simplicity we only discuss a two-sided alternative, and one-sided cases are exactly

similar. The p-value can be formulated using our empirical Edgeworth expansion én() in
(3.14):

(4.3) Estimated p-value = 2 - min {(A?n(t("bs)), 1-— C:‘n(t("bs))} :

where ¢(°bs) .= (ﬁg)bs) —cn)/ §$L°bs), and Q%Obs) and §7(1Obs) are the observed ﬁn and §n, re-
spectively. We have the following explicit Type-II error rate.

THEOREM 4.2. Under the conditions of Theorem 3.2, we have the following results:

1. The Type-I error rate of test (4.3) is a + O (M(pp,n; R)).
2. The Type-II error rate of this test is o(1) when |cp, — | = w (pfl . n_1/2).

REMARK 4.4. The null model we study is complementary to the degenerate Erdos-
Renyi null model in [91, 54, 55]. The scientific questions are also different: they test model
goodness-of-fit whereas we test population moment values. Notice that distinct network mod-
els may possibly share some common population moments. These approaches also use very
different methods and analysis techniques.

4.3. Cornish-Fisher confidence intervals for network moments. Noticing that @n is al-
most never a valid CDF, in order to preserve the higher-order accuracy of C:’n we use the
Cornish-Fisher expansion [44, 53] to approximate the quantiles of F’fn‘ A Cornish-Fisher
expansion is the inversion of an Edgeworth expansion, and its validity hinges on the validity
of its corresponding Edgeworth expansion. Using the technique of [65], we have

THEOREM 4.3. For any a € (0, 1), define the lower o quantile of the distribution of T,
by

4.4) a7, = arg (i]gﬂg Fr (q) 2«

and define the approximation

R 1 222 +1 4~ 4
5=z — ~ ‘Elg? (X
47,.q = *a - E:f { 6 [g7(X1)]

(4.5) w1t

(25 +1) E[gl(Xl)gl(XQ)QQ(XIaXQ)]}a

where zo := ® (). Then under the conditions of Theorem 3.2, we have

(a). The discrepancy between nominal and actual percentage-below for q;. . is bounded by

4.6) Py (47, ) — al = O (M(pa,m; R))
(b). The “horizontal” error bound:
4.7) @fn;a e 6}? (M(pn,n; R))

(¢). The uniform “vertical” error bound.:

(4.8) P(T, <87,.,) = @+ O (M(pa,n; R)).
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The vertical error bound describes the approximation error between the nominal and ac-
tual coverage probabilities, whereas the horizontal error bound governs the approximation
of quantiles. Using the vertical error bound, a 1 — o two-sided symmetric Cornish-Fisher
confidence interval for estimating u,, can be easily constructed as follows

4.9) (ﬁn ~ @, 1oy O On = g, ga §n)

and by Theorem 4.3, we know this CIl has a 1 — a + O (M(py, n; R)) coverage probability.
One-sided confidence intervals can be constructed exactly similarly, thus we omit them.

5. Simulations.

5.1. Simulation 1: Higher-order accuracy of empirical Edgeworth expansion. In the first
simulation, our numerical studies focus on the CDF of FA In an illustrative example, we

simulate with a lattice g1 (X;) and show the distinction between FA and Fr, that clearly

illustrates the self-smoothing effect in Tn. Then we systematically compare the performance
of our empirical Edgeworth expansion to benchmarks that demonstrates the clear advantage
of our method in both accuracy and computational efficiency.

We begin by describing the basic settings. We range the network size n in an exponen-
tially spaced set n € {10, 20, 40,80,160}. Synthetic network data are generated from three
graphons marked by their code-names in our figures: (1). "BlockModel" : This is an or-
dinary stochastic block model with K = 2 equal-sized communities and the following edge
probabilities B = (O 6,0.2;0.2,0.2); (2) "SmoothGraphon": Graphon 4 in [136], i.e.
flu,v) = (u?+02)/3- cos(l/(u +v2)) +0.15. This graphon is smooth and full-rank [136];
(3). "NonSmoothGraphon"[40]: We set up a high-fluctuation area in a smooth f to emu-
late the sampling behavior of a non-smooth graphon, as follows

f(u,v) :=0.5c08{0.1/((u—1/2)* + (v —1/2)*)"" +0.01} max{u,v}?3 +0.4.

We test the four simplest motifs: edge, triangle, V-shape®’, and a three-star among 4 nodes
with edge set {(1,2),(1,3),(1,4)}. The main computation bottleneck lies in the evaluation
of FA Network bootstraps also becomes costly as n increases.

The benchmarks are: 1. N(0,1) (its computatlon time is deemed zero and not compared
to others); 2. sub-sampling by [17] with n* = n/2; 3. re-sampling A by [61]; 4. latent space
bootstrap called “ASE plug-in” defined in Theorem 2 of [93]. Notice that we equipped [93]
with an adaptive network rank estimation®® by USVT [35].

For each (graphon, motif, n) tuple, we first evaluate the true sampling distribution of fn
by a Monte-Carlo approximation that samples nyyc := 10 networks from the graphon. Next
we start 30 repeated experiments: in each iteration, we sample A from the graphon and ap-
proximate F by all methods, in which we draw npe0t = 2000 bootstrap samples for each
bootstrap method notice that this is 10 times that in [93]. We compare

(5.1) Error(ﬁf )= sup ﬁ’f (u) — Fr (u)].
" ue[—2,2];10uez

REMARK 5.1. We need many Monte-Carlo repetitions, because the uniform accuracy of

the empirical CDF of an i.i.d. sample is only O (ng/lléQ) [50, 88], and for the noiseless and

2TA “V-shape” is the motif obtained by disconnecting one edge in a triangle. In the language of [20], it is a
2-star.

28Consequently, our enhanced version of this benchmark can decently denoise some smooth but high-rank
graphons, in view of the remarks in [136] and the results of [134].
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noisy U-statistic setting, the bound might be worse than the i.i.d. setting due to dependency®.
Therefore, we set nyic » max(n?) = 1602 to prevent the errors of the compared methods
being dominated by the error of the Monte-Carlo procedure; while keep our simulations
reproducible with moderate computation cost. We did find smaller nyic such as 10° to cloud
the performance of our method.

BlockModel, Triangle, n=80

—TrueA
—TrueAJack
—TrueW i
—Edgeworth

N(0,1)
--Re-sample
--Sub-sample
--L‘evin—Levina

-2 -1 0 1 2
X

CDF values
=
(@)

Fig 1: CDF curves of the studentization forms and approximations. Network size n =
80. The graphon is the “BlockModel” we described earlier in this section, and the
motif is triangular. Each bootstrap method draws 500 random samples. TrueA is an;
TrueAJack is an;jackknife; TrueW is Fr ; Edgeworth is our empirical Edgeworth ex-
pansion; Re—sample is node re-sampling A in [61]; Sub—sample is node sub-sampling
Ain[17]; Levin-Levina is the “ASE plug-in” bootstrap in [93].

Now we present the results. We first present the illustrative simulation for just one specific
setting. Figure 1 shows the distribution approximation curves under a block model graphon
that yields a lattice g1 (X7). Lines correspond to the population CDF of T, its jackknife ver-
sion and noiseless version, all evaluated by Monte-Carlo procedures; our proposed empirical
Edgeworth expansion; and benchmarks. We make two main observations. First, TrueA and
TrueAJack are almost indistinguishable, echoing our Theorem 3.3; meanwhile, they are
both smooth and rather different from the step-function TrueW. This clearly demonstrates
the self-smoothing feature of fn in the lattice case. If we change the graphon to a smooth
one, these curves would all be smooth and close to each other. Second, we observe the higher
accuracy of our empirical Edgeworth expansion compared to competing methods. In fact,

29This is not to be confused with the Edgeworth approximation error bound. In this Monte Carlo procedure,
both the true and approximate F:,q are oracle.
n
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repeating this experiment multiple times, our method shows significantly stabler approxima-
tions than bootstraps.

Next, we conduct a systematic comparison of the performances of all methods across many
settings. We mainly varied three factors: graphon type, motif type and network size, over the
previously described ranges. Our experiment results under different network sparsity levels
would have to sink to Supplemental Material due to page limit, and here we keep p,, = 1.
Results are shown in Figure 2 (error) and Figure 3 (time cost), where error bars show standard
deviations.

In all experiments, our empirical Edgeworth expansion approach exhibited clear advan-
tages over benchmark methods in all aspects: the absolute values of errors, the diminishing
rates of errors, and computational efficiency. Our method shows a higher-order accuracy by
slopes steeper than —1/2 and much steeper than other methods. On computation efficiency,
our method is the second cheapest after the simple N (0, 1) approximation (that does not need
computation) and much faster than network bootstraps. It typically costs about e > ~ 1/150
the time of sub-sampling and about e~7 ~ 1/1000 the time of re-sampling. Our method only
needs one run and does not require repeated sampling.

Notice that there is no simple rule to judge the difficulty of different scenarios, which
jointly depends on the graphon and the motif through implicit and complex relationship. In
our experience, triangle may be more difficult than V-shape under some graphons, but easier
under some others, and this comparison may vary from method to method. Answering this
question requires calculation of the population Edgeworth expansion up to o(n~!) remainder,
and the leading term in the remainder of the one-term Edgeworth expansion would then
quantify the real difficulty. But the calculation is very complicated and outside the scope of
this paper.

We did not observe the higher-order accuracy of bootstrap methods as our results pre-
dicted. One likely reason is the numerical accuracy limited by the ny,q0t that our computing
servers can afford. We did see an observable improvement in the performances of network
bootstraps as we increased 1yt from 200 suggested by [93] to the current 2000. But further
increasing npoot Will also increase their time costs and potentially memory usage. We ran
each experiment on 36 parallel Intel(R) Xeon(R) X5650 CPU cores at 2.67GHz with 12M
cache and 2GB RAM. It took roughly 3~8 hours to run each experiment that produces one
individual plot in Figures 2 and 3.

5.2. Simulation 2: Finite-sample performance of Cornish-Fisher confidence interval. In
this simulation, we numerically assess the performance of our Cornish-Fisher confidence in-
terval, compared to benchmark methods. Throughout this subsection, we set o = 0.2 and
focus on symmetric two-sided confidence intervals. We inherit most simulation settings from
Section 5.1 with some modifications we now clarify. The main difference is that in this sim-
ulation, we must conduct many repeated experiments in order to accurately evaluate the cov-
erage probability (each iteration produces a binary outcome of whether the CI contains the
population parameter). We repeated the experiment 10000 times for our method and normal
approximation, and 500 times for the much slower bootstrap methods. Due to the computer
limitations, while we can keep the same number of Monte Carlo evaluations, in order to re-
peat the entire experiment 500 times to accurately evaluate the actual CI coverage rates of
bootstraps, we have to reduce their numbers of bootstrap samples to 500 (still more than the
200 in [93]). We evaluate three performance measures: coverage: actual coverage proba-
bility; length: confidence intereval length; and t ime: computation time in seconds.

Due to page limit, in the main text, we only present the results for the setting n = 80 and
pn = 1 in Tables 3 (block model), 4 (smooth graphon) and 5 (non-smooth graphon). Each en-
try is formatted “mean(standard deviation)”. We sink the remaining results to Supplemental
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CDF Approx. Err. CDF Approx. Err. ] CDF Approx. Err.
Block Model Smooth Graphon - Non-Smooth G

-6 -6 -6
10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
# of nodes # of nodes # of nodes
0 CDF Approx. Err. 0 CDF Approx. Err. ] CDF Approx. Err.
+ Block Model + Smooth Graphon ”\;\,‘,‘_;‘_—; A__Non-Smooth G

10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
# of nodes # of nodes # of nodes
] CDF Approx. Err. ] CDF Approx. Err. ] CDF Approx. Err.

b Block Model Smooth Graphon Ji S Non-Smooth G
OV : Tao SN

10 20 40 80 160 10 20 40 80 160 10 20 40 80 160
# of nodes # of nodes # of nodes
0 CDF Approx. Err. 0 CDF Approx. Err. ] CDF Approx. Err.

Block Model Smooth Graphon + ~~~~~~~~~~ Non-Smooth G

10 20 40 80 160 20 40 80 160
# of nodes # of nodes # of nodes

Fig 2: CDF approximation errors. Both axes are log(e)-scaled. Motifs: row 1: Edge; row
2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle: our
method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1) approxi-
mation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed curve

marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers: ASE
plug-in bootstrap in [93].
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Fig 3: Time costs (in seconds) of all methods. Both axes are log(e)-scaled. Motifs: row
1: Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve
marked circle: our method (empirical Edgeworth); green dashed curve marked up-triangle:
re-sampling of A in [61]; blue dashed curve marked plus: [17] sub-sampling = n nodes; ma-
genta dashed line with square markers: ASE plug-in bootstrap in [93]. We regarded N (0, 1)
as zero time cost so does not appear in the time cost plot.
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TABLE 3
Performance measures of 95% confidence intervals

n =80, pn =1, graphon: block model

Method Edge Triangle V-shape Three star
Coverage = 0.957(0.202) 0.953(0.211) 0.956(0.205) 0.952(0.213)
Our method Length = 0.097(0.010) 0.040(0.008) 0.200(0.033) 0.145(0.033)
LogTime = —8.448(0.110)  —7.214(0.083) —7.165(0.082) —7.180(0.353)
0.950(0.218) 0.934(0.248) 0.942(0.235) 0.932(0.251)
Norm. Approx. 0.097(0.010) 0.040(0.008) 0.200(0.033) 0.145(0.033)

No time cost

No time cost

No time cost

No time cost

Bhattacharyya and Bickel [17]

0.842(0.365)
0.068(0.009)
—2.591(0.008)

0.870(0.337)
0.031(0.007)

—2.160(0.026)

0.852(0.355)
0.147(0.026)
—2.127(0.024)

0.852(0.355)
0.113(0.025)
—0.992(0.006)

0.938(0.241)

0.944(0.230)

0.934(0.249)

0.938(0.241)

Green and Shalizi [61] 0.096(0.013) 0.044(0.010) 0.204(0.038) 0.150(0.037)

—1.198(0.007) 0.499(0.032) 0.142(0.035) 0.383(0.010)

0.942(0.234) 0.942(0.234) 0.942(0.234) 0.942(0.234)

Levin and Levina [93] 0.099(0.013) 0.043(0.010) 0.209(0.039) 0.155(0.038)

—1.188(0.004) 0.507(0.028) 0.142(0.027) 0.489(0.004)

TABLE 4
Performance measures of 95% confidence intervals
n = 80, pn = 1, graphon: smooth graphon
Method Edge Triangle V-shape Three star

Coverage = 0.958(0.201) 0.940(0.238) 0.951(0.216) 0.942(0.235)

Our method Length = 0.092(0.009) 0.021(0.005) 0.141(0.025) 0.083(0.021)
LogTime = —8.225(0.113)  —7.363(0.066) —7.278(0.086) —6.974(0.541)

0.951(0.216) 0.920(0.271) 0.938(0.242) 0.923(0.266)

Norm. Approx. 0.092(0.009) 0.021(0.005) 0.141(0.025) 0.083(0.021)

No time cost

No time cost

No time cost

No time cost

Bhattacharyya and Bickel [17]

0.816(0.388)
0.066(0.009)
—2.554(0.010)

0.840(0.367)
0.018(0.005)

—2.124(0.026)

0.826(0.379)
0.110(0.021)
—2.139(0.026)

0.852(0.355)
0.072(0.018)
—1.020(0.027)

0.928(0.259)

0.946(0.226)

0.938(0.241)

0.948(0.222)

Green and Shalizi [61] 0.092(0.012) 0.025(0.007)  0.147(0.029)  0.090(0.024)
—1.144(0.009) 0.497(0.042)  0.157(0.054)  0.334(0.025)

0.948(0.222) 0.948(0.222)  0.950(0.218)  0.958(0.201)

Levin and Levina [93] 0.095(0.012) 0.024(0.007)  0.153(0.030)  0.095(0.025)
—1.138(0.005) 0.507(0.031)  0.172(0.030)  0.447(0.019)

760 Materials. Our method exhibits very accurate actual coverage probabilities consistently close
770 to the nominal confidence level. Our method is the only method that can always achieve a
771 < 0.010 coverage error across all settings. It also produces competitively short confidence
772 interval lengths, again, reflecting the high accuracy of the method. The comparison of com-
773 putational efficiency between different methods echoes the qualitative results in Figure 3
772 despite slightly different settings and confirms our method’s huge speed advantage over all

775 bootstrap methods.

776 It is interesting to observe that under the setting of this simulation, our empirical Edge-
777 worth expansion method always produces the same interval length as the normal approxima-
77 tion. This is not a coincidence in view of (4.5), (4.9) and that zi o= zf_a /o In other words,

779 as long as the studentization form fn that N (0, 1) approximates is equipped with the same
70 variance estimator S, as our method, our two-sided Edgeworth confidence interval is a bias-
781 corrected version (by mean-shift) of the corresponding ordinary CLT confidence interval.
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TABLE 5
Performance measures of 95% confidence intervals
n = 80, pn = 1, graphon: non-smooth graphon

Method

Edge

Triangle

V-shape

Three star

Our method

Coverage = 0.956(0.205)
Length = 0.116(0.009)
LogTime = —8.291(0.076)

0.957(0.203)
0.135(0.010)
—7.345(0.103)

0.957(0.202)
0.422(0.027)
—7.817(0.153)

0.957(0.203)
0.531(0.040)
—7.045(0.373)

Norm. Approx.

0.952(0.215)
0.116(0.009)
No time cost

0.949(0.220)
0.135(0.010)
No time cost

0.951(0.215)
0.422(0.027)
No time cost

0.950(0.218)
0.531(0.040)
No time cost

Bhattacharyya and Bickel [17]

0.830(0.376)
0.081(0.010)
—2.569(0.012)

0.832(0.374)
0.096(0.011)
—2.105(0.051)

0.830(0.376)
0.297(0.031)
—2.116(0.035)

0.836(0.371)
0.379(0.041)
—1.011(0.005)

0.940(0.238)

0.938(0.241)

0.944(0.230)

0.944(0.230)

Green and Shalizi [61] 0.112(0.013) 0.135(0.014)  0.415(0.041)  0.529(0.055)
—1.201(0.011) 0.547(0.075)  0.169(0.037)  0.328(0.015)

0.954(0.210) 0.956(0.205)  0.956(0.205)  0.954(0.210)

Levin and Levina [93] 0.116(0.013) 0.138(0.013)  0.427(0.039)  0.544(0.052)
—1.190(0.003) 0.534(0.049)  0.162(0.033)  0.436(0.014)

782

783

784

785

786
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788
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791

792
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797
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In the Supplemental Materials, we present simulation results for the remaining config-
urations among n € {80,160} and p, = {1,n~"* n=12 n=1}. For very sparse networks,
our method and N (0, 1) approximation produce similar conservative confidence intervals for
the R = Edge. On the other hand, all methods fail spectacularly for more complex motifs.
Despite the required p,, lower bounds for all acyclic motifs are identically w(n 1) for our
method and N (0, 1) approximation, the results are not surprising for two reasons: (i) the the-
ory requires p, » n~!, so the simulation setting p,, = n ! is the boundary case and sensible
outputs are not guaranteed; and (ii) the constant factor may matter a lot, and different acyclic
motif shapes may require different minimum constants factor in p,, to show sensible results.

5.3. Simulation 3: Numerical evaluation of the finite-sample impact of sparsity. In this
part, we conduct numerical studies to evaluate the finite sample performances of our method
compared to benchmarks as the network grows sparser under fixed n. Despite in Simulation
5.1, we tested different network sparsity settings (see Supplemental Material), it would still
be interesting to more directly illustrate the impact of p,, for each fixed network size. The
simulation set up carries over the same set of graphon models, motif shapes and compared
methods from Simulation 5.1. Here, for simplicity, we only tested n = 80, 160 and varied p,,
in a wider range of sparsity as follows: {1 (“dense”), n~ V4 =12, n=1}.

Figure 4 shows the CDF approximation errors under different p,, settings for n = 160.
Aligned with our theory’s prediction, we observe that as the network grows sparser, our
method’s performance depreciates and gradually regresses to the performance of normal ap-
proximation. Due to page limit, we sink the approximate error plots for n = 80 and the time
cost plots for both n settings to Supplemental Materials.

5.4. Simulation 4: Degree-corrected stochastic block models. We also tested our method
on networks with degree heterogeneity. Our method maintains significant advantage in both
accuracy and speed. Due to page limit, we sink all results and interpretation to Supplemental
Materials (See Section 9.4).

5.5. Simulation 5: Scalability of our method to large networks. In this experiment, we
test the scalability of our method. We find that all the three benchmark methods that we tested
in previous simulations would fail to finish running on our high performance computing
servers within 24 hours. Therefore, only the time costs of our method are recorded.
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Fig 4: Impact of sparsity on approximation errors, n = 160. Both axes are log(e)-scaled.
Motifs: row 1: Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid
curve marked circle: our method (empirical Edgeworth); black dashed curve marked down-
triangle: N (0,1) approximation; green dashed curve marked up-triangle: re-sampling of A
in [61]; blue dashed curve marked plus: [17] sub-sampling = n nodes; magenta dashed line
with square markers: ASE plug-in bootstrap in [93].
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Fig 5: Scalability of our method on large networks. Bootstrap methods [17, 61, 93] with
Nhoot = 200 bootstrap iterations did not finish in 24 hours, thus are not shown. In all experi-
ments, our method took less than 20 seconds at the longest to run.

812 Figure 5 shows the results. Notably, our method shows a clear uniform slope in their
a3 log-time cost growth rates for all the three motifs with r = 2, 3, 4, respectively. This echoes
s1« our discussion in Section 6 that some “nicely shaped” motifs only cost O(n?) or O(n?) to
s1s  count, regardless of motif size 7. On the other hand, we recognize that counting a large and
sts  “‘irregularly-shaped” motif could cost significantly more time.

6. Discussion. Our results do not cover the case where g (X) is lattice and p,, = 1. An
ad-hoc remedy is to simply introduce artificial missing links by sparsifying A:

Ao Ao A;; = Aj;, with probability 1 — p,,
YT 0, with probability Py,

s17  where we set p,, = (logn)~!. One can then make inferences about the population network
s1s  moment P, - /i, using A as the input data (notice p,, is known). This reinstates the (logn)~*
s19  sparsification that we need to overcome the latticeness at the price of a very minor information
s20 1OSS.

The Edgeworth expansion we derived for Bernoulli A;;|W;; distributions can be readily

extended to general weighted networks formulated by

Aij = Wij + €5,
21 where €;; may either depend on WW;; or not. A distinct feature of our setting is that the edge-

22 Wise observational errors are a contributing component of f’n that smooths the distribution.
s23  In contrast to matrix estimation problems, where such noise is to be suppressed [33, 133], a
2« moderate amount of tailedness can strengthen the smoothing effect in A|W and might im-
25 prove finite sample performances. Notice that similar to [17, 61, 93], throughout this paper,
s2s  we work under the assumption inherited from well-known network analysis literature includ-
sz ing [19, 34, 56, 40] that p,, - f(-) € [0,1], which also yields the boundedness of h(-). Thus,
s2s the bounded-moment conditions in the classical literature of Edgeworth expansions for noise-
s20  less U-statistics would be satisfied. There are at least two directions of potential relaxations:
s relaxing the boundedness of the distribution of A;;|1V;; and study a weighted network, or
sa1  consider unbounded graphons like that in [26]. The extension of our algorithm and analysis
sz to some light-tailed A;;|W;; distributions is straightforward. For instance, our proofs remain
sss  valid for weighted network models with bounded graphon and an sub-exponential edge error
s« distribution, where W;; = Var(e;;|W;;) = pn. by simply replacing Bernstein’s inequality by
sss  generalized Hoeffding’s inequality (Theorem 1.2.2 in [126]).
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On the other hand, in fact there is a simple universal strategy to handle heavy-tailed A;;
distributions, regardless of whether this is due to a heavy-tailed A;;|W;; distribution, or an
unbounded graphon such as f(z,y) = (xy)~* for a € (0, 1) in [26], or even both. As pointed
out in [111], we can perform a one-to-one transformation, such as the widely-used sigmoid
or tanh functions in machine learning, on each A;;, tame it into a bounded T(Aij), and work
with the transformed data. This also guarantees that the population network moments of the
transformed network are always well-defined.

This paper focuses on studying the marginal randomness in A jointly contributed by the
randomness in W and A|W. In this study, we take the sparsity-scaled graphon p,, - f as
the population and the graphon feature u,, as the ultimate inference goal. Our approach is
nonparametric and directly approximates F7; without requiring a graphon estimation W.If
one regards IV as the population and wants to make inference for U,,, she would need a CDF
approximation to (Un — Up)|X1,...,X,. This distribution is asymptotically normal as has
been described by (3.12) in our Lemma 3.1-(b). However, estimating the normal variance
typically requires a graphon estimation w. Meanwhile, a practically meaningful graphon
estimation would typically require that f is smooth and/or low-rank, see [136, 134]. In other
words, the bootstrapping of fn | X1, ..., X, would (seemingly unavoidably) be a parametric
bootstrap. In view of Lemma 3.1-(b), asympotically

)1/2' ﬁn—Un d

On

6.1) (pn

given Xy, ..., X,, where recall that o,, = 1. However, the minimax rate for sparse graphon
estimation (see [58, 85]) is

Rescaled MSE: (p,, - n) "2 - HV/[? ~ W% = (pn-n)""-logn

If we use this error bound to control the estimation error of o2, then this yields an error of
62 — 02| =n""t HI//I\/ —Wlp= p}/Q -n~1/2.10g"/? n. This error may dominate the n~/2 cor-
rection term in an Edgeworth expansion even for dense networks (e.g., Cramer’s condition
holds and p,, = 1). Moreover, the minimax graphon estimation rate has not yet been achieved
by any polyn0m1a1 -time algorithm (see [136, 134] for comments), and using a practically
feasible W would cause an error » n~'/2, ignoring p,, and log. Therefore, it might be chal-
lenging to accurately approximate the distribution of the LHS of (6.1) beyond asymptotic
normality. Our observation here echos the common practice in network bootstrap literature
[1] , 61, 93] that they unanimously focus on the marginal distribution of ﬁn, rather than
(Up — Up)| X1, ..., X N

A retrospection on our simulation setting provides an interesting insight. In fact,
the population Edgeworth expansion provides a much more efficient Monte Carlo pro-
cedure for simulating the true distribution F7 . Indeed, estimating ¢, E[¢7(X1)] and
Elg1(X1)g1(X2)g2(X1, X2)] with nye =<n Monte Carlo samples yields a CDF approxima-
tion rate of O (M (pn,n; R)) = o(n~'/2) when p,, satisfies the conditions of Theorem 3.1.
This is much more efficient than the empirical CDF, which requires nyic > n? to achieve the
same accuracy order.

In the application of our results, we focus on node sampling network bootstraps. It is an
interesting future work to investigate the higher-order accuracy properties of other schemes,

30The expression of agu contains Wz2j terms originated from “Wij(l - WZJ) terms, which could not be
estimated without a graphon estimation.

31 For example, in Levin and Levina [93], the authors used a low-rank decomposition of A, which directly
leads to an estimated W . But they also solely focused the marginal distribution of Uy, (in our notation system).
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such as sub-graph sampling [17] and (artificially) weighted bootstrap [93]. Also comprehen-
sive numerical comparisons of different schemes under various settings would certainly be
interesting for practitioners. As a closely related point, this paper studies the complete noisy
U-statistic, “complete” in the sense that (i1, ... ,i,) ranges over all () possible r-tuples. As
one of the anonymous referees pointed out, evaluating the moment corresponding to an 7-
node motif would cost O(n"), which is still expensive for large n. Even for sparse networks,
the counting may still need O(p!,~!-n") time using cutting-edge algorithms, see Section ITI.A
of [2]. To accelerate the computation, papers [22, 105, 36, 87, 121] investigated this topic
for the conventional noiseless U-statistic setting and formulated the Edgeworth expansion
for “incomplete” U-statistics. They study noiseless incomplete U-statistics, and [17] pro-

posed a “subgraph subsampling” scheme (their scheme (a)) that computes noisy incomplete

U-statistics, which we call T{°™P) for the network setting. Formally, define

Liyiy - WA i)

U(Incomplcto) L ZlS’h < <G <N
n =

Zl<i1<-~~<i,‘<n Iil,...,ir

where I;, . ; ’s are random variables indepedent of the network data. These I;, . ; ’s can
be i.i.d. Bernoulli, multinomial (if a given proportion of sub-sampled motifs is desired), or

other reasonable sampling scheme distributions. It would be an interesting future research to

carefully explore and quantify the self-smoothing effect for Uélncomplete).

On the other hand, however, some particular motifs, such as cycles, stars and wheels, can
be very efficiently evaluated, and the computational complexity may remain at most O(n?),
instead of O(n"). For instance, the ﬁn for star motifs can be approximately counted with
ignorable error in just O(n?) time by averaging over {A’(“i’:)}izl n. Another example is

~

-----

that a (k, £)-wheel (see [20] for definition) can be evaluated in at most O(n?) time using the
sample version of Q(R) in Equation (2.9) in [20]. More readings along this line include [98],
which provides detailed formula table for parallel computing up to r» = 4 motifs, and [4] that
studies fast-counting triangles in very large graphs. A recent paper [38] points out another
promising direction of distributed computation.

Code. The MATLAB code for our method (empirical Edgeworth expansion) is available
athttps://github.com/yzhanghf/NetworkEdgeworthExpansion.
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903 7. Definition of o,, in Lemma 3.1-(b). The formal definition of &, we present here

o0« would complete the statement of this lemma. To start, we express h(A;, ;) :=1; Ai, 2R
s more explicitly as a sum of indicator product-terms, in which, each term checks if 4;, ... ; >
s Ry, where the > is entry-wise and R is defined as (Rr);; := Rﬂ(i)w(j) with 7 ranging over
o7 all permutations. To formalize this, let Perm(R) := {z(©) ¢ = 1,..., L} denote the permuta-
os tion group of R, where 7(!) = id is the identity map and () (R) # 7(2)(R) for any ¢; # /5.
w9  For simplicity, for all 1 < k; < kg < r, define

J(kl,kz)(m) _ {:E if Rg e, =1

1 if R, =0
910
911 Then h(A;,,.. ;) can be formally represented as
L L ® ®
o h(Ail""’i") = Z ]l[Ail ..... in=R (e)] = Z 1_[ J(ﬂ (k). (kZ)) (A’ikl,ik2)
=1 " (=11<ky<ko<r
o1 Define
o (7.1) egﬁ) s = JECGEOG) (W, Y
o (7.2) 6§-?j2 .= Sign {J(Tr(f)(jl)m(é)(jz)) (Winm)}
where
) dJ(x) +1 ifJ(x)=x
S J):= =
ign(J) = =g, {0 if J(z) =1
and define

~ 2w (r—1 L
@z'j:—r(rn% IS I1 ef)}“ e

On - (r—2 1<iy < <ip<nl=1 | 1<ji<jo<r (350 i3 )=(4,5)
{ig}{in,.in} (i1 155)#(,9) b
o6 Define o, as follows
. n ~
(7.3) of =P N 8wyl - W)

(3)2 1<i<j<n

917 This completes the statement of Lemma 3.1-(b).
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8. Proofs.

8.1. Bernstein-type concentration bound for multilinear polynomials of centered error
terms. Our proof would need the main result Theorem 1.3 of [116], which is also used in
the proofs in [84]. To state this theorem, we first define a few preliminary quantities.

DEFINITION 8.1 (See Section 1.1 of [116]). A hypergraph is formed by a node set
V(H):={1,...,N} =[N] and a set H(H) of hyperedges, where a hyperedge b of degree q
is defined to be a subset of nodes V()  V(H) satisfying |V (h)| < q. We study the following

multilinear polynomial
= X s 1_[ X,
heH(H veV(h

where X = (X1,---,Xn) and 20y is an weight multiplier on each hyperedge Y. Suppose on
each node we have a random variable, Y := {Y1,...,Yn} and a natural number t > 0. Let
20 denote the set of all edge weights. We define:

(8.1) =2 (Y, H,2):= max > 20y [ E[Ysl]
SC[N]:|S|=¢
heH(H):SSV(h) veV(H)\S

“rm
—

where to avoid symbol conflict we replaced “1” in [116] by
Next we cite the main assumption.

DEFINITION 8.2. A random variable Z is called central moment bounded with parame-
ter L > 0, if for any integer i > 1, we have

E[|Z-E[Z)] <it-E[1Z — B[]
Now we are ready to cite their main result.

THEOREM 8.1 (Theorem 1.3 of [116], also cited as Lemma 15 in [84]). Suppose all
Y1,..., YN are independent (but not necessarily identically distributed) and they all satisfy
the central moment bounded condition with a common parameter L. Then we have

P([f(Y)-E[f(Y)]]| > u)

9 1/¢
2 v — “
(82) < e”-max {exp { C7 - Var(j(Y)) } RES { <Et£r0q> }}

where C'is a universal constant.

8.2. Proof of Lemma 3.1.

8.2.1. Proof of Lemma 3.1-(a). By the decomposition in [96], we have

2
R S
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o7 Therefore, o, =n~1/2.& = J A n=1/2
sas  sition of U,, — u,, in (3.1), we have
-1 ~
Un— 1 =501 91(X0) + 200 3 e 02(Xi, Xj) + Ry

939 =

. Combining this fact with the Hoeffding’s decompo-

on L+ O(py, - nY?)
s40 Where
~ n\ ' /n-3
941 R3;T = <3> <7" . 3) ' 2 ' g3(Xi17Xi27Xi3>
1<ii<ia<iz<n

_|_

s T (Z)l(Z:Z) >0 (X, X)

sz (8.3) = ES + éél:r

s and we also recall the definitions of U and A,, from (3.7) and the O(ps, - n~3/?) remainder
ws control on the denominator is due to

ré1 ré1
G NG
sz Recall that for simplicity, throughout this paper we assume f is bounded, which implies
us  the boundedness of the induced kernel function A(-). Therefore, the moment conditions of
s Lemma 1 of [96] are satisfied. By Lemma 1 of [96], we know that E[|Ry.,|] = Op(ps -n™2),
os0 thus by the remark below Lemma 2 in [96], this term is also 5]3(;),51 -n~3/ 2). Now for Eg,
st using Theorem 1 in [97], we know that R3 = 5p(p;i -n 32 log?/? n). Therefore, we have

Un_ n — ~ —
952 7M=U#+An(1+0(n )+ 0,(n~t - log®?%n)

On

1+0(n1t) = ==+ 0(p5 -n~%?).

946 On

953 = U# + A, + 0) (nil . 10g3/2 n)

ss¢  This completes the proof of Lemma 3.1-(a).

055 Note that we use R R and Rto denote the remainder terms, where the “R” means “remain-
sss der”. The properties of R Rand R certainly depend on the shape of the motif 2, where we
es7 inherit the tradition of using “R” to represent the motif from past network moment method

oss literature [20], but ﬁ, R and R are distinct notions from R.

o

959 8.2.2. Proof of Lemma 3.1-(b). We have

’]’L ~
960 (T> . Un = Z h(Ail,...,ir)

1<t <-<i,.<n

%t - Z {Z H <€E[Q,...,ir},j17j2 + Ggf):]z ' mﬂ'uiﬂ'z) }

1I<iy<-<i,.<n <J1<Jo <1
- @)
902 = 2 Onkmmkt > > Il € s tR
1<ks <ka<n 1<y <<y <n b=1 1<y <jo <1
~ n o
w3 (8.4) = Z Ok, ks " Mhey ks T+ . U, + R,

1<k <ko<n
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where we denote

i = Aij — Wij,

L
fa o © )
Ok ez 1= Z Z H Qf{il,...,z;},jl,ﬁ 6 Vs ’
1<iy < <ip<n f=1 1<j1<jo<r (i iy )= (k1 k2)
{k1,k2}S{i1,emryir} (25, 855 ) #(F1,k2)

where we recall the definitions of € and & from (7.1) and (7.2), respectively, and R:=
(?) an-én is the remainder that contains all unmentioned terms. Referring to the later formal
definition of An in (8.19) and recalling the definition of ﬁn in (3.7), one can also easily
verify that by definition An — A, + R,,. For clarity, we first verify that the coefficient in
front of ny, 1, is indeed (:)kh;%. For each {iy,...,4,}:1<i; <--- <i, <n and each ¢, the

term
(0 O
H (e{ilv”wi'r J15d2 + 6j17j2 ’ njl:jZ)

1<ji<go <1
contributes to the coefficient of 7y, 1, if and only if {k1,k2} < {i1,...,%,}. Now if (5], 75)
is the index pair from {1,...,r} such that (i 7 ) = (k1, k2), then itself contributes a mul-
tiplicative factor of 65.@]-[ and every other pair (i;,,;,) # (k1,k2) among {1,...,7} con-

1J2
tributes a multiplicative factor of (‘5(2 AR both into the term:

(0 (©)
H e{ily"wiv' ,J1,72 S Ji:da:

1< <2 <r (3514350 )= (K1 k2)
(451 155 ) # (K1,k2) b
as an additive term in the expression of ékl,kz. This confirms that the coefficient of 7y, , is
indeed ékl’;@.
The main content of this proof is to show the finite sample convergence rate of the linear
part to its asymptotic distribution, and to bound the remainder R.

Concentration inequality for the remainder term R

In this part of the proof, our focus is to bound the remainder term R. Without loss of
generality, we inspect the coefficient in front of the term

R BP) T 157

where (k%”,ké”) yeens <kz§v), kY ) are mutually different pairs from the set of node pairs
formed by the first r indices {(%1,%2) k< %2, {%1,%2} < {iq,... ,ir}}. This coefficient

can be denoted and explicitly expanded as follows

Ok { (K kD). (RS 15))

L
= > ;1 [T € i [T sy

1<y < <ip<n 1<j1<jo<r (71:93):
(Vs (R k7Y ) S in i} (i, 5135 )EK (i1 )€K
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L
(8.5) Z 6y

S0

Here we note a crucially important property of ©,-" that it is nonzero if and only if all
of the node pairs in K are edges in the /-th permuted version of the motif W(E)(R) This
will be the key for us to effectively bound @;g and AP in (8.7). We now upper bound
9(%1),kél>)7.__7(k§v)7kg ) for all v > 2, and this is an important step in upper bounding R. De-

fine p

1 1 v v
pi= [k By e G R

to be the number of distinct indexes among (/{P , k§1)> e (kgv), k:é”)) . Clearly, for v > 2,
we have

-1 f lic R
S<p<r and ggvg{p , or acyclic R,

p(p—1)/2, forcyclic R,

It suffices to bound inside part of the right hand side of (8.5) for each fixed set of indices
{i1,...,i,} and ¢, because multiplying such upper bound by ( ) gives an upper bound on
é;c, ignoring constant factors including L. For each fixed ¢ and given 41,...,7, and K, we

see that the number of (l{%ﬂ ), k:éj )> that correspond to edges under the permutation mapping

7 must be v, otherwise at least one & term is zero and the summand is zero. So we have

© — i
H Qz{il,...,iT},lez =Pn

1<ji<jo<r
(Zjl sYio )%’C

and consequently,

~ - n_
(8.6) G(kgw,kg“),...,(kg“%ké“’)‘5”3 " <r—£> G

We can express the remainder term R in terms of © and n terms. To facilitate detailed
discussion and bounding, we group these terms. Define

(8.7) A(v,p) = Z é/c H Mk ko
KS{(k1,k2): 1<k <ka<n} (k1,k2)eK
Unique nodes(KC)=p
IK|=v

to be the collection of the terms in the remainder R corresponding to the product over v
different n-terms with exactly p unique participating nodes in these 7n-terms’ indexes. Then

(8.8) R= > Ab»

All possible (v,p)
v=2,p=3

Obviously, v, p and the total number of possible (v,p) palrs are all universally bounded,

because the motif R is fixed. Therefore, in order to bound R it suffices to bound A(®?) for
every (v,p) pair. We need to bound not only the asymptotic magnitude of A®P) but also

its tail probability. Notice that AP is mean zero both conditional on W and marginally.
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In order to bound its tail probability, it suffice to show a proper concentration inequality for
A®P) conditional on WW.

For this goal, we are going to apply Theorem 8.1, which derives a Bernstein inequality for
polynomials of independent centered random variables. Notice that AP can be rewritten
in the form of (8.1), where the nodes of the hypergraph V(H) = {(i,7) : 1 <i < j < n} are
defined to be the following set of node pairs (notice that they are not nodes but node pairs in
our network). Define the set of hyperedges H (H) as follows

H(H):= {’C = {(k?),kén) (k§”),k§”))} c{(i,j):1<i<j<n}
s.t. ‘ug,:l{k§”'>,k§”'>}‘ =p, and

there exists 1 <i1 <---<i.<nmand 1 </ < L, s.t.

K e {(iny,iny) : 1< ky <ky<r},

and (w“)(R)) = 1, for all (K}, k5) : (ixy,iny) € ’C}

k1K,
In other words, using the notation in Theorem 8.1, H(H) is the collection of all size-v
subsets of V(H ) that span across p nodes and are subset to some /th permuted version of

the motif W(Z)(R>, edge weights being 20y, = O, and each individual node-wise random

variable is {Yy} := {nk<.,/> . Clearly, centered Bernoulli random variables satisfy the

R
“bounded central moment” assumption with parameter £ = 1. In our context, ¢ = v. In order
to apply Theorem 8.1, now we bound the key quantities =1,...,=,. Foreach ¢’ : 1 < ¢ <,

bounding =, consists of two sub-tasks:

(). Bounding [T,y () s Ellmer[].
(ii). Bounding ZheH(H):SgV(h) |2 - anev(h)\s E[[n. ],

where in both bounds, S € V(H) : |S| = ¢’. Bounding (i) is easy since it is just a product
over v — ¢’ independent 7 terms, each of which has an absolute expectation of p,,. We have

(8.9) [T Elwll= ][] EE[n

o'eV(h\S o’eV(h)\S

/

Wi =<p, ™

Now we bound (ii). This requires more detailed calculations to count the number of O terms
involved in the summation. It turns out the bound would differ for acyclic and cyclic motifs,
which we discuss as follows.

* When R is acyclic, in the summation o 3/ y.scv (5) |20, We are summing over at most
p — ¢’ — 1 free indices. To see this fact, recall that in order for an individual summand to
be nonzero, its corresponding hyperedge b, or equivalently, the corresponding K, must be
a subset of some permuted version of the motif R. Therefore the requirement that it must
contain S : |S| = ¢ would pin down at least ¢’ + 1 indices, leaving us at most p — ¢’ — 1
free indices. Therefore, recalling that [20| := |Ox| < pS~“n" P, we obtain the following
bound for (1)

/

n _ _ _
2 e E[W\]ﬁ(p_q,_l)-pi Un" P pp e

heH(H):SSV (h) v’ eV(h)\S

(8.10) < p;‘;—Q' N
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Since (8.10) holds for any S : [S| = ¢/, by the definition of =, we have

pfz_q/ . n'r—q’—l

:q/

() -on— pponrl

C—1)2

(8.11) —(pn-n)C n

Notice that under the weak sparsity assumption p,, = w(n~!) for acyclic R, the RHS of
(8.11) is decreasing in ¢’. The interpretation of the result (8.11) says that in fact, our choice
of “u” in the second term inside “max” in Theorem 8.1 for v : 1 < v < q = v is bottlenecked
by the case v = 1.

Then we discuss the more complicated case that R is cyclic. Now, we consider those
S c V(H) whose numbers of unique nodes are ¢” + 1 forsome ¢" € {2,--- ;p—1} (¢" =1
cannot form a cyclic R). For such S, we have

Z 120y | < ( T/L/ 1) PSR L p Y g ]

heH(H):SSV (h)
Unique nodes(S)=¢"+1

since we have p — ¢ — 1 free indices to sum over. Meanwhile, regardless of the number
of unique nodes in S, we always have

[T Elmll=<e ',

o' eV(H\S

Now using the simple relationship |S| < ¢”(¢” + 1)/2, we have

Z |20 | - 1_[ Ef[n.]]

heH(H):S<SV (h) veV(h)\S
= > >, s [] Ellnwl]
All possible ¢”  heH (H):SSV (h) v’ eV(H\S

Unique nodes(S)=¢"+1

n 1" 1"
gZ ( . ) ST TP pum (@12
o \p—q' -1
(8.12) gpr;qu(q/url)/Q a1
q//

Therefore, we have

s—q"(q"+1)/2 o
v . o (@ +1)/2  r—q"—1

<
n - —
(7") -0 q//:q//(q//+1)/22q/ pfl .’ 1/2

—_
—
—

(8.13) = max —(¢"+1)/2 n e n V2
7":q"(q"+1)/22¢'

Recall that by definition ¢” < p — 1 < r — 1. Under the weak sparsity assumption that

Pn = w(n_Q/ "), we know that p,, (a"+1)/2 n~! « 1, so the maximum asymptotic order on
the RHS of (8.13) is achieved at the minimum possible ¢” value of 2.

Now we have bounded the = terms. In fact, as we will see, in Theorem 8.1, the concen-

tration error bound terms due to Z’s are dominated by the term due to variance. In order to
apply Theorem 8.1, it only remains to bound Var <£(“’p)>. We shall do this by bounding

Var (A(“’p) |W> for each individual (v, p), since the number of such terms is a fixed number.
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We have
Var (A0 w) = 3 8 Var| [T meww
1<21<<Zp<’n (kl,kz)EK
(8.14) <nP. p%s—Qv L 2r—2p P pis v p2r=p < pis—v .p2rp

where we used (8.6). Since v < s and p > 3, this yields the following upper bound.

~ 1/2
{Val" (A(v,p)\W>} — s L2 {Var <A(va)|w> }1/2

GRS
< (p;s _ n1/27r> ) <pf;v/2 . n'r'fp/2>
(8.15) I G

Next we discuss different upper bounds of the RHS of (8.15) based on different motif R
shapes.

* Case 1: if R is acyclic, we have v < p — 1. Combining this with the fact that p > 3 and
Assumption (ii) of Lemma 3.1 that p,, = w(n~!), we have
(8.16) p;v/Q n—(P—1/2 < <(pn-n)~ (-1)/2 < (pn - n)_l

 Case 2: if R is cyclic, we have v < p(p — 1)/2. Combining this with the factthat 3 <p <r
and Assumption (ii) of Lemma 3.1 that p,, = w(n_Q/ "), we have

v/2  ,—(p=1)/2 —p(p=1)/2 .y =(p=1))1/2

P < (Pn

—1)/2
(8.17) = (p;p/Q -n_1>(p / <p;7?.n7!

Repeating this argument for every (v,p) pair, and plug (8.11), (8.13), (8.16) and (8.17)
back into Theorem 8.1, we have

(8.18)
< R
PR, := (n) >C - M(pp,n; R)
r) On

max { exp %) ,exp (—%) } , for acyclic R;
< (( —r/z,n—l)lo 1/2n)2 EI —T/z,n—1)lo 1/2n .

max { exp | — L= (p,T/Q.nf)z ) , exXp (—p"p_gn—,g,/zg) }, for cyclic R;
=0(n™1)

for a large enough universal constant C'.

Asymptotic normality of the linear part 5 and Berry-Esseen bound

Now, we focus on A,,, the linear part of (U — Un)/on and show the uniform rate of its

normal approximation. Recalling the definitions of An, @ZJ and 923, ignoring the remainder
term, we have

g , U, U, 1 ~
Anzszearpartof< ”Un ") = Z Oij - Mij

(7) - on 1<i<j<n
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1 ~
(8.19) =: (771) Z @ij . nij

2) 1<i<j<n

We are going to show the asymptotic normality of A, and its concentration speed by apply-
ing the Berry-Esseen bound for independent but differently-distributed random variables [39]
conditioning on W. In this derivation, the key terms are the asymptotic orders of the second
and third central moments of each individual (:)Z-j 7;; term. We first show that with respect to
the randomness in W, we have (:)ij =p-L. n'/2. Then when we condition on W and apply
the generalized Berry-Esseen bound with respect to the randomness of A given W, we can
think of @i]- as its asymptotic order p,, ! - nl/2. Recall that

© ©
[T € iin® s

1<]1<j2<7’ (7']/1 7Z]é):(l7j)
(Zjl 7Zj2)7é(17.7)

st it el sy, = lorequivalently (W(K)(R))j/ =1
- (7’]’172]%):(27])
= e ~(0) - ¢
0, it & . . =0orequivalently (77( )(R))jm‘; =0
We have
on 635 =p5"
This is because
on - Oy 1 L 0 (0
(8.20) = Z Z H N <)
2r(r=1)  (05)) 1<i, <ki<nimn 1<j1<jo<r {entehiing "
{i,j}c{l,-..,ir} (]17]2)#(17])
Since for each given {i1,...,%,} that contains {7, j}, the summation over ¢ ranges among

all 7(9 that keep (7,7) an edge in 7(¥(R), so the outcome of this summation over £ is
symmetric in {i1,...,%,}\{7,7}. Consequently, ©;; is also symmetric in {1,2,...,n}\{i,j}.

~

Applying Hoeffding’s decomposition to each ©;; viewed as a U-statistic with index set
{1,...,n}\{7,7} and using [97] to bound the remainder, we have

(8.21)
.. Elon 64X, X;
Un‘@ij [ L ]] r—2 <~ N o(s—1 . —1 3/2
— e 1) . 1
27“(1" _ 1) 27.(7, _ 1) + n—9 1<kz<ngly%]( k) + p(pn n 0g n)
ki)
where
E oy 6], X;
- ¢ MARSARA
91:,i(Xp) = E H ngizv--vir}ajhjz ’kaXivXJ 2r(r — 1)
1<j1<go <1
(ijlvijz)i(iv.j)
where the indexes i1, ..., 1, satisfy {i,7,k} < {i1,...,4,} S {1,...,n}. Since the linear part

of a Hoeffding’s decomposition are averaging over = n i.i.d. terms with E[§1.; ; (X3)| X, X;] =
0,11:1.;(Xk)| = O(p3~1) a.s. and Var(g1,; j(Xx)| Xi, X;) < p5~1, by Bernstein’s inequality
combined with a union bound, we have
o o 1O EBS]
2 .
1<isy%n 2r(r—1) Po =t
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which yields that conditioning on X;, X;, we have

(8.22) max i ’éw " [éw]‘ = 510 (pfz_l 2 .logn>

1<i<j<n 2r(r—1)

Since
p;(sfl) ‘E [O’n . éw] =C>0

for a universal constant C', when discussing the concentration of En, it suffices to prove
the Berry-Esseen bound for the asymptotic normality of A,, with respect to the random-

ness in A|W, conditioning on a “nicely-behaved” W such that C/2 < p,, (5—1)% . (:)Z-]- =
Pn (5_1)% : (:)ij < 3C/2 holds for all 1 <4 < j < n simultaneously, because the probability

that W behaves “badly” is exponentially small and ignorable. We write

(pn : n)1/2 : 5n _ Z (pn . n)1/2 . éz’j .

Ow

(8.23) ij

1<i<j<n  Ow’ (5)

where we notice that each individual coefficient in front of 7;; is at the order of Pn 12 n—L
Using Theorem 2.1 of [39]

F -
(pn : n) /2. An

Ow

,n1/2,A,_ 3
(w) = Fyon(w)| <C{0+ )] (W) E[I%I‘"’]|W

1% 1<i<j<n Ow (2

ee}
where we used
[ [|7h'j|3 |W] = Wi(1 = Wij)® + (1 = Wiy )W) < 2Wij = pn

Recall that the above result was obtained under “nicely-bahaved” W, but the probability of
“bad” W is exponentially small. Therefore, we have

8.25 F o
( ) (pn : n) /2. An

Ow

(w) = Fyon )| =O0p(py?-n7")
|W
o0

Combining (8.25) and (8.18) with Lemma 8.2 finishes the proof of Lemma 3.1-(b).

8.2.3. Proof of Lemma 3.1-(c). Define the following shorthand that will be used in not
only this proof but also others

. 1
(8.26) ;= — > h( A, in )

(r—l) 1<i1<...<@p_1<n
Uyeenylpr—1 70

1
(8.27) a; = > hWidi)

(7"71) I<ii1<..<@p_1<n
P

1
== > WX, Xiyo o Xi )

(T‘*l) 1<ii<...<tp_1<n
P
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A simple but useful property is as follows:

14 .. A~ 1 &
(8.28) n;aizUn and n;aizUn

To see (8.28), notice that
LR n—1 n\ ~
E a; - =T E h(Ail,...,z'T) =17T- Un
4 r—1 ) ) r
i=1 1<ii<<1,.<n

because each h(A;, ;) is counted r times by @, ,...,a;,, respectively, on the LHS. The
relationship between a; and U, is verified exactly similarly.
Next, we start to decompose d,,. By definition, we have

n52 n02

in which,

i=1 i=1
=jbi_21< o ZZ Un) (U —ﬁn)+(Un—An>2
(8.29) ~ % i (@~ Un)” = (Un - ﬁn)2
i=1

By the earlier proof steps, we know that
(8.30) (Un _ ﬁn> = 0,(p21n2)

According to the remark under Lemma 2 in [96], this term is ép(pgf_l -n~!) and thus
ignorable. We focus on decomposing the first term on the RHS of (8.29). We have

L3 = U = £ Y (- )+ o U

i=1 i=
z':l( ﬁ ; ﬁ ;

Term 3 on the RHS of (8.31) is the constituting part of 52, so we only need to bound the
first two terms. The key component is to study a; — a;. Similar to the proof of part (b), starting
from re-expressing the definition of a; and a;, we have

~ 1
ai — @i = -— Z {h(Ai,.i) — (Wi, i)}

(r 1) 1< <-<i.<n
26{117 727}

(8.32) = n: >, At
(rfl) All possible (v,p)

SRS

(8.31) -

S
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where recall that we use the shorthand K := {(/#) , k:gl)), ey (k:iv) ) kg”))}, and define
(8.33)

Al 2 oy [T
Kg{(k17k2)1<k1<k2<n} (kl,kg)elc
Unique nodes(K)=p
|K|=v
(8.34)
(9) N () 0
~Z Lp—
Ok = 2 Z( I "f{il,...,z'r},jl,j2> [T &
1§11{<---<gr}<n =1 \1<ji<ja<r (ji,jé);(ij,l,ij,z)e]c
LELL eyl

Ke{(ijy 5i5,):1<g1<ga<r}

Here we stress a crucial point that although in these definitions we always have i €
{i1,...,1i,}, the node 7, however, might or might not appear in . This is because K is a sub-
set of {(i;,,75,) : 1 < ji < jo <r}. Conceptually assisted by this understanding, by counting
the number of indexes over which the first summation in the definition of (:),(é) is running, we
have

(8.35) oy

- pi=v.n"P, if i € Unique nodes(K)
T | psv-n"P~L if i ¢ Unique nodes(K)

Next, we separate the linear Alvp) terms, “linear” in the sense the are linear in Ny k)
terms, from those terms quadratic and higher degree in “n”. The linear term corresponds to
(v,p) = (1,2), and the higher degree terms correspond to v > 2 and p > 3. For the linear
part, we have

(8.36) AR = 30 Oupmig+ D, O i
1<j<nj#1 1<ji<ja<n
J1,J2#1

Conditioned on W, applying Bernstein’s inequality and (8.35) to the second term on the RHS
of (8.36), respectively, we have

(8.37) AGL2) Z (:)(i’j)mj + 5p(pfl_l/2n’”_2 -logn)
1<j<nj#i
where the first term on the RHS of (8.37) is 67,(,0;_1/271”_3/2 log!?n).
Now we study the higher degree AUYD) terms. We are going to apply Theorem 8.1. We
first upper bound “E,” forall ¢ =1,..., s as follows

» If R is acyclic:

(i). If i e K: with “|S| = ¢/”, we are summing over (p — 1) — ¢’ — 1 node indices in the
summation Zheﬂ( H):V(h):SSV(H) ~ compared to the derivation of (8.11), here we have
“p — 17 instead of “p” because the index 7 is fixed and cannot vary in the summation.
Therefore

D B e R
heH(H):V(h):SSV(H)

and consequently
(838) qu < pflf’v . nrfq/72 . p;}l,q/ _ pfliq/ ) nr—q/,2 < pflfl . nrf37

under the weak sparsity assumption p, = w(n™1).
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(ii). If i ¢ K: with “|S| = ¢, we are summing over p — ¢’ — 1 node indices in the sum-

6, 9

mation ZheH H):V(b):Scy(i)- But compared to the 2 € K case, here we lose an “n

factor in ]@ | according to (8.35). Therefore, we arrive at the identical upper bound

for ZheH( H):V(b):SCV(H) 85 the above case, namely, Z, < ps~1 "3 under the weak
sparsity assumption p,, = w(n1).

» The proof for the case where R is cyclic can be obtained by revising the proof of (8.13).

If i € K, we are summing over (p — 1) — ¢” — 1 instead of p — ¢” — 1 node indices in

ZheH V(p):sev(): it @ ¢ K, then we sum over p — ¢" — 1 node indices but will lose

ann factor in the upper bound of |®g?| according to (8.35). Therefore, both cases would
eventually lead to the same upper bound

" 7"

T <yt = g e
heH(H):V(h):SSV(H)

Similar to the proof of (8.13), it suffices to upper bound those =, where ¢’ = ¢"(¢" +1)/2,
and we have

v, r=q"=2  v—q"(q"+1)/2

(839) Eq//(q//+1)/2 < pfl_ n oy —q"(¢"+1)/2 . n,,,_q//_Q

=,
Same as before, the RHS is still monotone in ¢” under the assumption p,, = w(n~%/") and
thus it is bottlenecked by the ¢” = 1 case.

Now in order to apply Theorem 8.1 to the higher degree AGEvP) terms (v=2andp = 3),
it only remains to calculate their conditional variances given W. Notice that given W, all
AGvP) terms with different (v,p) configurations are mutually uncorrelated. We can bound
each of them. Straightforward calculations show that

var{ﬁ(z’;v,p)yw} < (Z: i) R g2 ey <p> LRI 222

~
sum over K-indexed terms: i€/C sum over K-indexed terms: i¢/C

— O(p¥ Y 2P
* For acyclic R, if p, = w(n~!), we have
Var{&(i;fu,p”W} — O(p2= . 2 P=ly < O(p2s= (D) . p2r—p—1
(8.40) <O(py*-n* % (pn-m)7?)
* For cyclic R, if p, = w(n~%"), we have
Var{&(i;v,p W } O(p? 25—v 21"*[)71) < O(p?f p2r-1 'p;p(pfl)/Q 0P

(8.41) <O(py -2 (p," - n71)?)
Combining (8.38), (8.39), (8. 40) and (8.41) with Theorem 8.1, we see that the sum of all

higher degree AGvP) terms into 8, is at the order of

(8.42) Yoo AEP = Oy (ph " M(pnymi R))
All possible (v,p):
v=2,p>3

Compared to the order of the linear Ali0:2) terms as the leading term on the RHS of (8.37),
we see that the higher degree terms are ignorable.
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Therefore, for the rest of the proof of Lemma 3.1-(c), we can replace a; — a; by

(8.43)

where

Z Oy mij + Oplps - 1"~ M(pnyn; R))

(?:ll) 1<j<n

j#i
1 . -
= Z ©ijnij + Op(py, - M(pn,n; R))
n 1<j<n
J#i
P e .
Oj; (n—2) O(i,j) < Pn
r—2

according to (8.35).
Now we are ready to bound the first two terms on the RHS of (8.31) and finish the proof
of Lemma 3.1-(c). For term 1, by Bernstein inequality and p,, = w(n~!), we have

(8.44)

1 ~
- Z(ai —a;)* = Op(p2 - M(pn,n; R))

For term 2, recalling |a; — Uy, | < p,, we have

(8.45)

2 n
w200

~ 2 9 ~
a; — az‘) = m 1<1J2'<n(a7; — Un)@”'rhj + Op(pis . M(pn,n,R))
1;]271
i

conditioned on W. Applying Bernstein’s inequality to the first on the RHS of (8.45) yields a

bound of O

b (on 26-1/2 n~'logn). This completes the proof of Lemma 3.1-(c).

8.2.4. Proof of Lemma 3.1-(d). By definition, we have

ne?2

r

n
2

2
1 & 1
=— Ty h(Wiis,..ins) = Un
B yeenslp—1 70
1i 1i 2 4 2(as = jun) (i — Un) + (st — Un)2)
n : n : n n n n n
1 n
- 2 (Un — Mn>2
n =1

Recalling Hoeffding’s decomposition for U,, and applying Theorem 1 of [97] to bound the
high-order canonical U-statistics, we have

n 2
= {; > 91(X:) + Op(ppn ™" logn>} = Op(pzn™" - logn)
i=1

We focus on the first term. For notation convenience, define

ML :E[h(X,L,XZI, lr 1)|X] (Xz) +:un
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where i1, ...,1,—1 # ¢ are distinct indexes. We have

%Z(az — Mn)Q = % Z {(az — &Z) + (az - Mn>}
i=1 i=1

n

(8.46) = Z S 2 (0 ) @ i)+ D )

i=1 i=1

S|

First, we realize that term 3 on the RHS of (8.46) is simply

[ 1 o
(8.47) — 2@ — ) = = > g (X0)
n =1 n =1

Now we focus on handling terms 1 and 2. The key part is to handle a; — @;. By applying the
Hoeffding’s ANOVA decomposition of an arbitrary symmetric statistic (1.1)—(1.3) in [14]
onto each single h(X;, X;,,...,X; _,) term, we can see that

Gi—ti= S {h(X0 X, X )~ E[(Xe i, X )|}

ey
r—1) 1< < <tp_1<n
P

1 r—1
= T Z Z Z Ie+1(Xo, Xy oo X5)
(T 1) 1<ig<-<tp_1<n k=1 I<ji<-<jrsn
U1yl 1 70 {d1sensdi}S{in,ina}
- [(n—k—1

(848) = (T L 1) Y g (XX, X

_ k=1 ].<:]1 <-<Jp<n

J1yeorJl#4
Now we apply Theorem 1 of [97] to the RHS of (8.48), we see that
~ r—1 ~ -
(8.49) @ == —— D 92(Xi, X;5) + Oplpsn" -logn)
1<jsn
Jj#t

(8.50) = 5p(pfln*1/2 log'?n)

Now we are ready to continue bounding the RHS of (8.46). Using (8.50), term 1 on the RHS
of (8.46) is

(8.51) (a; — ;)% = Op(p¥*n~" -logn)
Using (8.49), term 2 on the RHS of (8.46) is

- Z — Hn)

2 & -1
:*Z . 2 92(X5, X;) + Op(pin ™" - logn) ¢ g1(X;)
ni3 n—1

1<i<n
J#i
2(r—1) N (25, —1
.52 =" X X, X; s -1
(8.52) n(n_1)1<2< 91(Xi)92(Xi, Xj) + Op(py'n ™" -logn)
1<j<n
1#£]

Finally, combining (8.51), (8.52) and (8.47) completes the proof of Lemma 3.1-(d).
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8.3. Proof of Theorem 3.1. We mainly prove for the case p, = O ((log n)_l) without
non-lattice condition. We will explain how this proof can be revised for the other case with
Carmer’s condition but without a p,, upper bound.

LEMMA 8.1 (Esseen’s smoothing lemma ([52], Section XVI1.3)). For any distribution
function F' and a general function G that has universally bounded derivative and satisfy
G(—w) =0,G(0) =1, we have

Y | Chf(F;t) — Chf(G;t)

t

Cysup, |G'(u)]

(853)  [F(u) — G(u)|e < C) j

-
for universal constants Cy,Cy > 0, where Ch.f.(G;t) is defined to be the characteristic func-
tion of G as follows

ar+

Ch.f(G;t) == JOO e dG(z)

—00

Recall the definition of Tn from (3.9) that

~ U N~ A A
TanZf+An—75n and T, =T, + Ap + Op(M(pn,; R)).

We define a random variable A,|W ~ N(0,(p, - n)"102), that A, is conditionally in-

w

dependent of A, given W. By Lemma 3.1-(b), we have sup,cp |[Fx (u) — Fx (u)| =
O(/)T_Ll/2 -n~1). We are going to show that

(8.54) |Fp () = Fp, 5, ()| =0 (M(pn,niR))
(8.55) HFML (w)= Py, 5, ()] =O0(p"* n7")
(8.56) HFT+ 5, (W)= Gu(w)| = O((pu-m)~ +n logn)

where G, (u) is defined in (3.13). To proceed, we need the following smoothing lemma.

LEMMA 8.2. Suppose we have random variables X,Y, Z satisfying
X=Y+Z

such that the CDF of Y is smooth, and there exists a universal constant 0 < M < o0 such
that Fy (u+a) — Fy (u) < M -a+ O((y,) for any u € R and a > 0. Also assume that P(|Z| >

Co) <nY, thatis, Z = O,(C,). We have
|Fx (1) = Fy (u)] 5 = O(Gn + o+ 07)

Remark. We emphasize that Lemma 8.2 does not require any independence between X,
Y and Z.

PROOF OF LEMMA 8.2. Since “Y + Z > u” implies the union of the following two
events: “Y >u—a”and “Z > a”,wehave | —-P(Y + Z <u) <1-P(Y <u—a)+P(|Z| >
a), which further implies that

P(Y + Z <u)=P(Y <u—a)—P(Z| > a)
>P(Y <u)—M-a—0(() —P(Z] > a)
(Setting a = (,) = P(Y <u) — Oy + G +17")
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On the other hand, we have

PY + Z <u) - LIP(Y <u— 2|7 = 2)dPy(2)
oo,
J =

<P(Y <u+a)+P(Z] = a)

u—z|Z=z)dPZ(z)+f P(Y <u—z|Z =2z2)dPyz(2)
|z|>a

N

Y <u+talZ = 2)dPy(z) + f|> 1dPy(2)

Setting a = Cp, the RHS is upper bounded by P(Y < ) + O(Cn + Cn + n~ ). Combining the
two inequalities proves Lemma 8.2. O

Now we return to the main proof of Theorem 3.1. Our proof would proceed as follows.
We shall use Lemma 3.1-(b) to prove (8.55); then with the assistance of Lemma 8.2, we use
(8.56) and (8.55) to prove (8.54); finally, we state the proof of (8.56) without needing (8.54)
or (8.55).

* Proof of “Lemma 3.1-(b) = (8.55)”. Noticing that fn does not depend on the random
variations of A|W given W, but it is determined if TV is given, we have

Lemma 3.1-(b) =E | P

—E[P (T, + A, <ulW ] +O(p7Y2 Y

=Fj . x (u)+0(p,"?-n7")

¢ Proof of “(8.55), (8.56) and Lemma 8.2 = (8.54)”. Weset Y = fn + An and Z = C/A’n -Y.
We notice that by Lemma 3.1-(b), we have Z = Op, (M(pn,n; R)) meaning that P(|Z| >
CiM(pn,n; R)) = O(n~1). Next we verify that Y satisfies the condition of Lemma 8.2,
we notice that (8.56) implies that for any v € R and a > 0, we have

F’f‘,ﬁﬁn (u+a)— F:Fn+5 (u)

<|Epgx, (uta) = Fp X “+a’ ‘ To+A, T+A()‘
Bounded by (8.55) Bounded by (8.55)

+ ‘an+ﬁn(u +a) = Gn(u+ a)\ +|Go(u+ a) = Gu(u)|

"

—
Bounded by (8.56) sup,, ,, |G, (u)| <0

Fy (x, (W) — Gu(u)
Boundedvby (8.56)

<C-a+O0(p;? nh)

4_

J
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Then applying Lemma 8.2 and noticing that M (p,,n; R) dominates all of p,, V2 p-1,

(pn -m) " and n~'logn completes the proof of (8.54).

Next, we focus on proving (8.56). In this proof, we shall set v = n in Esseen’s smoothing

lemma and break the integration range into three parts: [t| € (0,n¢), (n¢,n"/?) and (n'/2,n)

LEMMA 8.3. We have the following bounds:

(a). For any fixed € > 0, we have

Chf (Guit)
t

n
J;L‘

‘dt— O(n™h)

(b). For a small enough constant c, > 0, if p, < c,(log n) =L, we have

" E [eﬂt(ﬁ+5n)]
f £ dldt=0(nh
Cynl/2 t

for an arbitrary constant C1 > 0.

(¢c). For a small enough constant Cy > 0 and arbitrary fixed € > 0, we have

fclnl/2 E |:€1'1t(7~"n+5n):|

" dt = O(n"tlogn).

ne

(d). For fixed € > 0 chosen such that €< 1/7, then we have

| [eﬁt(ﬁ+ﬁn)] — Ch.f.(Gpst)
J dt=0O((pn-n)~" +n~'logn).

0 t

PROOF OF LEMMA 8.3. First of all, we notice that between two parts Tn and ﬁn, the

2, where

E [eﬁtﬁ ) eﬁtﬁn] _E [IE [eﬁti‘ . eltAn |W” _FE [eﬁtﬁ, E [eﬁtﬁn

=F [eﬂtﬁ . e—(pnnn)’lffif/?]

w]]

Then we prove each of the bounds in the lemma.

(a). Notice that for each of k = —1,0,1,2,3, ..., we always have t*e~*"/2 < Cre~*"/3 when

t > 1 for universal constants C';, > 0 that only depend on k. From the classical literature
on Hermite polynomials, we recall that function Ch.f.(G,,;t) takes the form of e~*/2
multiplies a polynomial of ¢. Therefore, for k = —1,0,1,2,3...

n e}
f |Ch.f.(Gp;t)/t|dt < (C_q + -+~ + Cdgl)f e PBAt=0mn™)

ne

where d,; := degree of Ch.f.(G,; ) is a fixed finite number.

ICh.f.: characteristic function. For the Edgeworth expansion function G, that is not necessarily a valid CDF,

its Ch.f. is defined to be its Fourier transform.
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(b). For |t| = n'/2, we have
‘E I:eﬁtfn . ef(p”-n)*laiﬁ/Q:H <E [ e

_F [e—(pwun)*ait%] <E [6_(%%)71@[03]/4.9] +P (02 <E[02]/4)

T,

. ‘;(pn-n)*a?ytwu

(8.57) <e Orent 4 o=Can — o =Crey?

since p,, ' = ¢, 'logn, and notice that P (07, < E[o7]/4) diminishes exponentially fast
because J?U is a U-statistic (as will be proved in the proof of part (c) below) dominated
by its linear part and concentration inequalities such as Bernstein’s. Then choosing ¢, =

(4C1)~! finishes the proof of Lemma 8.3-(b) since

n

f t~1 dt = O(logn)
Cinl/2

(c). For this part of the proof, we show that o2, can be written as the sum of U-statistics thus

Hoeffding’s decomposition to U-statistics conveniently applies to it>. Then we combine

this argument with the argument used in [21]. Recall that (:)Z-j =p-1.pY2 anditis a U-

statistic with the index set {1,...,n}\{7, j}, thus the Hoeffding’s decomposition implies:

A _ C o ~
(8.58) Oij-pn -2 =0 + — D 51Xk X, Xj) + Op(n" - logn)
n= 1<k<n
k#i,j
where 0;; 1= —E[© 111X, X;] - pn - n1/2, and we used [97] to obtain a probabilistic upper
bound of the higher order terms in Hoeffding’s decomposition. Then we have

I<i<j<n ) I<i<jsn

szpn.n-Var( ) Z @”m] Z @ — Wij;)
2

2

Pn N _92 c ~ . 0 -
= Pp M Z 9ij+m Z gl(XkaXian)+Op(n 1'10gn) 'Wij(l

n 2
(2) I<i<j<n 1<k<n
k+#i,j
p;1n2 9 200@' - ~ 1
=z Z 05 + — 9 Z 91(Xp; Xi, X5) 4+ Op(n™ -logn) » Wi (1 — Wij)
(2) I<i<jsn " 1k<k<n
#1,7

pnt o n’ Zl<i<j<n Qz'szij(l — Wij)

) Bk

(8.59)
—1, 2
P, -n”-2C - -
+m D (X X, X)) Wi (1= Wig) + Op(n™" -logn)
Ve
k#i,5

Notice that in this part of the proof, we cannot simply bound the o4, term away because it is dependent on
any individual term in the expansion of T,.

- Wij)
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where we used the fact |(n — 2)71 Y1 < 51 (Xii X, X;)| = Op (0t logn)1/?)
by Bernstein inequality.
Clearly, the first term in (8.59) is a U-statistic of degree 2, where the individual term is
at the order
p;l'nz'egj'Wij(1*W/ij) vpgl-nQ-l'pn

&) e T

Now we focus on the second term and re-express it as a U-statistic. We have

. 1 -«
D0 0 (X X, X)) Wi (1 = Wij) = B D 00 (X Xi, X5) Wi (1 = W)

1<i<j<n 1<{i,j,k}<n
1<k<n i#j,j#k,k#i
k#1,J

1 1 g

9 Z lg{eijgl<Xk§Xi7Xj)Wij(1—WZ")
1<{i,j,k}<n
i#5,J#k k#

+ 0ki g1 (X5 Xi, Xi) Wi (1 — Wii) + 05691 (Xs; X, X3 ) Wi (1 — ij)}]

(8.60)
= > H(X:,X;,Xp)
I<i<j<k<n

where we denote

~

H(XZ',Xj,Xk) = QIJEI(Xk,XZ,X])W,J(l - WZ)
+ Okig1 (X5 X, Xi) Wi (1 — W) + 05091 (X33 X, Xa) Win (1 — W)
Clearly, H (Xi, X, X)) is symmetric in X;, X;, X}, and the individual term
1. .n2.90.(™ o -1.,.2 .3
n
(n—2)-(3)

So the second term on the RHS of (8.59) is a U-statistic of degree 3. Therefore, a?u can be
re-expressed as Hoeffding’s decomposition for U-statistics as follows

TL5 anl

1 < ~
(8.61) o =E[o2] + - D 901(Xi) + Op(n™" -logn)
i=1

where we again applied [97] to derive the probabilistic upper bound for the higher order
terms in Hoeffding’s decomposition.
Now, we are ready to upper bound the characteristic function for n¢ < |¢| < n1/?

E keﬂt’ﬁl _e—(pn-n)*lafﬂﬁﬂ”

E [eitTn . g~ (pam) 02 /2:{El03 ]+ 2;;1ga;1<Xi>+6p<n*1-logn>}]‘

N

(8.62) )
_|g [etTn . o= (pum) 7 e2/2{E[02 ]+ 5 307, goa (X)) <1 +0, (ppt-n*logn - t2))”

n
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where in the last line, we used the fact that [e* — 1| = O(|z|) for all universally bounded
z € C (here |t| = O(n'/?) and by assumption p,, - logn = O(1)). Then since

nt/?2 1 -2 2
. Jogn -t
(8.63) f P - 081 4t = (pn -n) "L -logn

ne

we know that this O, (p,,* - n~2 - logn - t2) term can be ignored in (8.62). Continuing
(8.62), we have

RHS of (8.62) < e~ (Pn)~'1?/2Elo ’E[ e pzl-n*2-2?'=1ga;1<xi)-t2]

We are going to show that ZFn can be expressed as a U-statistic of degree 2 plus an
O,(n""1og®? n) remainder term, which can be ignored. Indeed,

fnzufmn_l.yf.an

291 7T_1 N e(X X))

Vi(n —1)& 1<i<j<n

n

2 2
91 (Xj) & 5 3/2
2 g1 (X =5+ O0p(n"" -log”"n).
n3/2£ j=1 ‘51
Since n =32 37" g1(X,) (91(Xi)? — €2) /€5 = Op(n=1 -1og? n), we can write
~ 1 < r—1
Th=—= ) 0n(Xi) + ———— 92(Xi, X
\/ﬁgl ; ( ) \/ﬁ(n _ 1)51 lngjén ( ])
n 3/12 Z 91( )(91( ]) 51) 291( J)(gl( ) 1) +Op(n71~log3/2n)
(S| 1<i<j<n 1

1 n r—1 ~
=—> (X)) + —— 92(Xi, X;)+ O n_1-10g3/2n
N3 ; X+ Zm =T 1@;@ i)+ Op )

which therefore is expressed as a U-statistic of degree 2 plus an 6p(n*1 . log3/ 2 n) term,
where E[§2(X;, X;)] = 0 and E[§3(X;, X;)] = O(1). To prove the claimed bound, we
can choose a positive integer m (dependlng on t) and write

n—1 n
2 92 XzaX Z Z 92 XHX Z Z §2(XivXj)

I<i<j<sn i=1j=i+1 i=m+1j5=1+1

Then the arguments of [21, eq. (2.17)-(2.20)] can be applied here. Notice that this part
of the proof of [21] does not require non-lattice assumption, but all it requires on the
behavior of |E[et9:(X:)/(V€)]| is its closeness to 1 for t/y/n ~ 0. Indeed, for np, » 1
and t < c1n!/? with small ¢; > 0,

|E6ﬂt91( )/ (Vnéi)— pgln’2t2/29a,1(X7z)|

) , 2 N ) . ) Vs
< ‘E(l + 1<ﬂtg1(Xz) _ t gU,l();l)> ) i O<E’ﬂtgl<Xz) _ t go',l();z) )
2\ Vg 2pnn Vné1 2ppn
t2 12
<1——<expy —— ;.
3n 3n

The proof of Lemma 8.3-(c) is therefore completed after applying the arguments of [21
eq. (2.17)-(2.20)].
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(d). Finally, in this part, we calculate the expansion of E [e“fn] and derive the Edgeworth

expansion for [¢| < n¢ for a small enough fixed e. The main portion of the proof for
this part, i.e., our calculations in (8.69), (8.70), (8.73) and (8.74) that we are going to
present, follow the roadmap in classical literature on Edgeworth expansion for noise-
less U-statistics, laid out by [21, 71, 90, 96]. Our Tn is different from their studentiza-
tion/standardization forms by using a different rescaler, so this part is not a direct corollary
of their results. Despite the resulting differences is non-essential, we nonetheless present
the full calculation steps for completeness and for the convenience of the readers.
To start, we have

E [eﬂtﬁl . e—(pwn)*lafwtz/Q]

. 242 e 5646
8.64 o P I T w o Luw"_
(869 [e { 2pn-n 8% on2 C \ g

as long as np, = w(n?). We first bound the remainder, we have Sg (08 t5)(p3n3) -

t=1dt = n%-(p, -n)~3. Since the assumption of Theorem 3.1 implies that p,, = w(n~/?)
in any case, so setting € < 1/13 yields n% - (p, -n)™3 = O(n~!). We have

eﬁtfn _ eﬂt(U:f* +A,—LU#5,)

2
—eltUF )1 & An_}U#_(;n ]'lt_l. An—lU#'% 2
2" 2 27"

3
t3>

To bound the remainder term, notice that |1 — 062t2/(p, - n)| < 1 for [t| < n¢, where we

~ 1
(8.65) +0, (‘An —5UF -6,

recall that Theorem 3.1 we are proving here always assumes p,, = w(n_l/ 2) in all cases.
Then, setting ¢ < 1/7 together with the fact U;l = 0,(log'?n), A, = O,(n~"?logn),
n = Op(n~1/2 log"/? n), by Bernstein’s inequality and [97], we have

[

(8.66) — 0p(n ™1 M0g?2n) = Op(n")

€

3

1 1 ~
A, — §U# ol 3 gdt =0, (n_3/2 -n?’elog3/2 n)

and this remainder term can also be ignored. Now we deal with the main part of the terms.
21 91(X9)
Set o, (t) :=E [eﬂt Ve ] Then by Section VI, Lemma 4 of [108], we have

o3 5
BED i) =e (1 —n W) + O (n_l -logn - Pg(t)e—t2/4)
6&7
(pzik(t) = @Z(t) + 0 (nil -logn - Pk(t)eft2/4)

for any fixed k = 0,1,2,3, where Py(t),..., Py(t) are fixed polynomials of ¢ and each
of them can be divided by ¢. Here, we first focus on E[e!*""], and then handle E[ei*T" .

02t2/(pn - n)]. For E[e“ﬁ], by ignoring the small term in (8.65), we have

it T, itU# . 1 # 2 1 ” 2
(8.68) E[e "]:]E SV it (A= SUF 60 ) = 5 (An—5UF 00
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Now we inspect each term on the RHS of (8.68). For E[ vr | we use (8.67) and obtain
E[itU;] = ¢ (t). For the next term, recall that E[g2 (X1, X2)] = 0 and E[g% (X 1) g2 (X1, X5)] =
Oforall ke N We have

E[eﬁth.ﬁtAn] _E et gy Tt D 92(Xi, X)
Vn(n—1) I<i<j<n &1

1) (1) ey [ g, %)
2 " &

~Vnln—1)

=DV ngy E[W{E X5) | it(gn(X1) + j%(),(;;)”(Xl’X”
2,2 2 .
ot {g3(X1) + 291(X1)glé-:;2§ +91(X2)} - 92(X1, Xo) +] L0 <n—1 o124 .poly(t)>
_it(r —21)\/5 o2 _E[gg(Xgl, Xa) | 2ﬁtgl()i}%g2€(§(1,Xz)
2 {97 (X1) + 91(X1)g1(X2) } - 92(X1, X2) e
_ 1 e +0 (n Loe /4. Poly(t))
_TICD) 2 B g (X001 (Xa) - 92(X2, X2)] 4 O (n*l e/ Poly(1) )
2yn-gf " ’
(8.69)

—it3(r — ’
—et/2. 2i/§7£31) ‘Efg1(X1)91(X2)g2(X1, X2)] + O (nil et POIy<t)>

We use the approximation to d,, given by Lemma 3.1-(d). When we use it here, we may

ignore any 6p(n_1 logn) remainder term, which is justified by Lemma 8.2 in the real
domain, not the frequency domain that characteristic function works with. We thus have

E [eﬁth it (_10# : 5n>} _ Ly glattRE {M} :
2 2 V&

(8. 70)
] 1 {gl 51} Q(T_ 1)2?:1 Zj;éigl(Xi)92<Xi7Xj) ~ 1 3/2
: + 5 + Op(n™" -log”“n)
n{l n(n—1)&
We consider the expression into two parts by the two terms inside the parenthesis on the

RHS of the equation, and inspect them respectively. Ignoring the 5p(n_1 - Polylog(n))
remainder, for the first part, we have

_1' . t%lg(lx), Z?:191(Xz’) ] j= 1{91 51}
51t E[ { Vn-& } ( "51 )]

(8.71)
1, piimonto | & X;) - &) 91(X0) (91 (X)) — &)
_—§nt-E e Vi ; n\r 51 + Z n\/ﬁg%

7]6{17 7 }
i#]



1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

NETWORK EDGEWORTH EXPANSION 55

Further breaking the RHS down and handle the two summations in the fancy bracket
separately, we have

1, Hamow [ gt (Xi) — €7)
_2nt.E[ 1 {Z gute }]

I PR D it-g1(X1) | | 91(X1) (6F(X1) — €F)
= 2]1t enH(t) - n E[{1+ NG } { R }]

+0 <n_1 cemt/42 -Poly(t))

1 it (¢ 2
®72) =—3- “:pﬁ 5(1) E[gi”(Xl)]+O(n—1-e—t /4752-P01y(t))

and

1. TRRETHCS 91(X;) (91(X;) — €7)
o g o)

i,je{l,...,n}
1#]

R DR ogi(X1)  Pgi(X)
_—iﬂt-gpn (t)-n(n—l)-E[{l—&—nt-\/ﬁ'&— 2n§% }

L gi(Xy)  Pgi(Xy) 91(X1) (97(X2) — &) ] 1 12/4,2
{1—1—1175-\/5.&— one? } SN | —i—O(n -e t -Poly(t))

g3(X1)g1(X2) {g} (X2) — €3} |
n2yn- €

-1 —t2/4,2
3 +0 (n e t Poly(t))

zlﬁt?’ O" () -n(n—1)-E [

(8.73)

1 t3 n—2 t 2
5 B[ 00)] 0 (e oy

Now we calculate Part 2 of the RHS of (8.70). We have
~ 1ﬁt.E[ ey {zyzlglm) } . (2(r - 1)Z?_lz,»#igl(Xi)gz(Xi,Xj)) ]

NGRS
> NI nn— )&

- _ (74_5%1)]'“6 E [eﬂt”&féi’” - {gl(Xi;g Zi(Xz) '91(X1)92(X1,X2)}]
_ (7’—5%1)11t(n - 2) -E {entw {%Xzz ‘QI(XI)QQ(XbX?)}]
— - ) Bl () (X (X0, X))+ O (-4 Potyv)
n- &y
_O ity iy B R [ 0K Pai()
\/ﬁf%( 2)-on (1) E[ {H NG 2nE? }
{1 . niii()g) gzi(gz)} _gl(Xl)gQ(Xl,XQ)gl(X:g)]



1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

ZHANG AND XIA

- ) Bl (X0 (X (X0, X))+ O (-4 Potyv)

1
_ : _ 42
- (ﬁlg;fm —9). (1) B [nt ” <X1>91<X2>92<X17X2>g%<X3>]
(8.74)
- i 3 - 2 2

:W e PR [g1(X1)g1(X2)g2( X1, X2)] + O (n*1 et /Ay2 -Poly(t))

1

Collecting terms (8.69), (8.73) and (8.74), we have

E [eﬂt(U#+5n+An—§U#5n)]

3
—e /2. {1 — (E[glz(Xl)] + (r — 1)E[91<X1)91(X2)92(X1’X2)]> :

E[gi(X)] , (r—1)
- (Rl

it3
E[gl(Xﬂgl(Xz)gz(Xl,Xz)]) = }

=W

(8.75) +0O <n_1 logn - e t/4 -Poly(t)>

The remainder term is clearly ignorable if plugged into the Esseen’s smoothing lemma.
It only remains to deal with the o2 t2/(p,, - n) term and the o2 t*/(p? - n?) term in (8.64).
By (8.61), we have

E |:6]'1t'1~jn . 0-121}752 :|
Pn N

L 1 n - t2
B [e“tTn (E[ai] + n;ga%l(Xi) +Op(n™" JOgn))] pnom

Pn
w71 Eloa]t? 7 t? t%1
- [entTn] . [Uw] +E |:€]1tT” 'ga';l(Xl)] . +0 < Og?;)
Pn T n Pn N

Now we discuss the three terms on the RHS. Term 1:

Lne E [eﬁtib] : M = dt = Jonﬁ @) (e_t2/4 : Poly(t)) pp-m)

Pn-n 1
=0 <<pn : n)_1>

Term 2: by mimicking the derivations in our (8.72) and also referring to (2.11) in [21], we
see that

B[ g, (X1)]| =0 (/4 Poly (1))

Therefore, it can be bounded in exactly the same way as term 1.
For term 3, we have

J"ﬁ 2 Lt = (o m) 02 < (p )
o pnom t " S

where recall that € < 1/2. The o t*/(p? - n?) term can be bounded exactly similarly and
we omit the proof here. This finishes the proof of Lemma 8.3-(d).
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Now we return to the proof of Theorem 3.1. Plugging the results of Lemma 8.3 back into
Lemma 8.1 completes the proof of Theorem 3.1 with the assumption p,, = O((logn)™1).

If Cramer’s condition holds instead of the upper bound on p,, then the derivation steps
in (2.21)—(2.22) in [21] can be reproduced, where their ¢y can be understood as n" for any
fixed ¢ € (0, 1). It would suffice for our purpose to use any o € (1/2, 1). Notice that their “r”
has different meaning than ours. This extends the integrative range that our Lemma 8.3-(c)
holds valid from the original range (n¢,C; - n'/?) to (n€,n™), and we only need to prove
Lemma 8.3-(b) on the integrative range (n’°,7n) instead of (Cy - n'/?,n). Then our proof of

Lemma 8.3-(b) can be revised into

‘E [eﬁtﬁ . e—(pm)*law/?” <E [ eitTn

. ‘6_(1%'”)710&7&2/2 H

-1 2

—E [e_" oLt/ 2] <E [e—"z’"‘J”'E["il/“] +P (02 < E[02]/4)

(8.76) e Crm*0T y o=Can oy =2

where in the second line we replaced p,, by 1 to majorize.

8.4. Proof of Theorem 3.2. It is easy to verify that

~ ~ ~

(8.77) Op(pn)Op(Qn) = Op(ann)a and 6p(pn) + 5;0((]71) = 6p(pn + Qn)

We also easily have O(pn)ép(qn) = 5p(pnqn) since O(-) implies 5,,(-), but it is not guar-
anteed that Oy (p,)O0p(qn) = Op(pngy) if the distribution of O, (p,) is heavy tailed. The
presence of edge-wise observational errors introduces extra technical complications to the
proof of Theorem 3.2 beyond the analysis for empirical Edgeworth expansions for noise-
less U-statistics such as [71, 96] and [110]. We shall carefully address this. By the proofs of

Lemma 3.1-(c) and (d), and recall that 5? =nS2/r and €2 =no?/r, we have

E@+a)&-&)_g-¢

p2s noa

=0 + Op = 6p(n_1/2 log'/? n)

Then noticing that & /& =1+ 5p(1) and thus & = & = ps with probability at least 1 —
O(nfl), we have &1 — &1 = O, (p;, - n~1/2 logl/2 n). Therefore

n

& — & =0y(pi -0 1og!* )

implying that

1 1 ~ (log!/?

v gl = O )
n{l \/ﬁgl pn n

Recall that | F () — Gn(2) [0 = O (M(pn,n; R)), where

T 1’2
Gule) = () + <20 - { () Blat )

+ %(aﬂ + 1)E[91(X1)91(X2)92(leX2)]}'

As a result, in order to prove |Gy () — Gy ()]0 = Op (M(pn,n; R)), it suffices to show
that

max {[Bgf (X1) - Eg}(X1)
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1469

B [91(X1)91(X2)g2(X1, X2)] — E [g91(X1)g1 (Xz)g2( X1, X2)] |}

6p(p73;5_1 -n~1210g%n) if R is acyclic
5p(pis_2/r -n~Y2log"?n) if Ris cyclic

1470 ==

where we used the fact that sup,.p |7[30(z) = O(1). We will show that the empiri-
cal moments E [¢7(X1)] and E [g1(X1)g1(X2)g2(X1, X2)] converge to E[g7(X1)] and
E[g1(X1)g1(X2)g2(X1, X2)], respectively, at rates no slower than 5p(p§f_0’5 -n~HY210g' 2 n)
for both acyclic and cyclic cases under respective network sparsity conditions. The conver-

gence of E [93(X1)] to E[g7(X1)] can be established using (8.43). Recall the definitions of
a; and a; from (8.26) and (8.27),

BISHOE) = 36— O® and Bt )] [(BIACK - X100 )]
1471 Observe that _
OO~ BRG] < | 50~ 0 = Yo

i=1 i=1
w3 i — )/~ E(E(XK - X)|X0] )’
(8.78) _

1474 ‘i — i)’/ — E(E[h(Xl,-~,Xr)le]—un)?”+5p(p5’f‘1/2-n‘1/210g1/2n)
175 where the last inequality is due to the facts a; =< p,, =< p2, |a; —a;| = O 0 (o V2 =12 log'? n)

1476 and ’Un _,U«n’ = Np(lgfI 12

1477 Moreover, we have

n~121og"? n) due to the proof of Lemma 3.1 (a), (b) and (c).

\i — ) BBy X)|X0] )
<(§]la?/n—E(E[h(X1,--- X))

w0(] 2 @2/n— E(E[h(X,. - . X,)|x])7)
o (879 o2 O()iai/n—E(EWXl,--- X)Ix0)])

Recall the definition of a; and notice that it is a U-statistic of order » — 1 conditioned on X;.
By the standard concentration inequality of U-statistic [97], we have

las — E[A(X1,-- . X) [ Xi]] = Oy (01 - n 2 10g 2 m).
By decomposing a; = (a; — E[A(X1,- -+, X;)|X;]) + E[A(X1,- -+, X;)| X;], we have

20| Y/~ E(S[H(X, -+, X0)1X0)) = Byl 1082
i=1
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where we used the facts {E[h(X1,- -+, X,)|X; ]} are i.i.d. random variables so that
}n—l Z E[h(X1, -, X,)|X;] — E[h(Xq, - 7X'r)]‘ — 5p(pf’fn_1/2 log'/2 ).

By a similar strategy, we can prove that the bound 5p(p?f n 12 logl/ 2 n) also holds for the
other two terms in RHS of (8.79). Together with (8.78), we conclude that

(8.80) [Eg3(X1) —Egd(X1)| = Op (220 - n~Y210g"?n).

The proof of the convergence of E [91(X1)g1(X2)g2(X1, X2)], however, needs separate care.
Recall that

91(Xi) == = 2 W(Aii, iy ) = Un =i = Uy
(r—l) 1<t < <ip_1<n
U1 yeeesbp 170

~ 1 ~ ~
92(Xi, Xj) == 7 —v > h(Ai i) — Un — 91(X5) — 1(X;)
(7‘72) I<i1 < <tpr_2<n
ily"'zir—27éi7j

Unlike that g; (X;) converges to the corresponding g1 (X;), the randomness in h(A; j 4, i, ,)
introduced by the edge A;; is not suppressed by an average over {i1,...,%,—2} 1 i1,...,%p—2 #
i,j. Therefore, the convergence of E [91(X1)g1(X2)g2(X1, X2)] has to be discussed as
a whole. We first show that given W, E [91(X1)g1(X2)g2(X1, X2)] converges to its
“population-sample” version replacing A by W in its definition, then show the convergence
of that version to the eventual expectation form. Observe that

! D Gi(X)G(X))d(Xi, X;j) — Egi(X1)g1(X2)g2(X1, Xo)

(g) 1<i<j<n

1

:@ Z [91(X3)91(X;)g2(Xi, X;5) — 91(Xi)91(X;) g2(Xi, X;) |
2) 1<i<j<n
+ oy Z 91(Xi)91(X;)g2(Xi, Xj) — E[g1(X1)g1(X2)g2(X1, X2)].

(g) 1<i<j<n

It is easy to bound the second term. By the definition of g1 (Xj;), g2(X;, X;), we notice that
clearly (72‘)_1 Dii<icjen 91(Xi)g1(X;)g2(Xi, X;j) is a degree-two U-statistic. By the stan-
dard concentration inequality of U-statistic [97],

1

2 (X0 (X)X X) ~ Bl (X0 (Xa)g(X, Xa))
2) 1<i<j<n

~

-0 (pSSn’l/2 log!/2 n)

where we used the fact g1 (X;)g1(X;)g2(Xi, X;) ( ) a.s. Therefore, it suffices to upper
bound

1 ~ ~ ~
(881 K= ®] D1 [00(X0)91(X5)G2(Xi, X5) — 91(Xi) g1 (X;)ga(Xi, X;)].
2/ 1<i<j<n

The convergence of g1 (X;) to g1(X;) is straightforward. Indeed,
G1(X0) = 91(Xi) =@ —E[A(X1, -, X0)|Xi] + (= O
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Recall from Lemma 3.1(a), (b) and (c), |l7n — Up| = 5p(pff1/2 n12]og!/? n). We then
prove the first term on RHS of above equation. Clearly,

la; — E[h(Xq,---

X)Xl < a; — ag| + |a; — E[A(Xq, -, X0) | XG]|

_ 5p(p?;1/2 . n71/2 logl/Q 77,)

where the last inequality is due to the bounds of |a; — a;| and |a; — E[h(X7,- -, X,)|X;]| as
shown above. Therefore, conditioned on X;, we have |g1 (X;) —g1(X;)| = 5p(pff1/2 -n~Y21og! /2 p).
Now, we re-express £ from (8.81) as

R =

_%

1

2/ 1<i<j<n

1
oA
2/ 1<i<j<n

1

(3) 1<i<j<n

6] Y n(X)G(X)[F2(Xi, X)) — g2(Xi, Xj)]

[91(X3)91(X;)g2(Xi, X;5) — 91(Xi)91(X;) g2(Xi, X;) ]

D 51X (X)) [62(X5, X;) — 92(Xi, X5)| + Oplpi™ 2 -0~V log! 2 ),

where we used the fact [g1(X;)| = O(p5), a.s. It suffices to bound the first term on RHS.
Define

(8.82)

~ 1
)
0%

Z P(Aijiy iy iva)

1<i1<ia<-<lp_2<N

11, 2 F0,]

Z h(Wi7j9ilyi27"'yir72)'

1<i1<ia<-+<ip_2<n

i1, b2 #0,]

Then we can re-express the g2 (X;, X;) — g2(X;, X;) factor as follows
92(Xi, X;) — 92(Xi, X;) = (@i — ) + (ai; — E[A(Xy, -+, Xp) X5, X))
= (Un = ) = (51(X) — 1(X0)) = (91(X;) — g1 (X))

Similarly to our earlier derivations, using the concentration of U-statistics, we have (aij —

E[h(X1,--

X)X, X)) = 5p (psn~1/2 log!/2 n). Since Up — pim = 51,(/);31_1/271_1/2 log'/?n)

and g1(X;) — g1(X;) = 513(/)}3_1/2 -n~1210g"2 n), we have

1

()

)

Z 91(X3) 91 (X)[92(Xi, X;) — 92(Xi, X;) |

I<i<j<n

Therefore, we have

Y (X)g1(X))F2(Xi, X;) — Egi(X1)g1(X2)g2(X1, X2)

(

1

n

2

)

1<i<j<n

GL(X0)G1(X;) (@5 — aig) + Op(p3 Y% 0= 210g" 2 n).

(X091 (X)) (@5 — aig) + Op(p 12 -0~ 1og! 2 n).
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Recall the definitions of @; and a; from (8.26) and (8.27). We write

1 ~ ~ ~ 1 ~
T Y, X)n(X) @5 —ay) =y Y, @idg(ag - ai)
(2) 1<i<j<n (2) 1<i<j<n
2 ~ PN
== Unti@ — a;) + Up(Un — Un)
n I<i<n
1

= D, i@y — aig) + Op(pl 2 -7 log % )
(5) 1<i<j<n

where the last equation is due to a; = U,, = p§, a.s., |a; — a;| = 5p(pf1_1/2 -n~210g%n),

Uy, — Uy | = 5p(pfl_1/2 -n~ log'/?n) due to Lemma 3.1 (b). Therefore,

n 91(Xi)91(X;)g2(Xi, X;) — E[g1(X1)g1(X2)g2(X1, X2)]
(2) 1<i<j<sn
1 ~
(8.83) = 2 A (4 — aij) + Op(p%s—lﬂ V21012 ).
(2) 1<i<j<n

It remains to bound the first term on RHS. We rewrite it as

1 ~ 1 ~ A
W 2 aiaj(aij — aij) = 7_1) Z aiaj(aij - aij)

2/ 1<i<j<sn n(n 1<i#j<n
1 1 A
(8.84) :ﬁzaz" (n—l Zaj(aij _aij)>-
=1 j;éz

We then establish the upper bound for >, ., a;(a;; — a;;)/(n — 1) for each fixed i. We have

1 . .
— >, (@ —a;)(@i; — ayy)
1<j<n
J#i
1 . .
BCESIE D D (@ —aig) (@i — ai)
n 1<js<n 1<i'<n

it %)

1 R . .

(8.85) NCEE { D) (@ —ay)®+ ), (@ —aiy)(ay — az’j)}
1<j<n 1<{i' j}<n
J# =

J#L

Similar to the derivation of (8.43) by expanding i <i,<...<i,<n R(4A, ... i.), we have
{/L:.]}C{Zlifh‘}
~ ° 1 o R
aij = O4nij + —— Z <9i,k;i,j77ik + @j,kz;z‘,jnjk>
n—2
1<k<n
k#1,§

(8.86) +aij + Op(py " -0 logn)
where
max {|O4;], [©4 ki, [k 1} < iy ' aus.

We note that , similarly as the derivation of (8.43), the bound (8.86) holds under the sparsity
condition p,, = w(n~") for acyclic R and p,, = w(n~=%") for cyclic R.
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1551 Now we discuss the two terms on the RHS of (8.85). For term 1 on the RHS of (8.85), we
1552 have

1 ~ 2
G — s
= Ty 2 (@5 —ay)
1<j<n
J#i
2
1 . 1 . .
foss “m-1)2 D, 4 O + 9 ) (@i,k;i,jmk + @j,k;i,jnjk>
1<j<n 1<k<n
s k+#i,j
1555 + O, (p2 - n"2logn)
L 2o o 2 . . .
1556 =n PIRCHUE P D1 Ouimiy (Oiksignmin + Ok sk
1<j<n 1<{j,k}<n
J#i J#i
ki,
2
1 - - N o 2s—1 . —2
1557 (8.87) +W Z Z (91"1@;1‘7]‘77@;9 +9j,k;i,k77jk) +Op(pns -n~“logn)
n 1<j<n | 1<k<n
J#i k1,5

1555, Now we bound each term on the RHS of (8.87). Inspecting the expectation of term 1 on
2s—1 -1 4 p28*3/2,
n n
w60 M 3/2 logl/ 2 n). Term 2 on the RHS of (8.87) is mean zero so we can focus on the concen-
1561 tration. Its 7;;7;; part can be bounded by inspecting the concentration averaging over j and
w2 over k, respectively, and see that this part is bounded as O,,(p2~2 - n~ (p,n =12 log"/? n)?),
153 and this upper bound is dominated by the bound of term 1, thus it is ignorable. Using Theo-
156« Tem 8.1, the n;;m;), part of term 2 can be bounded as follows

1s5s  the RHS of (8.87) and using Bernstein inequality, we know it is 5p(p

-3 - 5 -3 25-2
1565 T Z 0,0 ki iMijNjk= Op | n™° - p;’ "% - max \p%‘nZIOgTJz,gn'nlogn

1<{j,k}<n
J#1

W=

“Variance” =5

k#i,j
1sss and is thus ignorable. Now noticing that each 7 is bounded by 1, using Bernstein’s inequality,
ise7 term 3 on the RHS of (8.87) is Op(n~%- p25=1 - n?) = O, (p2*~! - n=2) and thus ignorable.

n

s Therefore, term 1 on the RHS of (8.85) is O, (p2*~! - n~logn + P32 =32 10g1/2 ).
1569 Now we bound term 2 on the RHS of (8.85). By a similar treatment, we have
1 ~ ~
A o Z (@ij — aij)(@ij — aij)
1<{i ji<n
i i
G
1 . 1 . .
1571 = m Z @i/,jni/j + m Z (@i/,kui’,jni/k + @j:k1;i’7jnjk1>
1<{i’,j}<n 1<ki<n
i’ %4 ky#ij
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. 1 . . o
Gijnij‘i‘m Z <@i,k2;i,j77ik2+@j,kz;i,j77jk2> +Op(pi> ™" -n"'logn)

1$k2$n
kZ;éi?j
» . . 1 .. ..
=n D OuiOsnigmi; + 3 > (@z"ﬁi,kz;i,jm'mzkz + Oy, ‘@j,k2;i,jni’j7]jk2>
lé{i',j}ﬁn 1<{i/7j7k2}<n
i #i i #i
A i
ko#1,j
1 . .
Tz 2 ©i,i Ot oy i Mk, + ©i 5O evsir jMij My
1<{i/7j7k1}<n
e
i
k171,

(8.88)

+O0p((p572 072 10g2n)?) + Op(p2 ™ - n! logn)]

Now we bound the RHS of (8.88). Again, by Theorem 8.1, the first term is bounded by

(8.89) 2 > Ougmi; = O0p(px " n7 logn).
1<{i',5}<n
e
J#i,0

Terms 2 and 3 on the RHS of (8.88) can be bounded exactly similarly. Here we only present
the bounding of term 2. We have

1 0 o 1 5 .
m Z ®if,j@z‘,k2;i,j77i’j77ik2: m Z Z @i’,jm"j Z @i,k‘g;i,jnik‘g
1<{i’,j,ka}<n 1<i'<n \ j#i,i’ ka1,
)

G#iL
ko#1,5
(8.90)
:ni?’PiSﬂép((quﬂnl/Q 10g1/2)2) = 5p( isil n72 logn)
and using Theorem 8.1, we have
1 o s
m ' Z Oi,5O5 kai,j i i Mjks
1<{1/7‘77k2}<n
o #i
VEG N
kQ:#imj

(8.91) =n"3p2 2. ép(max{pn -n32log"? n, p, - nlogn}) = (3p(p72f*1 -0~ logn)

Collecting all results, we see that term 2 on the RHS of (8.85) is O,(p25~1 - n~llogn +
pis_?’/ 2. 32 logn). We thus conclude that

1

n—1

D (@ —ai)(@; — aj)| = Op(pp* ' Hlogn)
1<j<sn
J#i
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under the given sparsity condition p,, = w(n_l/ 2), which holds for both acyclic and cyclic
R.
Now we return to the main proof and continue (8.84). We have

1 PPN
6] >, @i (@i — aij)

2/ 1<i<j<n

1 o - 1 ~ o~ ~
:m Z (liaj(aij - aij) + (T Z ai(aj — aj)(aij — aij)
2/ 1<i<j<n 2) 1<i<j<n
1 ~ 1 ~ ~
o Y, @@ —ag)+ o Y (- ai)ai(ai; — aiy)
(2) I<i<j<n (5) 1<i<j<n
+ 6p(pf’f_1 -n"Yogn + p3732 . n7321ogn)
=5p(p2371 -n"tlogn) + 5p(p§’f*1 -n"Ylogn + p2*~%2 . n=3%1ogn)
(8.92) :6p(p%s_1 -n"Hogn + p2*732 . 0732 logn)
where the second to last line is due to
1 ~
my D, wiay (@ — ai)
(2) 1<i<j<n
1 . 1 o .
=y Z a;a; § Oijij + n_9 Z <®i,k;i,j77ik: + @aykz;i,ﬁjk)
(3) 1<i<j<n T4 Shen
k#i,j
+ 5p(pf’f_1 -n"tlogn)
1 : 1 Oikigik |~ 351
=y Dy GOl oy Y, a4 Op(pr T n ogn)
(2) 1<i<j<n (2) 1<{i,5,k}<n "
it Ekskt

N 1 O: i -
(Bernstein) =Op(pf;8*1 -n"tlogn) + TRy Z a; Z Clj% Nik
(2) 1<{i,k}<n 1<Sj<n
i#k J#ik
(8.93)
=Op(p} ™" -n"'logn)
Now we may conclude that
1 ~ ~ ~
D G1(X)a(X))8 (X4, Xj) — E[g1(X1)g1(X2)g2(X1, X2)]

(g) I<i<j<sn
(8.94) = 5p(pis_1/2 -n"Y210g%n)

This completes the proof of Theorem 3.2.

8.5. Proof of Theorem 3.3. 'We will inherit the notation of a; from (8.27) in the proof of
Lemma 3.1. It suffices to show (3.15), which would then imply the closeness between F
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1607 and F by repeating our arguments for proving (8.54) and (8.55) using Lemma 8.2.

Tn ;bootstrap

1s0e  Observe that

n A~
1609 <’I“> : Un = Z h(Ail,...,ir)

1< <...<i,<n

1610 (For any 1) = Z h( Az, i)+ Z h(Ai,,...i,)
1I<ii<...<@p_1<n 1<ii<..<i.<n
Z’17...7’i,,.,1#i L1 yeenybr 7L

1611 = (n_1> 'ai-l- <n_1) ﬁr(L_l)
r—1 r

1612 Simplifying both sides, we have

-0 (-0
1613 Therefore,
11 n <§Z - S\g;jackknife)
= Zn](ai —Un)? = (n—1) i (ﬁ,g—@ - An)Q
s i=1

e e O

=1
1 ¢ -1 L \2 .
o (8.96) - Zlﬂ {1 - M} (ai - Un) —0(8?)

where in the last line, recall that 52 := 123" | (@; — U,)2/n2. Therefore,
§72z - §721;jackknife = O(Sﬁ/n) = \§n - §n;jackknife| = O(gn/”)'
1618 This proves (3.15) and thus completes the proof of Theorem 3.3.

1619 PROOF OF THEOREM 3.4. It suffices to prove the Berry-Esseen bound for the normal ap-
1620 proximation. By definition, |G, (u) — ®(u) | = O(n~'/2) and by the proof of Theorem 3.2,

et we know that | G, (1) — G ()] = Op (M(pn, 15 R)) -0~ 2 = Opy (M(pr,m; R)) A 0p(1).
122 The proof is partitioned into two parts, for O (M (p,,n; R)) and o(1) bounds, respectively.

w2 Part I: proof of the O (M (p,,,n; R)) bound when p,n > log"/? n (acyclic) or ,02/ ’n > log'/?n (cyelic).
1624 We begin by recalling the decomposition of T,, and inspect whether each component de-
1625 pends on p,, or not. Using Lemma 3.1 for the sparse regime, we have
1626 fn = { U# + A, + An + 6p(n_1 10g3/2 n) } . <1 + 6, + gn )
[ — ~—— [ — —— ——
No p,, Depend on p,, No pn No p, Depend on p,,
1627 :{Uff + 51,(7171/2 log"?n) + A, + 5p(n*1 log®/? n)}

1628 : {1 +O0p(n~210g" 2 n) + O, (M(pp, n; R))}
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o0 (8.97) =U# + Ay (1+ Op(M(pn, 15 R))) + Op (M(pn,n; R))

1630 To see that last equality of (8.97), it is not difficult to prove that Uﬁf . Sn is also
1631 5p (M (pn,n; R)) using the method for proving that 8 = 5p (M(pn,n; R)), but due to its
132 involvement we omit the proof here.

1633 Now we use (8.97) for this proof. First, we discuss the term A,, - 51, (M(pn,n; R)). B
163« an ordinary Bernstein’s inequality, we have

5 2.4
P(|K,| > u) < 2exp {_CW - 'Slfggpgl — nz}
1636 <2exp{—Cu(pn-n)- uz}
w57 Therefore, A, = 5;,((pn -n)"1210g"/? n). Therefore, we have
A+ Op (M(pn,n; R))
=&y + Ry) - Op (M(pn,m; R))
— {0y ((pn - ) 108"2 1) + O (M(pn, 13 R)) | - O (M(pn, 3 R))

Therefore, the term A,, - O, (M(pn,n; R)) is ignorable compared to O, (M (pn,n; R)).
Thus, recalling R,, = Op, (M(pn,n; R)), we have
Ty = U +An+ Op (M(p, n: R))
Now it only remains to show that
||FUf+5n+6p(M(p”,n;R))(u) —®(u)|oo = O (M(pn,n; R))

141 Similar to the proof of Theorem 3.1, we are going to break this down into three steps. Recall
1042 the definition of A,, from the proof of Theorem 3.1, we shall prove

~

1643 (8.98) HFU#-FA”-FG (M(pn,n'R))(u) - FU#-&-AVL (u) ” = Op (M(pn,n;R))
—1/2 -1
o (8.99) H vt en, W = Fue 5 ()] =0(or"? 0
—1 1/2
s (8.100) H vt 5,00 = ()| =O((pn-n) " log!/2n)

146 We start from proving (8.100). Notice that this part of the proof only requires that p,n >

12p regardless of the shape of the motif, since the asymptotic orders U =1 and A, =
s (pp - n)~/2 do not depend on the motif. The stronger condition ply *n > log"/2n is still
16a0  necessary to deduce (8.98) from (8.99) and (8.100) using Lemma 8.2; a second reason is

1es0 that the error bound M(p,,n; R) for cyclic motifs would not diminish to zero if p:l/ ’n <

1647 log

1651 logl/ 2n. We are going to apply the Esseen’s smoothing lemma on the interval ¢ € [—p,, -
w2 nlog™/?n, Pn N log ™1/ n]. The integral we shall need to bound is
pn-nlog=%n E it(U#+A,) _ —t2/2
(8.101) f le o Y
7pn~n10g’1/2n t

153 The following intermediate result in the proof of Lemma 8.3-(c) remains valid:

1654 K [eﬂt(U#JrA")] =E [eﬁtU# . ef(Pn'n)_lUﬁ,tQﬂ]

E [eﬁth e pm) BRI NI 000 X0V (1 4 O (o' log n - t2))]

1655 -
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For t < py, - nlog™"/?n « n'/2, the remainder’s contribution to the integral (8.101) is
pn-nlog=%n

(8.102) f o in"2logn - 12 /tdt = O(pn) < n~ /2
0

Therefore, for the rest of the proof in this part, we can directly ignore the remainder term’s
contribution according to (8.102). Now we bound the main part. Suppose Cp > 0 is a very
large constant. We discuss two cases

* Case1: p,-nlog~/2n = {Cylog(p, -n)}"/2. In this case, we break the integral in (8.101)
into two parts:

12

{Colog(pn-n)}'/? pn-nlog”
J g
0 {Colog(pn-n)}t/?

By (8.102), we can ignore the remainder. Similar to the intermediate step in the proof of
Lemma 8.3-(d), using Section VI, Lemma 4 of [108], we have

E [eﬁw# e (Pam) T (?/2){E[02 ]+ 2 z:;;lgmxi)}]

_ o (pam) () B3] ’eﬁtz;;91<Xi>/<ﬁ§1>—(mn)*lﬁ/(zn)-z;;lgmlm)]

21..1/2
_ o= (on )N (#/2)E[02] | | S, 00 (X0)/(VRE) | 5 (tlog " n
e Ele (1 + 0O, ( PRI )

- 21..1/2
_ o= (onm) (#/2)E[02] | [ S0, 0 (X0)/(VED) t"log /" n
e ]E_e ]—I—O( PR )

—1(42 2 2 2 t2 10 1/2 n
— o~ (pnn) "1 (¢3/2) E[0}] —t*/2 —1/243 —t%/2 vig n
e E{e +O0(n™*t’e )}—i—O( pveTD )
Therefore,

‘]E [eﬁtU# ,ef(pn-n)—lﬁ/zm[oﬁ,]ﬁz;:lgd;l(xi)}] B e,tz/Q‘

2 —142 2 t2 lo 1/2n
—t2/2 | —C(pn-n)~'t> _ —1/2,3 —t%/2 g
<e ‘e 1|+ O0(n "/t )+O<7pnn3/2 )
2 > t2log!/?
<2 0((pn )12 + O(n~ V2P 2 1 OB
PnTV /2
Consequently,
{Colog(pn-n)}? |R[eit(Uf+A0)] _ p—12/2
(8.103) f le . L= e = O((pn - )™
0

where we recall (8.102) to simplify notation. For the second part of the integral, we can
reproduce the steps in the proof of Theorem 3.1 and obtain

E [eﬁth . e—(pn-n)*l(t2/2>{E[ai]+§z;;lgm(xi)}]
— o= (pan) N (/2E[02] [eﬁtU:& . e—(pnnrlﬁ/z{%zzglgml(xi)}]

<(1=Cy-£2/n)" <em @ <em @ loslonn) < ()72,
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Therefore we have

J(pnn) log™'? n
{Colog(pnn)}'/2
12,

(pnm)log™
< J
{Colog(pnn)}/?

1/2

n

(pm) log™
< J (pn : ’)”L)_2dt < (pn ' n)_l
{Colog(pnn)}/?

Moreover, we choose Cy = 4 so that

1/2

(pnn)log=2n e—t2/2 (pnn)log=2n
J dtg‘[ e U2 dt
{Colog(pam)}z T {Colog(pam)}/2

< (pn)log ™2 (n) - e~ (Co/2)loglpnn) <

Therefore, we have

(pan)log™
(8.104) f
{Colog(pan)} V2

Combining (8.103) and (8.104) proves (8.101).
* Case2: p, - nlog’l/2
(8.103) remains valid and implies (8.101).

1/2

n E[eﬁt(U#+5n)] _ o2

t

[eﬂth e~ (Pnm) N /2E[L ]+ 2 2, goa(Xi)}] ‘ Tt

PnT

[&%w.gﬂmm*avmmwm+i2lﬂmm&H”dt

1

< —.
(pnn)Co/2 = ppn

dt = Op((pn-n)™")

n < {Colog(py, - n)}/2. The proof in this case is even easier, since

Plugging (8.101) back into the Esseen’s smoothing lemma proves (8.100). Notice that the
logl/ 2 n factor in the eventual error bound comes from the second term on the RHS of (8.53).
Next, reproducing the proof (8.55), we prove (8.99) by combining (8.100) and Lemma

3.1-(b).

Finally, the proof of (8.98) is done by combining (8.55) and Lemma 8.2. The proof of this
part is exactly similar to the proof of (8.54). This completes the proof of the O (M (py,n; R))

bound.

Part II: proof of the o(1) bound when 1 < p,n < log'/? n (acyclic) or 1 < pj;

r/

n< logl/2 n (cyclic).

The error bounds we derived in Part I of this proof focused on establishing finite sample
error rates, and consequently need to bound the tail probability at the price of a logl/ n
factor multiplied on the error bound. Taking the acyclic motif setting as an example, to
counter the log factor in the error bound, we also need to assume p,, = w(n ! log!/? n) rather

than p, = w(n™!). For p, :n~!t < p, < n~1log'/?

n, despite establishing an explicit finite-

sample error bound is still possible, the formula and derivation are rather complicated. For
cleanness of presentation, in this paper, we slightly lower the goal and only aim at deriving
uniform consistency. Consequently, the proof can be done by slightly varying the proof of
the first part of Theorem 3.4. In this proof, we do not need to show an explicit error rate, so
we do not need “5p” any more, and “o0,” would suffice for our purpose. For the convenience

of narration, we define

~ (pn-m) "2+ 071 log??n,
M(pp,n; R) := ”
(o) {(pn/2~n)‘1/2+n‘1-logg/Qn,

We first present a variant of Lemma 3.1.

For acyclic R
For cyclic R
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LEMMA 8.4. Under the conditions of Theorem 3.4, we have the following results:

(a) Identical to Lemma 3.1-(a).
(b) We have

where En and ]:?n satisfy
(8.105) R = 0p(M(pn,m; R))

and the original (3.12) in Lemma 3.1-(b) holds for An where the definition and asymp-
totic order of oy, is identical to that in Lemma 3.1,

(©) 0n = 0p(M(pn,n; R)),

(d) Identical to Lemma 3.1-(d).

PROOF OF LEMMA 8.4. The proof of this lemma can be obtained by slightly varying the
proof of Lemma 3.1.

(a) (No additional proof needed.)
(b) The only change we need to make to the proof of Lemma 3.1-(b) to make it a valid proof
here is to replace (8.18) by the following concentration inequality:

(8.106)

P(én::ﬁ>c-/\7(pn,n;m>

() -on

_ pr2 =) (py/?n)?)? _ (e P ) () 2 LD
max 4 exp )2 ) ,EeXp < PR ) } , forcyclic R;
:0(1)

The proof of this part is completed.
(c) We only need to change how we use Theorem 3 of Schudy and Sviridenko [116] in (8.42),
into the following way

Z A(iﬂ)vp) = Op(pfl . nrfl : M(Pm n; R))

All possible (v,p):
v=2,p=3

=<

and for the rest of the proof of Lemma 3.1-(c), replace every remainder term in the format

of “6p(- -~ X M(pn,n; R))” by “op(--- x M(pn,n; R))”. This completes the proof.
(d) (No additional proof needed.)

O
Now we return to the proof of the second part of Theorem 3.4. The proof is completed by
slightly varying (8.97) in the proof of the first part of this theorem by
T = U + Ru(1 + 0p(M(pn.1: R)))) + 0p(M(pn, 1: R))
Then recall the definition of “o0,” and apply Lemma 2 of Maesono [96] (setting 1" = fn,
T = U and o = M(py,n; R) and H(z) = ®(z)). We have
1Bz, () = () oo <[Py () = @(w)]o + P {|T = U] = Mpn, mi B) |

~

+ O(M(pp,n;R)) =0(1) +0o(1) +0o(1) -0
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This completes the proof of the second part and thus the proof of the error bound of the
population version Edgeworth expansion in Theorem 3.4.
Next, we prove the error bound for the empirical version Edgeworth expansion in Theorem
3.4. Similar to the proof of the population version, we discuss two cases.
r/

Part I: the proof of the O, (M (p,,, n; R)) bound when p,n > log*/?n (acyclic) or p; I >

1og1/ 2 n (cyclic) is easily done by citing the following intermediate results from the proof of
Theorem 3.2.

(8.107) 6 =0,(p% - nV2log!?n),

(8.108) IB[g3(X1)] — E[g3(X1)]| = Op(p2* /2 - 210g!2 ),

(8.109) = Op(p3*~12 . n=1210g 2 p).

The proof of this part is then instantly done by combining these results with the statement
about the population Edgeworth expansion in the sparse case that we just proved above.

Part II: proof of the 0,(1) bound when 1 < p,n < log'?n (acyclic) or 1 < pz/ n <
logl/ 2 n. To prove for this regime, we only need to slightly vary the proof of Theorem 3.2.

Set a series o, — o0 as follows:

(8.110) on = {Pn ", for acyclic R,

p:/ z. n, forcyclic R.

6, 9

By replacing the logl/ 2 n factor in all the “u” values that we set in Theorem 8.1 by o,,, where
we apply it in the proof of Lemma 3.1-(c),(d) and in the proof of Theorem 3.2, we establish
the following analogous intermediate results:

(8.111) &~ =0,(0% V% 0,) = 0,(p3*)
8.112)  [E[g}(X1)] - El[g} (X1)]| = Op(pf* 2 0712 0,) = 0, (p311?)

-1
‘ <n> D G(X)G1(X2)G2(X1, X2) — E[g1(X1)g1(X2)g2(X1, X2)]

1<i<j<n
(8.113) = Oy n 2 1) = oy )

This implies |G, (u) — @n(u)Hoo = op((pnn)_1/2) = 0p(1) (thus immediately completes
the proof of Part II) by simply reproducing the rest of the proof of Theorem 3.2. The proof
of the entire Theorem 3.4 is now complete.

O]

8.6. Proof of Theorem 4.1. We will mainly prove for the node sub-sampling network
bootstrap scheme [17], and the corresponding conclusion for the re-sampling scheme can
be obtained easily by slightly varying the proof for sub-sampling. Conditioned on A, since
the sub-sampling objects in network models are nodes rather than latent variables X’s®,

3In other words, X ;s in the bootstrap procedure are deemed fixed.
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we change the notation for 51mp1101ty Define V, = {1 <v; <wvy <--- < vpx < n} to be
uniformly sampled from all size-n* subsets of [n]. That is,

1
]P’(V*:{il,--- ,in*}> o V1K< <ipg <1
(n*)

Define the bootstrap expectation E* to be taken with respect to the randomness of V..

The sub-sampling bootstrap sample network moment (A]g* calculated from the sub-network
Ay, y, calculated according to [17] is

A~ 1
UTIZ* = TaEy Z h(Ail,iz,“',ir)'
( r ) 11 <-<1,.CVy

To emphasize that the randomness in this bootstrap setting is solely due to V,. and simplify
notation, we define §%(v1), taking the argument v; rather than X,,, as follows

(8.114)
~ n—1 1 A
O e LA NP YR 0 %

n r—1 ) ila"'vir‘—lcv*\’ul
~b . n- 3 n—2 1
92<v17U2> a1 (n e {E*[(n*_g) ' ' Z h(Avl,Uzﬁu"wir—Q) Ulav2]
=2/ g1, i CVN\{v1,02}

(8.115)
7 ~b ~b
- 00} - ahon) - k)
where the finite population correction term (n — 1)/(n — n*) comes from [23, (1.2)]. where

again the finite population correction term (n — 3)/(n — n* — 1) is due to [23, (1.3)]. Recall
that §;1k* is a jackknife estimator of Var* (ﬁg* |A) and that the bootstrap test statistic as

A~

(72* - Un
S:*
By our proof of Theorem 3.3, the difference between a jackknife estimator and an estimator

based on £} is ignorable, and we are free to choose either. Here we use the jackknife estimator

in order to better connect with Bloznelis [23]. To start, we check that E* [ﬁg*] = ﬁn where
the expectation is taken with respect to the randomness of V,, so that (8.116) is an valid
studentization of the U-statistic. To see this, notice that

}L > ﬁfi*=ﬁ Z DT h(A )
*) V.c[n] n¥*

21< <<t C Vs

(8.116) T*, —

n¥ —

E*[Ups] =

On the RHS, each summand h(A;, ... ;,) appears ( ) times. Therefore,

Z Y MAii) = (g:_:) D1 h(Ai )

[n]i1<-<irCVs 1<ip < <ip<n

(e
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1766 AsS a result,

E*[U24] =

n

2 D Ay a,)

n) i1 <-<i,CVs

1 1 n—r n\ ~ ~
1768 :@W (n* B 7‘) <T> . Un = Un

r

1769 To investigate the distribution of f:* under the finite-population sampling obeying V,, we
1770 define the bootstrap Edgeworth expansion by

T IE2
s (2) i= B(e) + o '{2 = E {ato)}

" wi(l—ntfn) (€)' |6

r—1
2

72 (8.117) (2 +1) E*[glf(ul)gl;(vz)gg(vl,02)]}

i77s where recall the definitions of §%(-),35(-,-) from (8.114) and (8.115), respectively. Here,
()2 = Var* (§2(v1)|A) = E*[(38(v1))?).

1775 Next, we are going to apply Theorem 1 of [23]. The Cramer’s condition (1.11) in Theorem
1776 1 in [23] is different from the conventional version, and we need to check that it indeed
177z holds in our setting. Specifically, in our setting, it suffices to prove that there exists a positive
1778 sequence {t,} — o0 and a universal constant M; : 0 < M; < 1, such that

Pl sup
te(0,t,,)
1779 because our eventual bounds are O, bounds, and in the proof we can choose to discuss only

170 events that will happen with high probability. Recall from the proof of Theorem 3.2 that we
17e1 have shown the following facts

1782 |§1(Xz) —91(X¢)! = 6 5_1/2 ~n_1/2 log1/2 n)
1763 &1 — &1 = Op(p}y - n 210" n)
and the simple fact that &; = p; a.s. Therefore, we have

191(X;)/&1 — g1(X;) /1] = Op(py ¥/ -2 10g "% n)

17« Recall that our assumption implies p,n — oo throughout this paper (regardless of R shapes,

n -1 Z 6llt g1 (X )/51

7j=1

<M1<1>£>1

175 all assumptions we made imply this). Choosing t,, = (py, - n)l/ 4, we have
n 1 n R
1786 sup Z itgi(X;)/6 _ = Z eﬁt?h(XJ)/fl
te(0, tn) j=1 n j=1
1787 < sup t- max gl( j)/gl — @1(Xg)/§1‘ . et"!h(Xj)/fl—@l (Xj)/EAl’

te(0,t,) ISisn

1788 (w.p.1—Cn~ Y < sup t(p,-n) Y2 log"?n - el(pn )71 log!%n —1/2

te(0,t,)

<tn(pn-n)

1780 under the specified sparsity conditions.
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.Forevery givente T, :={k/n: ke

w0 Itsuffices to bound supye(o .y [n ™t X7 etfor (X%

w1 N, k/n <t,}, by Bernstein’s inequality, we have

1792 (

wss  Therefore, setting M; := limsup,_, |E [e?9:(X1)/&1] |, by the Cramer’s condition we as-
1794 sumed in Theorem 4.1, we have M; € (0,1) and (1 + M;)/2 € (0, 1). Therefore

—1 Iltgl /&1
1795 sup [n e
(1&6771 Z

1796 for some universal constants C,Cy > 0. Now noticing that for any ¢ € (0,%,), let ¢’ be the
1797 best approximation to ¢ in 7,,, we have

-1 Z Gite (X;)/6 _ [ ﬂtgl(Xl)/&]

_ 2
> e) < 2e M€

(1 + Ml)/2> < ‘7;1‘ . 26—03n(M1/2)2 < e—C4n

n

1 oy
tgr(X5)/6 _ = it'g1 (X;)/6:
1798 sup el e
te(0,t) 2 n ]Zzl
1799 (w.h.p.) <|t — t,‘(pn . n)71/2 . 6|t7t/|(p"'n)_l/2 <t,- (pn . n)fl/z —0

1.0 The verification that our ordinary Cramer’s condition implies the sample version in [23] is
101 thus finished. R

1802 By Theorem 1 of [23], the sampling distribution of 77, by node sub-sampling enjoys the
103 following uniform bound

8.118) By () = G| = 0pl((n*)72)

ee]

1804 It then suffices to establish the connection between G (u) and Gn*(l i /n)( u). The
1805 proof strategy is to show that (8.117) can be transcribed, with E* replaced by E’s and
w0 gt (v1),95(v1,v2) replaced with g (X1),g2(X1, X2), respectively. Then the comparison of
w07 the Edgeworth coefficients in G, (u) and @n*(l_n* /n) (u) would complete the proof. To
isos  proceed, now we focus on analyzing the core quantities §%(v1) and g5(v1,v2). For g% (v1),

100 since conditioning on vy € V,, the rest indexes {vo,--- ,v,*} are uniformly sampled from
w0 {{i1, - ipx—1} < [n]\v1 }, we have
1
*
1811 nF—1\ E Z h(Avlyilz“'7i7-—1) U1
( r—1 ) i1, i1 SV \or

1812 = (n*l—l) (nll) Z Z h(AUl,il,'“,irfl)

GV Zl, . ir,lev*\vl

1 1 n—r n—1\ _ .
1813 (By (826)) :mﬁ (n* - r) <T B 1> . avl = avl.
r—1 n¥—1

ie14  where in the second equality, we noticed that each h(A,, ;, ... i, ,) appears (n’fk r) times in
1815 the first line. Therefore,

(8.119) 3o (v1) =
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where g1 (X, ) appeared (in “E” terms) in Theorem 3.2. Then we have

B [@0e0y] = - 2 (P ) @ - 0 = () Rl o]
i=1
#\2 % (~b w1 /~b 2 (n_ 1)2 &2
(&1)7 = Var® (gj(v1)[A) = E*[(g7(v1))"] = 7(71_71*)2 &7

where the definitions of 51 and I/Eg‘(f (X1) can also be recalled by reviewing Theorem 3.2.
Now we turn to analyzing E*[{g%(v1)3%(v2)35(v1,v2)}]. The main part of the definition of
G5 (v1,v2) can be re-expressed as follows

v1, 02]

1 1
:ﬁ(n*ﬁ > > h(Av, ws iy, i)

n¥*—2 r—2 ) V*C[n]:vl,vgev* ’i17"' 71’7‘72CV*\{U17U2}

1 1 n—=2\(n—-r\. .
- (nT;f2) (nr*f_22) r—2 n*—r Gvivy = Goyv,

where we recall the definition of @;; from (8.82). Combining this with (8.119), we have

1
E* [n*_z Z h(AU17U27i17“' 7i7'72)
( r—2 ) i1y b2 C Vi \{v1,02}

~b n—3 n—2 . -~ n—1 _ -~ n—1 _ ~
Bl 2) =y [y e (B = ) - - (@, — 0]

- _(nn: f) gl(; i>n*> | @oses = Tn) = (@, = Tn) = (@, — 00 |
(n—3) ~

- )(am —Uy).

(n —n* —1)(n —nx
Then we have
B3 ()3 () 0n, 02)] = 7o AN 0 0)
2) 1<’U1<U2<n
n—3)(n—-1)>% 4
_ (n=3)(n-1) sE[g1(X1)g1(X2)g2(X1, X2)]

(n—n*—1)(n —nx)

- (n:?’)(n_l): 3'% D Gi(X0)g(X2)[G2(X1, X2) + Gi(X1) + i (X2)]
(n—n*—=1)(n—n*)3 () <Shen
(n—=3)(n—1)°

o ~ n—3)(n—1)>2
“(n—n*=1)(n— n*)3E[gl(X1)gl(X2)g2(X1’ Xa2)]+ Op ( (n _( n* E)i)(n Pn*)g i Mog/? n)

where in the last line, we used that, §1(X1) & pS,G2(X1, X2) £ p5~! with probability at
least 1 — O(n 1) by the proof of Theorem 3.2. Define cv,,+ = (n —1)/(n —n*). Now we can
rewrite (8.117) as follows

T 2 ~
o) =006) ¢ P o {2 ot Rl )
n*(1—n*/n)- o &

r—1
g One

+ (22 + DE[g1(X1)g1(X2)g2(X1, X2)]
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_ n—3 r—=1 o5 9 O (3511, 51/2
R - 1 1/2
= Gn*(l—n*/n) (’LL) + Op x 7
(L —n*/m)(n—n*)pn

where recall that G, (u) was defined Theoem 3.2. Finally, we have

log'/?(n) }
\/n*(1 = n*/n)(n—n*)p,

where the last equation is due to p,, = w(n_l/ ") and n — n* = n. Combining this with Theo-
rem 3.1 and Theorem 3.2, by a triangular inequality, we have

(8.120) H Fy (u) - Fﬁ*(m*/wo(“)uw —op((n*)"12).

This completes the proof of Theorem 4.1 for sub-sampling, since the uniform convergence
rate of the Edgeworth expansion is governed by the worst convergence rate of its coefficient
terms.

Now we discuss the re-sampling scheme. Sampling {vy,- - , v, } with replacement from
a finite population [n] is equivalent to sampling without replacement from a population in
which each of [n] are repeated infinite many times with the same infinite cardinality such
that a uniform sampler will still take each of [n] with equal probabilities. This amounts
to set the “n” in Bloznelis [23] to “n = o”*. Notice, however, the “n” in [23] should
not be confused with our network size n in the expressions of &7, E*[{g’l’(vl)}S] and
E*[3%(v1)9% (v2)g5(v1,v2)]. Therefore, the re-sampling bootstrap Edgeworth expansion is
the following slight-modification of (8.117):

xr 552
o) = b+ 2. {2 Lo ()

0

HGZ* (u) — én*(l—n*/n) (U)H :617 {

OGN W

r—1

(8.121) (2% + 1) E*[35 (v1)g} (v2) 35 (v1, vg)]}
The rest of the proof is exactly similar to that for sub-sampling and thus will be omitted. The
proof of Theorem 4.1 is completed.

PROOF OF THEOREM 4.2. The key to this proof is to establish the local monotonic-
ity of the function G, (-). The local curvature of G, is handier to use than that of F; ,

because the distribution of fn may not be exactly continuous, and the classical result
F7(Z) ~ Uniform[0, 1] (thus P(Fz(Z) < u) = u for any u € [0, 1]) for a continuous ran-
dom variable Z does not necessarily apply. On the other hand, by construction, GG,, is always
smooth.

Now notice that not only G, (+) uniformly converges to the N (0,1) CDF &(-), but further,
these two functions are both smooth and sup,, |G7,(v) — ®'(u)| — 0 (while the CDF 7, (-)
is not necessarily continuous). Therefore, there exists a large enough constant ng and small
constants €y > 0, dp > 0, such that the following two properties hold simultaneously

“Here, we clarify that the “n” in “n = c0” should be understood as the size of the finite population for boot-
strapping, among the notation system of [23], not the “n”” in most of this paper as the network size.
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(). For all n > ng, we have G, (u) = a/2 + € for all u = 2,5 + do; and G (u) < a/2 — €

forall u < z, /2 — do

(ii). For all n = no, on the interval u € [2,o

D, and constants C,, 2, D,/ only depend on .

Properties (ii) implies that G, is strictly monotone and thus invertible in [z,/5 — 0, 2a/2 + 0],

— 00, Za/2 + 00], we have 0 < Cp o < G7,(u) <

and specifically, G, *(«/2) is well-defined. Then by (i), we have G, (/2) € [z4/2 —

00, 2a/2 + do], and by (ii), we know that Gt

50)7 Gn(zoc/Q + 60)]

(u') is also Lipschitz on v’ € [Gp(zq/2 —

Now we are ready to begin the main proof for Type-I error rate. We have

Type-I error rate :=Pg, (2 -min {@n(fn), 1-— én(fn)} < a)

(ais small) =Eg, [1[@n,(f’n)<a/2] + ﬂ[@n(ﬁb)>1—a/2]]

(Theorems 3.1 + 3.2) =Eg, []1

(Gn(T)<ayo T 1

(G (T)>1—

Cr/2]]

+En, [l[én(ﬁ)@p] - H[Gn(ﬁ)ga/z]]

+En, [l[én(ﬁpka/m -1

[Gn(ﬁ)>1fa/2]]

(8.122) —Py, (Gn(fn) < a/2> + Py, (Gn(fn) >1- a/2>

+ O (M(pn,n; R)),

where the last equality is due to (recall from the proof of Theorem 3.2 that H@n(az) -

Gn(2) ] = Op(py in1))

Er, l[én(fn)éa/Q] - H[Gn(ﬁ,)@/z]‘
=Py, (C(T) < a/2,Gn(T, )>a/2) + Po, (Go(Th) > /2, G (T)
=P, (Gn(Th) < /2 + O(py'n 1), Go(Ty) > 0/2)

+ Py, (Gu(T)) > /2 — O(p;'n 1), Gn

(Invertibility of Gy () =P, (

+0(n~
G (a/2+ 0(p,'n ™)) = Gu(Gy

(Theorem 3.1) =G, (

9

+ O (M(pn, i R)) = O (M(pn,n; R)).

(Tn) <@/2) + O(n™")

G a/2= O(p 'n ™) < T < G (a/2+ O(p, "0 71) )

Ha/2=0(p;'n™h))

Now we continue (8.122) and bound P (Gn (’f’n) < oz/2). We have

P(Gn(fn) <a/2) =P (Gn(fn) <a/2,T,¢ [26/2 = 005 2a/2 + 50])

+P (Gn(fn) < /2, T > 200 + 50)

+P (Gn(fn) < a/27fn < Za/Z - 50)

(Property (i)) =P (Gn(fn) <

~

a/Q,Tn S [Za/2 — 50, Za/2 + (50]

)+P<fn<za/g—6o>

< a/2)
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=P (fn < G;I(Q/Q)vj;n € [Za/2 — 0o, Zaf2 + 60]) +P (fn < Zq/2 — 50)
(Since G, 1 (/2) >2q/2 —00) =P (fn < G;l(a/2)> = an(Ggl(a/Q))
=Gn (G, (/2)) + O (M(pn,n; R)) = a/2 + O (M(py,n; R))

The other term P (Gn (j\’n) >1—-aof 2) can be handled exactly similarly, and the proof of

part 1 of Theorem 4.2 is completed.
Now we move on to prove part 2 of the theorem. |c, — dp,| = w(p?, - n=/?). When H,, is
true, we have u, = d,,, and rewrite

7 Un: dy, N dnA Cn
Sp Sh
Since S, = Oy (p5, - n1/2), we have
dn — ~
n i o, and therefore, |T;,| %> oo
Sn

By definition of Type-II error, this finishes the proof of part 2 of Theorem 4.2.

PROOF OF THEOREM 4.3. We first prove (4.6). By definition, we have

F, (qf’n,;a) B a‘ =F, (qTA’n;a) —ashy (qﬁ,;a) — ¥, (qﬁ;a —07)

n

< ‘Ff (47,.0) — Gnlag, )| + ‘Gn(an;a) —Ghlaz,., —07)

+|Galaz, o~ 0%) = Fr, (a7, — 0%)
<O (M(pn,n; R)) +0* = O (M(pn,n; R))

where 0" represents an arbitrarily small positive number that may depend on 7, and in the
last line we used the fact that G,,(z) is globally uniformly Lipschitz. This proves (4.6).
Then we prove the horizontal bound (4.7). Define

N 1 222 +1
L — s : :
o =5 0 e 6

Elgi(X1)]

+ % (22 +1) E[QI(X1)91<X2>92(X17X2)]}

For convenience, let us simply denote the n~'/2 term in the Edgeworth expansion by ['(x):

$2 r—
F(x):=13'{2 L RG]+ 1~(w2+1)E[91<X1>91<X2>92(X1,X2>]}

& 6 2
~ 2 ~ — ~
fw)= 5 {2“’“ LB+ (@ 4 1) Bla (X <X2>gg<xl,x2>]}
1
We have

Gn(z) =®(x) + n~1/2 T'(z)e(x)
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1923 % o= Ra T n_1/2 ) F(Za)
1924 Zl\ﬁ,ﬁa =Za — n_1/2 . f(za)

~

125 Then the proof of Theorem 3.2 immediately implies that (g7 . — Gp .,

1226 Mimicking the inversion formula in [65], we have

e (x—\/lﬁ-l“(a:)> =<I)<a:—\}ﬁ~1“(:c)> +\}ﬁ-r<x—\}ﬁ-r(m)>¢(x—\}ﬁ-r(x>)
1oes (8.123) =®(z)+0(n").

1929 Also notice that the remainder bound in (8.123) holds uniformly over all x € R. As [65]
1930 pointed out, in a more general setting, the inversion formula (8.123) might not always have
st a uniform O(n~!) error bound, when the leading term in the Edgeworth expansion contains
1922 a jump function component, in which case the uniform error bound of the Cornish-Fisher
a3 expansion is just O(n~'/2). But in our setting, I'(x) is always continuous, and moreover,
13a  Lipscitz, so [65]’s remark would not be a concern.

1935 We continue our proof. By Theorem 3.1 and (8.123), we have
o (8.124) Gn(d7 ) =a+0(n")
1937 (8.125) Gn(qﬁ,;a) = an (q,fn;a) + O (M (pn, n; R))

193 Since for any given a and large enough n, properties (i) and (ii) of G, (-), with “a/2, €g,

/9

19 0p, o~ replaced by “a, €, d(,, ny,”, around a neighborhood of z,. This yields that for large
w0 enough n, both gz . and gz ., belong to [2a — €}, 2o + €. Then using the invertibility and
1941 the Lipschitz property of the inverse function of G, (-) within this compact neighborhood,
192 We have

1943 ‘afn;a - qfn;a\ =< ‘Gn(afn;a) - Gn(‘]ﬁl;a)‘
19aa (8.126) = O (M(pn,n; R))

1:4s  Combining this with the error bound on

1946 Of the horizontal error bound (4.7). R
Now we prove the vertical error bound (4.8). Here we should be careful that P(7, < gz )

does not equal F5 ( ), as the former is non-random and the latter is random. In order to

|37 ., — s .| we obtained earlier finishes the proof

U, 0
study P(fn < qs ., ), we seek the help from Gz  and appeal to the basic definition. By the
horizontal error bound, we know that with probability 1 — O(n~1), we have

15,10 = U, 0] < C - Mpusns R)

1947 for some constant C' > 0. This yields that under the above event

Fy (7,0 = C - M(pn.n:R) =P(T, < 07, , = C - M(pn,1; R))
1949 <P(fn < &\f 'a>
1950 <P(j\—‘n < afn;a +C - M(pn,n; R)) = Ff’n ((Yﬁl;a +C - M(pn,n; R))

1951 Recall that G,,(+) is globally Lipscitz for large enough n, we have
1952 Ff (gﬁ“a +C- ./\/l(pn,n; R)) = G”(afn;a +C- M(pn, n, R)) +0 (./\/l(pn,n; R))

1989 = Gn(dz,.,) + O Ml(pn,n; R)) = a4+ O (M(pn,n; R))

1554 This proves the vertical error bound (4.8) and concludes the proof of Theorem 4.3.
1955 D
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1956 9. Additional simulation results.

1957 9.1. Additional results in Simulation 5.1. In this section, we show additional simulation
wss  results under different network sparsity settings. We tested p, = n~/4,n=1/3 and n=1/2.
1559 Notice that some of these settings constitute violations of our assumptions p,, assumptions.
190 We adjusted the constant factors in p,, such that all settings start with roughly equal network
1961 densities for n = 10. Results are shown in Figures 6-8 (errors) and Figures 9-11 (time costs),
192 Where error bars show standard deviations.

1963 The plots show that the accuracy of all methods depreciate as the network becomes sparser.

1s¢«  Recall that our loss function is the error in approximating F , and that 7}, is normalized by

165 the denominator §n = p; - n~Y2, it is therefore understandable that sparser networks are
196 more difficult. Apart from that error bounds would depreciate with a smaller p,,, as in our
197 Theorems 3.1 and 3.2; the performances of our method in some scenarios also seemed to be
1es limited by numerical accuracy, possibly in the Monte Carlo evaluations of the true F7 . But
1969 overall, our method remains the best performer and higher-order accurate in scenarios where
1970 the sparsity assumptions are satisfied. The time cost plots can be interpreted similarly to that
1¢7 in the main paper text.

1972 9.2. Additional results in Simulation 5.2. In this subsection we present the results for
1e73 more settings, including n = 160 and more sparsity levels. Results are reported in Tables
1974 6_23

TABLE 6
Performance measures of 95% confidence intervals
n =80, pn = n_1/4, graphon: block model
Method Edge Triangle V-shape Three star

Coverage = 0.960(0.196)
Length = 0.084(0.009)
LogTime = —8.419(0.135)

0.954(0.209)
0.024(0.005)
—7.450(0.118)

0.957(0.203)
0.144(0.024)
—7.404(0.108)

0.953(0.212)
0.087(0.020)
—6.405(0.774)

Our method

Norm. Approx.

0.953(0.212)
0.084(0.009)
No time cost

0.935(0.247)
0.024(0.005)
No time cost

0.944(0.230)
0.144(0.024)
No time cost

0.933(0.251)
0.087(0.020)
No time cost

Bhattacharyya and Bickel [17]

0.830(0.376)
0.058(0.008)
—2.599(0.028)

0.856(0.351)
0.019(0.004)
—2.137(0.020)

0.832(0.374)
0.106(0.019)
—2.195(0.031)

0.858(0.349)
0.069(0.016)
—0.987(0.015)

0.934(0.249)

0.936(0.245)

0.942(0.234)

0.938(0.241)

Green and Shalizi [61] 0.082(0.011) 0.027(0.006)  0.145(0.028)  0.089(0.023)
—1.202(0.019) 0.548(0.051)  0.085(0.052)  0.353(0.012)
0.954(0.210) 0.956(0.205)  0.956(0.205)  0.952(0.214)
Levin and Levina [93] 0.085(0.011) 0.026(0.006)  0.150(0.028)  0.094(0.023)
—1.193(0.014) 0.574(0.040)  0.074(0.044)  0.403(0.006)

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

9.3. Additional results in Simulation 5.3. In this simulation, all settings are carried over
from Simulation 5.3 except that n = 80. The results are shown in Figure 12. We observed the
anticipated depreciation in the performances of all methods, while our method maintains a
consistent advantage over the closest competitors.

The impact of p, on the computation time is a subtle topic. Since our simulation runs
across dense and sparse regimes, for simplicity and wide-applicability of the code, we did
not engage sparse matrix computation procedures. Consequently, the time cost for all p,,’s
are nearly the same for all methods. Here, we only show the time costs for n = 80 in Figure
13, and the analogous plot for n = 160 looks exactly similar and is thus omitted here. We
leave the study of improving computational efficiency for sparse p,,’s to future work.
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Fig 6: CDF approximation errors, p,, = n~ /4. Both axes are log(e)-scaled. Motifs: row 1:

Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed

curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 7: CDF approximation errors, p,, = n~ /3. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed

curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 8: CDF approximation errors, p,, = n~ /2. Both axes are log(e)-scaled. Motifs: row 1:

Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed

curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 9: CDF approximation times, p, = n~1/4. Both axes are log(e)-scaled. Motifs: row 1:

Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 10: CDF approximation times, p,, = n~'/3. Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 11: CDF approximation times, p, = n~1/2. Both axes are log(e)-scaled. Motifs: row 1:

Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].



86 ZHANG AND XIA

1 CDF Approx. Err. CDF Approx. Err.
Block Model

CDF Approx. Err.
Smooth Graphon

-5 -5 -6
Dense n1/4 n-1/2 nt Dense n-l/4 n-l/2 n! Dense nl/4 n-1/2 n!
Pn Pn Pn
CDF Approx. Err. A CDF Approx. Err. CDF Approx. Err.
0 PP . 0 pPp & 0

Non-Smooth G~

Log(Error)
Log(Error)

g4
Log(Error)

-6
Dense n1/4 n1/2 nt Dense n /4 n-1/2 n! Dense n1/4 n-1/2 nt
Pn Pn Pn
CDF Approx. Err. 0 CDF Approx. Err. 0 CDF Approx. Err.
Block Model Smooth Graphor;au Non-Smooth G/
-1 A" Y A p

Log(Error)

-5 -5 -6
Dense n /4 n-1/2 nt Dense n /4 n1/? nt Dense n-4 n~1/?2 n!
Pn Pn Pn
CDF Approx. Err. CDF Approx. Err. 0 CDF Approx. Err.
0 Block Model - 0 Smooth Graphon _ Non-Smooth C;‘-/_;é-"%’k

Y

Dense /4 n1/2

nt Dense n- /4 n~1/?2 -1

n Dense ni/4 n~1/?2 -1

Pn Pn Pn

Fig 12: Impact of sparsity on approximation errors, n = 80. Both axes are log(e)-scaled.
Motifs: row 1: Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid
curve marked circle: our method (empirical Edgeworth); black dashed curve marked down-
triangle: N (0, 1) approximation; green dashed curve marked up-triangle: re-sampling of A
in [61]; blue dashed curve marked plus: [17] sub-sampling = n nodes; magenta dashed line

with square markers: ASE plug-in bootstrap in [93]. We regarded N (0, 1) as zero time cost
so does not appear in the time cost plot.
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Fig 13: Impact of sparsity on time cost, n = 80. We used regular (non-sparse) matrix variables
in MATLAB. Both axes are log(e)-scaled. Motifs: row 1: Edge; row 2: Triangle; row
3: Vshape; row 4: ThreeStar. Red solid curve marked circle: our method (empirical
Edgeworth); green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93]. We regarded N (0, 1) as zero time cost so does not appear in

the time cost plot.
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TABLE 7
Performance measures of 95% confidence intervals

n =80, pn = nY 4, graphon: smooth graphon

Method Edge Triangle V-shape Three star
Coverage = 0.961(0.193) 0.942(0.234) 0.955(0.208) 0.945(0.229)
Our method Length = 0.078(0.008) 0.013(0.003) 0.101(0.018) 0.050(0.013)

LogTime = —8.226(0.044)

—7.468(0.116)

—7.439(0.073)

—6.599(0.687)

Norm. Approx.

0.953(0.211)
0.078(0.008)
No time cost

0.922(0.268)
0.013(0.003)
No time cost

0.939(0.239)
0.101(0.018)
No time cost

0.923(0.266)
0.050(0.013)
No time cost

Bhattacharyya and Bickel [17]

0.822(0.383)
0.056(0.007)
—2.562(0.008)

0.850(0.357)
0.011(0.003)

—2.111(0.099)

0.852(0.355)
0.079(0.015)
—2.198(0.044)

0.848(0.359)
0.045(0.012)
—0.995(0.012)

0.928(0.259)

0.948(0.222)

0.934(0.249)

0.944(0.230)

Green and Shalizi [61] 0.078(0.010) 0.015(0.004) 0.105(0.021) 0.054(0.015)
—1.148(0.010) 0.504(0.057) 0.104(0.102) 0.322(0.017)
0.942(0.234) 0.960(0.196) 0.954(0.210) 0.962(0.191)
Levin and Levina [93] 0.082(0.010) 0.015(0.004) 0.111(0.022) 0.058(0.016)
—1.146(0.004) 0.514(0.048) 0.056(0.055) 0.387(0.011)
TABLE 8
Performance measures of 95% confidence intervals
n =80, pn = n~Y 4, graphon: non-smooth graphon
Method Edge Triangle V-shape Three star
Coverage = 0.960(0.196) 0.961(0.193) 0.961(0.193) 0.963(0.189)
Our method Length = 0.101(0.008) 0.083(0.007) 0.310(0.022) 0.329(0.029)

LogTime = —7.996(0.058)

—7.652(0.145)

—7.611(0.133)

—6.789(0.618)

Norm. Approx.

0.957(0.202)
0.101(0.008)
No time cost

0.955(0.208)
0.083(0.007)
No time cost

0.957(0.204)
0.310(0.022)
No time cost

0.956(0.206)
0.329(0.029)
No time cost

Bhattacharyya and Bickel [17]

0.832(0.374)
0.070(0.008)
—2.559(0.048)

0.838(0.369)
0.059(0.007)

—2.151(0.029)

0.834(0.372)
0.216(0.023)
—2.129(0.029)

0.838(0.369)
0.233(0.027)
—1.000(0.042)

0.930(0.255)

0.934(0.249)

0.944(0.230)

0.950(0.218)

Green and Shalizi [61] 0.097(0.011) 0.083(0.009)  0.301(0.030)  0.323(0.036)
—1.152(0.027) 0.488(0.054)  0.144(0.041)  0.341(0.033)

0.962(0.191) 0.972(0.165)  0.966(0.181)  0.970(0.171)

Levin and Levina [93] 0.101(0.011) 0.086(0.010)  0.314(0.031)  0.338(0.038)
—1.145(0.027) 0.479(0.052)  0.141(0.040)  0.463(0.023)

9.4. Additional simulation results for degree-corrected stochastic block models. Here
we present the simulation results under a degree-corrected stochastic block model [83]. We
generate data from the stochastic block model BlockModel that we tested in Section 5,

with the following degree correction function

O(x) :=|cosm-(z — 1/2)].

1985 The results are reported in Figures 14 — 17. We observe the clear advantage of our method

18s  over benchmarks, as predicted by our theory.
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Fig 14: CDF approximation errors for degree-corrected stochastic block model. Sparsity:
column 1: p,, = 1; column 2: p, = n~1/4 Both axes are log(e)-scaled. Motifs: row 1: Edge;
row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle:
our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0,1) ap-
proximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 15: CDF approximation errors for degree-corrected stochastic block model. Sparsity:
column 1: p, = n~Y3; column 2: Pn = n~Y2 Both axes are log(e)-scaled. Motifs: row 1:
Edge; row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked
circle: our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0, 1)
approximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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Fig 16: CDF approximation times for degree-corrected stochastic block model. Sparsity: col-
umn 1: p, = 1; column 2: p, = n~1/4 Both axes are log(e)-scaled. Motifs: row 1: Edge;
row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle:
our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0,1) ap-
proximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed

curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].



92 ZHANG AND XIA

Time cost

Time cost

10 20 40 80 160 10 20 40 80 160
# of nodes # of nodes
Time cost Time cost

Log(Time)

10 20 40 80 160 10 20 40 80 160
# of nodes # of nodes
Time cost Time cost
5 5
Jal A

Log(Time)

10 20 40 80 160 10 20 40 80 160
# of nodes # of nodes
Time cost Time cost

10 20 40 80 160 10 20 40
# of nodes

80 160
# of nodes

Fig 17: CDF approximation times for degree-corrected stochastic block model. Sparsity: col-
umn 1: p, = n~1/3; column 2: Pn = n~1/2 Both axes are log(e)-scaled. Motifs: row 1: Edge;
row 2: Triangle; row 3: Vshape; row 4: ThreeStar. Red solid curve marked circle:
our method (empirical Edgeworth); black dashed curve marked down-triangle: N (0,1) ap-
proximation; green dashed curve marked up-triangle: re-sampling of A in [61]; blue dashed
curve marked plus: [17] sub-sampling = n nodes; magenta dashed line with square markers:
ASE plug-in bootstrap in [93].
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TABLE 9
Performance measures of 95% confidence intervals
n =80, pnp = n71/2, graphon: block model
Method Edge Triangle V-shape Three star

Coverage = 0.969(0.172) 0.956(0.206) 0.964(0.187) 0.953(0.212)

Our method Length = 0.046(0.005) 0.003(0.001) 0.037(0.007) 0.011(0.003)
LogTime = —8.335(0.153)  —7.139(0.113) —7.212(0.104) —7.153(0.338)

0.967(0.180) 0.946(0.226) 0.956(0.206) 0.945(0.229)

Norm. Approx. 0.046(0.005) 0.003(0.001) 0.037(0.007) 0.011(0.003)

No time cost

No time cost

No time cost

No time cost

Bhattacharyya and Bickel [17]

0.824(0.381)
0.031(0.005)
—2.588(0.008)

0.848(0.359)
0.003(0.001)

—2.107(0.084)

0.840(0.367)
0.027(0.006)
—2.123(0.009)

0.852(0.355)
0.009(0.003)
—1.027(0.008)

0.952(0.214)

0.936(0.245)

0.940(0.238)

0.910(0.286)

Green and Shalizi [61] 0.044(0.007) 0.004(0.001) 0.035(0.008) 0.010(0.003)
—1.159(0.010) 0.500(0.039) 0.199(0.045) 0.341(0.021)
0.972(0.165) 0.966(0.181) 0.966(0.181) 0.962(0.191)
Levin and Levina [93] 0.047(0.007) 0.004(0.001) 0.040(0.009) 0.012(0.004)
—1.148(0.005) 0.521(0.036) 0.220(0.027) 0.444(0.009)
TABLE 10
Performance measures of 95% confidence intervals
n =80, pn = n_l/ 2, graphon: smooth graphon
Method Edge Triangle V-shape Three star

Coverage = 0.967(0.179) 0.931(0.253) 0.956(0.205) 0.930(0.256)
Our method Length = 0.042(0.005) 0.002(0.001) 0.026(0.005) 0.006(0.002)

LogTime = —8.213(0.047)

—7.618(0.111)

—7.152(0.107)

—7.147(0.318)

Norm. Approx.

0.963(0.189)
0.042(0.005)
No time cost

0.932(0.252)
0.002(0.001)
No time cost

0.948(0.223)
0.026(0.005)
No time cost

0.926(0.262)
0.006(0.002)
No time cost

Bhattacharyya and Bickel [17]

0.824(0.381)
0.029(0.004)
—2.575(0.006)

0.872(0.334)
Inf(NaN)

—2.185(0.026)

0.834(0.372)
0.021(0.005)
—2.114(0.018)

0.852(0.355)
0.007(0.002)
—0.854(0.036)

0.950(0.218) 0.958(0.201)  0.940(0.238)  0.920(0.272)

Green and Shalizi [61] 0.041(0.006) 0.002(0.001)  0.025(0.006)  0.006(0.002)
—1.154(0.010) 0.497(0.101)  0.176(0.039)  0.465(0.027)

0.956(0.205) 0.974(0.159)  0.960(0.196)  0.968(0.176)

Levin and Levina [93] 0.044(0.006) 0.002(0.001)  0.029(0.007)  0.008(0.003)
—1.150(0.006) 0.487(0.067)  0.181(0.027)  0.440(0.027)

1991 [3] AIROLDI, E. M., BLEL, D. M., FIENBERG, S. E. and XING, E. P. (2008). Mixed membership stochastic

1992 blockmodels. Journal of Machine Learning Research 9 1981-2014.

1993 [4] AL HASAN, M. and DAVE, V. S. (2018). Triangle counting in large networks: a review. Wiley Interdisci-
1994 plinary Reviews: Data Mining and Knowledge Discovery 8 e1226.

1995 [5] ALDous, D. J. (1981). Representations for partially exchangeable arrays of random variables. Journal of
1996 Multivariate Analysis 11 581-598.

1997 [6] ALI, W., WEGNER, A. E., GAUNT, R. E., DEANE, C. M. and REINERT, G. (2016). Comparison of large
1998 networks with sub-sampling strategies. Scientific Reports 6 28955.

1999 [71 ALON, U. (2007). Network motifs: theory and experimental approaches. Nature Reviews Genetics 8 450—
2000 461.

2001 [8] AMBROISE, C. and MATIAS, C. (2012). New consistent and asymptotically normal parameter estimates
2002 for random-graph mixture models. Journal of the Royal Statistical Society: Series B (Statistical
2003 Methodology) 74 3-35.

2004 [9] ANGST, J. and POLY, G. (2017). A weak Cramér condition and application to Edgeworth expansions.
2005 Electronic Journal of Probability 22.

2006 [10] BABU, G. J. and SINGH, K. (1984). On one term Edgeworth correction by Efron’s bootstrap. Sankhya:
2007 The Indian Journal of Statistics, Series A 46 219-232.



94

ZHANG AND XIA

TABLE 11
Performance measures of 95% confidence intervals

n =80, pn = n~Y 2 graphon: non-smooth graphon

Method Edge Triangle V-shape Three star
Coverage = 0.974(0.159) 0.974(0.159) 0.974(0.160) 0.973(0.164)
Our method Length = 0.059(0.005) 0.011(0.002) 0.087(0.009) 0.045(0.006)
LogTime = —8.196(0.051)  —7.297(0.134) —7.314(0.140) —7.011(0.405)
0.973(0.162) 0.969(0.174) 0.973(0.164) 0.970(0.171)
Norm. Approx. 0.059(0.005) 0.011(0.002) 0.087(0.009) 0.045(0.006)

No time cost

No time cost

No time cost

No time cost

Bhattacharyya and Bickel [17]

0.850(0.357)
0.040(0.005)
—2.543(0.115)

0.852(0.355)
0.008(0.001)

—2.118(0.022)

0.852(0.355)
0.060(0.008)
—2.195(0.021)

0.860(0.347)
0.033(0.006)
—0.965(0.047)

0.944(0.230)

0.942(0.234)

0.950(0.218)

0.946(0.226)

Green and Shalizi [61] 0.055(0.006) 0.011(0.002) 0.082(0.011) 0.041(0.008)

—1.135(0.058) 0.590(0.089) 0.134(0.041) 0.383(0.038)

0.966(0.181) 0.972(0.165) 0.968(0.176) 0.968(0.176)

Levin and Levina [93] 0.059(0.006) 0.012(0.002) 0.090(0.011) 0.048(0.008)

—1.130(0.059) 0.556(0.029) 0.121(0.036) 0.498(0.024)

TABLE 12
Performance measures of 95% confidence intervals
n =80, pn = n_l, graphon: block model
Method Edge Triangle V-shape Three star

Coverage = 0.987(0.115) 0.000(0.000) 0.949(0.219) 0.646(0.478)

Our method Length = 0.016(0.002) 0.000(0.000) 0.003(0.001) 0.000(0.000)
LogTime = —8.487(0.176)  —7.230(0.105) —7.422(0.114) —7.183(0.322)

0.983(0.129) 0.708(0.455) 0.959(0.199) 0.914(0.280)

Norm. Approx. 0.016(0.002) 0.000(0.000) 0.003(0.001) 0.000(0.000)

No time cost

No time cost

No time cost

No time cost

Bhattacharyya and Bickel [17]

0.904(0.295)
0.011(0.002)
—2.579(0.005)

0.620(0.486)
Inf(NaN)

—2.121(0.050)

0.898(0.303)
Inf(NaN)
—2.137(0.015)

0.906(0.292)
Inf(NaN)
—1.080(0.006)

0.972(0.165)

0.672(0.470)

0.896(0.306)

0.768(0.423)

Green and Shalizi [61] 0.015(0.002) Inf(NaN) 0.002(0.001)  0.000(0.000)
—1.158(0.005) 0.489(0.050)  0.203(0.030)  0.299(0.015)
0.984(0.126) 0.706(0.456)  0.996(0.063)  0.996(0.063)

Levin and Levina [93] 0.019(0.024) 0.000(0.000) Inf(NaN) Inf(NaN)
—1.146(0.004) 0.509(0.031)  0.223(0.026)  0.434(0.006)

2008
2009
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2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
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[13]
[14]
[15]
[16]
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[19]
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tics. The Annals of Statistics 851-896.

BENTKUS, V., JING, B.-Y. and ZHOU, W. (2009). On normal approximations to U-statistics. The Annals
of Probability 37 2174-2199.

BHATTACHARYA, R. N. and GHOSH, J. K. (1978). On the validity of the formal Edgeworth expansion.
The Annals of Statistics 6 434—451.

BHATTACHARYYA, S. and BICKEL, P. J. (2015). Subsampling bootstrap of count features of networks.
The Annals of Statistics 43 2384-2411.

BICKEL, P. J. (1974). Edgeworth Expansions in Nonparametric Statistics. The Annals of Statistics 2 1-20.

BICKEL, P. J. and CHEN, A. (2009). A nonparametric view of network models and Newman—Girvan
modularities. Proceedings of the National Academy of Sciences 106 21068-21073.
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TABLE 13

Performance measures of 95% confidence intervals

n =80, pn = n1 graphon: smooth graphon

95

Method

Edge

Triangle

V-shape

Three star

Our method

Coverage = 0.984(0.126)
Length = 0.014(0.002)
LogTime = —8.205(0.054)

0.000(0.000)
0.000(0.000)
—7.243(0.071)

0.909(0.287)
0.002(0.001)
—7.276(0.103)

0.503(0.500)
0.000(0.000)
—7.098(0.400)

Norm. Approx.

0.981(0.138)
0.014(0.002)
No time cost

0.426(0.495)
0.000(0.000)
No time cost

0.948(0.223)
0.002(0.001)
No time cost

0.875(0.331)
0.000(0.000)
No time cost

Bhattacharyya and Bickel [17]

0.910(0.288)
0.009(0.001)
—1.632(0.005)

0.300(0.461)
Inf(NaN)
—1.182(0.044)

0.910(0.288)
Inf(NaN)
—1.181(0.041)

0.920(0.273)
Inf(NaN)
—0.141(0.009)

0.940(0.239)

0.380(0.488)

0.900(0.302)

0.750(0.435)

Green and Shalizi [61] 0.013(0.002) Inf(NaN) 0.001(0.001) 0.000(0.000)
—0.217(0.010) 1.553(0.030)  1.142(0.042)  1.167(0.016)
0.980(0.141) 0.380(0.488)  0.970(0.171) _ 0.990(0.100)

Levin and Levina [93] 41.865(418.438) Inf(NaN) Inf(NaN) Inf(NaN)

—0.213(0.008)

1.567(0.019)

1.120(0.018)

1.245(0.014)

TABLE 14

Performance measures of 95% confidence intervals
n =80, pn =n" -, graphon: non-smooth graphon

Method

Edge

Triangle

V-shape

Three star

Our method

Coverage = 0.989(0.103)
Length = 0.022(0.002)
LogTime = —8.242(0.096)

0.896(0.305)
0.000(0.000)
—7.355(0.085)

0.980(0.139)
0.007(0.001)
—7.356(0.088)

0.911(0.285)
0.001(0.000)
—7.101(0.343)

Norm. Approx.

0.989(0.106)
0.022(0.002)
No time cost

0.963(0.189)
0.000(0.000)
No time cost

0.980(0.142)
0.007(0.001)
No time cost

0.962(0.192)
0.001(0.000)
No time cost

Bhattacharyya and Bickel [17]

0.894(0.308)
0.015(0.002)
—2.571(0.015)

0.908(0.289)
Inf(NaN)
—2.171(0.012)

0.916(0.278)
0.005(0.001)
—2.128(0.020)

0.908(0.289)
0.001(0.000)
—1.043(0.007)

0.964(0.186)

0.968(0.176)

0.936(0.245)

0.848(0.359)

Green and Shalizi [61] 0.020(0.002) Inf(NaN) 0.006(0.001)  0.001(0.000)
—1.191(0.012) 0.567(0.120)  0.219(0.024)  0.343(0.012)

0.986(0.118) 0.984(0.126)  0.992(0.089)  0.992(0.089)

Levin and Levina [93] 0.023(0.003) 0.000(0.000)  0.008(0.002)  0.001(0.000)
—1.183(0.010) 0.529(0.083)  0.236(0.034)  0.450(0.013)

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
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[21] BICKEL, P. J., GOTZE, F. and VAN ZWET, W. (1986). The Edgeworth Expansion for U-Statistics of
Degree Two. The Annals of Statistics 14 1463-1484.
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TABLE 15
Performance measures of 95% confidence intervals
n =160, pp = n_1/4, graphon: block model

Method Edge Triangle V-shape Three star
Coverage = 0.957(0.204) 0.954(0.211) 0.954(0.210) 0.951(0.216)
Our method Length = 0.048(0.004) 0.010(0.001) 0.070(0.008) 0.036(0.006)

LogTime = —7.068(0.086)

—6.643(0.137)

—6.161(0.337)

—6.132(0.241)

Norm. Approx.

0.954(0.209)
0.048(0.004)
No time cost

0.943(0.232)
0.010(0.001)
No time cost

0.949(0.221)
0.070(0.008)
No time cost

0.943(0.232)
0.036(0.006)
No time cost

0.828(0.378)

0.834(0.372)

0.828(0.378)

0.836(0.371)

Bhattacharyya and Bickel [17] 0.033(0.003) 0.007(0.001) 0.049(0.007) 0.026(0.004)
—1.198(0.004) 0.547(0.042) 0.138(0.079) 0.328(0.021)
0.934(0.249) 0.940(0.238) 0.940(0.238) 0.940(0.238)
Green and Shalizi [61] 0.047(0.005) 0.010(0.002) 0.069(0.010) 0.035(0.006)
0.574(0.006) 2.077(0.047) 2.548(0.041) 2.099(0.005)
0.948(0.222) 0.952(0.214) 0.952(0.214) 0.952(0.214)
Levin and Levina [93] 0.048(0.005) 0.010(0.002) 0.070(0.010) 0.036(0.006)
0.582(0.005) 2.096(0.042) 2.541(0.039) 2.268(0.005)
TABLE 16
Performance measures of 95% confidence intervals
n =160, pn = n~1/ 4, graphon: smooth graphon
Method Edge Triangle V-shape Three star
Coverage = 0.958(0.200) 0.949(0.220) 0.954(0.209) 0.951(0.215)
Our method Length = 0.045(0.003) 0.005(0.001) 0.049(0.006) 0.020(0.004)
LogTime = —7.305(0.064) —6.596(0.222) —6.151(0.328) —6.117(0.240)

0.954(0.209) 0.941(0.236) 0.946(0.225) 0.941(0.235)
Norm. Approx. 0.045(0.003) 0.005(0.001) 0.049(0.006) 0.020(0.004)

No time cost

No time cost

No time cost

No time cost

0.850(0.357)

0.856(0.351)

0.842(0.365)

0.860(0.347)

Bhattacharyya and Bickel [17] 0.032(0.003) 0.004(0.001)  0.036(0.005)  0.016(0.003)
—1.151(0.003) 0.512(0.045)  0.126(0.107)  0.314(0.021)

0.948(0.222) 0.946(0.226)  0.944(0.230)  0.950(0.218)

Green and Shalizi [61] 0.044(0.004) 0.005(0.001)  0.049(0.007)  0.020(0.004)
0.624(0.013) 2.004(0.050)  2.533(0.040)  2.103(0.010)

0.956(0.205) 0.956(0.205)  0.964(0.186)  0.970(0.171)

Levin and Levina [93] 0.046(0.004) 0.006(0.001)  0.051(0.007)  0.022(0.004)
0.625(0.009) 2.036(0.036)  2.536(0.040)  2.260(0.009)

2041 [29] Cal, T. T. and MA, Z. (2013). Optimal hypothesis testing for high dimensional covariance matrices.
2042 Bernoulli 19 2359-2388.

2043 [30] CALLAERT, H. and JANSSEN, P. (1978). The Berry-Esseen Theorem for U -statistics. The Annals of Statis-
2044 tics 6 417-421.

2045 [31] CALLAERT, H., JANSSEN, P. and VERAVERBEKE, N. (1980). An Edgeworth Expansion for U-Statistics.

2046 The Annals of Statistics 8 299-312.
2047 [32] CALLAERT, H. and VERAVERBEKE, N. (1981). The Order of the Normal Approximation for a Studentized
2048 U-Statistic. The Annals of Statistics 9 194-200.

2049 [33] CANDES, E.J. and PLAN, Y. (2010). Matrix completion with noise. Proceedings of the IEEE 98 925-936.

2050  [34] CHAN, S. and AIROLDI, E. (2014). A consistent histogram estimator for exchangeable graph models. In
2051 International Conference on Machine Learning 208-216.

2052 [35] CHATTERIJEE, S. (2015). Matrix estimation by universal singular value thresholding. The Annals of Statis-
2053 tics 43 177-214.

2054 [36] CHEN, X. and KATO, K. (2019). Randomized incomplete U -statistics in high dimensions. The Annals of
2055 Statistics 47 3127-3156.

2056 [37] CHEN, S. and ONNELA, J.-P. (2019). A bootstrap method for goodness of fit and model Selection with a
2057 Single observed network. Scientific reports 9 1-12.
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TABLE 17
Performance measures of 95% confidence intervals

n =160, pn = n71/4, graphon: non-smooth graphon

Method Edge Triangle V-shape Three star
Coverage = 0.959(0.198) 0.961(0.194) 0.961(0.195) 0.962(0.192)
Our method Length = 0.058(0.003) 0.034(0.002) 0.150(0.007) 0.134(0.008)
LogTime = —7.164(0.080) —6.145(0.477) —6.043(0.343) —5.933(0.330)
0.958(0.201) 0.958(0.201) 0.959(0.198) 0.960(0.196)
Norm. Approx. 0.058(0.003) 0.034(0.002) 0.150(0.007) 0.134(0.008)

No time cost

No time cost

No time cost

No time cost

0.830(0.376)

0.854(0.353)

0.840(0.367)

0.854(0.353)

Bhattacharyya and Bickel [17] 0.040(0.004) 0.024(0.002) 0.104(0.009) 0.093(0.009)

—1.160(0.005) 0.489(0.054) 0.158(0.046) 0.339(0.018)

0.938(0.241) 0.936(0.245) 0.936(0.245) 0.946(0.226)

Green and Shalizi [61] 0.056(0.005) 0.033(0.003) 0.145(0.013) 0.130(0.012)

0.640(0.011) 2.058(0.067) 2.727(0.036) 2.164(0.022)

0.952(0.214) 0.952(0.214) 0.954(0.210) 0.952(0.214)

Levin and Levina [93] 0.058(0.005) 0.034(0.003) 0.150(0.013) 0.135(0.012)

0.640(0.013) 2.059(0.060) 2.727(0.037) 2.345(0.015)

TABLE 18
Performance measures of 95% confidence intervals
n = 160, pn = n_1/2, graphon: block model
Method Edge Triangle V-shape Three star

Coverage = 0.969(0.173) 0.964(0.186) 0.965(0.183) 0.962(0.192)

Our method Length = 0.022(0.002) 0.001(0.000) 0.012(0.002) 0.003(0.000)
LogTime = —7.301(0.074) —6.859(0.116) —6.461(0.416) —6.281(0.245)

0.966(0.182) 0.960(0.195) 0.961(0.195) 0.954(0.210)

Norm. Approx. 0.022(0.002) 0.001(0.000) 0.012(0.002) 0.003(0.000)

No time cost

No time cost

No time cost

No time cost

0.836(0.371)

0.852(0.355)

0.830(0.376)

0.864(0.343)

Bhattacharyya and Bickel [17] 0.015(0.002) 0.001(0.000)  0.009(0.001)  0.002(0.000)
—1.155(0.006) 0.555(0.056)  0.192(0.114)  0.360(0.038)

0.948(0.222) 0.944(0.230)  0.938(0.241)  0.916(0.278)
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TABLE 19
Performance measures of 95% confidence intervals

n = 160, pn = n~1/ 2 graphon: smooth graphon

Method Edge Triangle V-shape Three star
Coverage = 0.967(0.178) 0.959(0.198) 0.964(0.186) 0.955(0.208)
Our method Length = 0.020(0.002) 0.000(0.000) 0.009(0.001) 0.001(0.000)
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TABLE 21
Performance measures of 95% confidence intervals
n = 160, pn = nfl, graphon: block model

Method

Edge

Triangle

V-shape

Three star

Our method

Coverage = 0.989(0.106)
Length = 0.006(0.000)
LogTime = —7.284(0.063)

0.000(0.000)
0.000(0.000)
—6.939(0.150)

0.975(0.157)
0.000(0.000)
—6.462(0.321)

0.813(0.390)
0.000(0.000)
—6.293(0.247)

Norm. Approx.

0.988(0.109)
0.006(0.000)
No time cost

0.738(0.440)
0.000(0.000)
No time cost

0.976(0.154)
0.000(0.000)
No time cost

0.948(0.221)
0.000(0.000)
No time cost

0.872(0.334)

0.652(0.477)

0.912(0.284)
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Bhattacharyya and Bickel [17] 0.004(0.000) Inf(NaN) 0.000(0.000) Inf(NaN)
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Levin and Levina [93] 0.006(0.001) 0.000(0.000) 0.001(0.000) 0.000(0.000)
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Performance measures of 95% confidence intervals
n =160, pn = nil, graphon: smooth graphon
Method Edge Triangle V-shape Three star
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TABLE 23
Performance measures of 95% confidence intervals
n =160, pn = nt graphon: non-smooth graphon

Method Edge Triangle V-shape Three star
Coverage = 0.992(0.090) 0.947(0.223) 0.987(0.112) 0.960(0.197)
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