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1. INTRODUCTION

The affiliation relationships between a set of actors and a set of events can be conventionally

represented by a bipartite graph, where edges only exist between nodes of distinct parties of this

graph, i.e., actors and events. We use “actor” as a covering term that may stand for “actress”,

“author”, “member” and the like. Correspondingly, “event” could denote “movie”, “paper” and

“club”, where edges denote which movie actresses play, which paper authors write and with

which club members are associated. In this paper, we study weighted networks and consider

various edge-wise distributions. As increasing amounts of affiliation network data are collected,

it is important to understand the generative mechanisms of these networks and to explore var-

ious characteristics of the network structures in a principled way. As a result, the analysis of

affiliation networks has attracted great interests in recent years [e.g., [13, 9, 14, 1]]. In an inter-

esting work [1], the authors propose a data generation procedure that produces new synthetic

networks that match the degree distributions and the metamorphosis coefficient as the original

network. Compared to our method, their approach is model-free while solely focuses on the two

mentioned structural features. Their approach and ours come from different angles and make

mutually complementing contributions to the available toolbox.

Node degrees carry admittedly important structural information [2] and play central roles

in many network models [e.g., [11, 6, 3]]. A frequently observed phenomenon is that many

nodes have low degrees while some others have high degrees, which is referred to as degree

heterogeneity. Random graph models have been proposed to model the degree heterogeneity in

undirected and directed networks, including the p1-model [8], the β-model [6], the null model
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[12], and the maximum entropy models [7], where each node is assigned one parameter to

model the tendency of nodes to participate in network connection. Asymptotic theory for many

of these models have also been derived [e.g., [6, 7, 18, 16, 17, 20]].

Despite the significant advances in degree-based network models for undirected and directed

graphs, analogous results have not been established for bipartite graphs. In this paper, we intro-

duce a class of bipartite graph models for modelling the degree heterogeneity in bipartite graphs

and study their theoretical properties. Our main contributions are three-fold. First, we formulate

a general model framework for ERGM’s structures driven by the degree heterogeneity in bipar-

tite graphs. Our framework significantly extends the scope of existing works such as [16] and

[19]. Second, we develop a computationally feasible moment estimator. Our proposed estimator

conveniently works for several popular models as special cases of our general framework, such

as the β-model, the Poisson model and the Rayleigh model. Third, we present theoretical analy-

sis of our proposed estimator and establish its consistency and asymptotic normality under mild

conditions. These three aspects of main contributions are further supported by our numerical

examples that demonstrate the utility of our method on both synthetic and real data sets.

The rest of this paper is organized as follows. In Section 2, we introduce a very general

model for bipartite graphs, and propose a moment-equations based estimation framework. In

Section 3, we present the key asymptotic properties of our estimator. In Section 4, we apply our

general results in Section 3 to several popular bipartite network models that cover a wide range

of settings, including continuous and discrete edge weights, and demonstrate the effective utility

of our unified results. Section 5 presents simulation studies and a real data example under the
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Poisson model. Section 6 contains discussion. All proofs are relegated to the Supplementary.

2. BIPARTITE NETWORK MODELS AND ESTIMATION

Let G(m,n) be a bipartite graph with m actors and n events. Define [m] := {1, . . . ,m} and

[n] := {1, . . . , n} by the set of the actors and the set of the events, respectively. Without loss

of generality, we assume n ≤ m hereafter in order to simplify the presentation of results and

proofs. In this paper we study weighted edges and let xi,j ∈ Λ ⊆ R be the edge weight be-

tween actor i and event j. Let X = (xi,j)m×n be the bi-adjacency matrix of G(m,n). De-

fine d = (d1, . . . , dm)> and b = (b1, . . . , bn)> to be the degrees of actors and events, where

di =
∑n

j=1 xi,j and bj =
∑m

i=1 xi,j , respectively.

Edge weights could take discrete or continuous values. For instance, in an athlete-event

network, we may use a binary weight to record the presence/absence of an athlete i in event j.

In a bus-station network, an edge a ∈ N0 counts the number of buses arriving at station i in a day.

In an insect–flower network, continuously-weighted edges a ∈ R+ represent the frequencies of

insects picking flowers.

We introduce a general model framework for modeling the degree heterogeneity of bipartite

graphs, which can be described as follows. Suppose that the probability density (mass) function

of the edge weight xi,j between actor i and event j has the following form:

xi,j = a|αi, βj ∼ f((αi + βj)a), i = 1, . . . ,m, j = 1, . . . , n, (1)

where f(·) is a probability density or mass function, αi is the degree parameter of actor imeasur-

ing the activeness of actors, and βj is the degree parameter of event j measuring the popularity
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of events. We further assume all edges are independently generated. The above model can be

viewed as a generalization of a class of directed and undirected degree-based network models

[e.g., [8, 6, 16]] to bipartite graphs. For example, a logistic f(·) corresponds to the bipartite

version of the p1 model for directed graphs in [8].

We note that the value of f(·) in (1) is invariant under the transforms (α,β) to (α− c,β + c)

for a constant c. For model identification, without loss of generality we constrain βn = 0.

To estimate the model parameters, we use a moment method instead of maximum likeli-

hood estimation. When f(·) is an exponential family distribution, both methods are equivalent.

Let µ(·) denote the expectation of f(·). By definition, we have E(xi,j) = µ(αi + βj). Equating

population and sample versions of node degrees, we have the following moment equations:

di =
∑n

k=1 µ(αi + βk), i = 1, · · · ,m,

bj =
∑m

k=1 µ(αk + βj), j = 1, · · · , n− 1.

(2)

One can easily verify,
∑m

i=1 di =
∑m

j=1 bj , therefore, the number of effective moment equations

is m+ n− 1 and we formulate the equations for d1, . . . , dm, b1, . . . , bn−1 in (2) and shall use

them to estimate the m+ n− 1 free model parameters. Denoted our moment estimator as the

solution to (2) by θ̂ := (α̂1, · · · , α̂m, β̂1, · · · , β̂n−1). We could use Newton-Raphson algorithm

to solve θ̂.

To discuss the existence and uniqueness of θ̂, define

Fi(θ) = di −
n∑
k=1

µ(αi + βk), i = 1, · · · ,m,

Fm+j(θ) = bj −
m∑
k=1

µ(αk + βj), j = 1, · · · , n− 1.

(3)
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and let F (θ) = (F1(θ), . . . , Fm+n−1(θ))>. Generally speaking, one cannot always anticipate

the Jacobian matrix F ′(θ) to be invertible, which naturally leads to the existence and uniqueness

of θ̂, but fortunately, in the next section, we will show that θ̂ exists with probability approaching

one under mild conditions.

3. ASYMPTOTIC PROPERTIES

3.1. Notation and preliminaries

Let R+ = (0,∞), R0 = [0,∞), N = {1, 2, . . .}, N0 = {0, 1, 2, . . .} and ‖x‖∞ = max1≤i≤n |xi|

be the `∞-norm of x = (x1, . . . , xn)> ∈ Rn. Let Ω(x, r) denote the ball {y : ‖x− y‖ ≤ r}. De-

fine the ‖ · ‖∞ matrix norm for a matrix J ∈ Rn×n as

‖J‖∞ = max
x 6=0

‖Jx‖∞
‖x‖∞

= max
1≤i≤n

n∑
j=1

|Ji,j|.

Denote the ‖ · ‖max matrix norm by ‖J‖max := maxi,j |Ji,j|. Define the true parameter values

by θ∗ = (α∗1, . . . , α
∗
m, β

∗
1 , . . . , β

∗
n−1).

The asymptotic behaviors of the moment estimator crucially depend on the Jacobian matrix

of F (θ). It turns out that this Jacobian is structured, and we characterize its structure by the

notion of a general matrix class as follows. For Q ≥ q > 0, we say that a (m+ n− 1)× (m+

n− 1)-dimensional matrix V = (vi,j) belongs to the matrix class Lm,n(q,Q) if the following
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conditions hold:

q ≤ vi,i −
∑m+n−1

j=m+1 vi,j ≤ Q, i = 1, . . . ,m,

vi,j = 0, i, j = 1, . . . ,m, i 6= j,

vi,j = 0, i, j = m+ 1, . . . ,m+ n− 1, i 6= j,

q ≤ vi,j = vj,i ≤ Q, i = 1, . . . ,m, j = m+ 1, . . . ,m+ n− 1,

vi,i =
∑m

k=1 vk,i =
∑m

k=1 vi,k, i = m+ 1, . . . ,m+ n− 1.

(4)

One can easily verify the following properties of V in Lm,n(q,Q): it is symmetric, element-

wise nonnegative and diagonally dominant, and hence V is positive semidefinite. Further, V is

strictly positive definite, since for any (z1, . . . , zm+n−1) ∈ Rm+n−1, z>V z = 0 implies z = 0.

Moreover, one can verify that F ′(θ) ∈ Lm,n(q,Q).

For narration convenience, we also define vm+n,i = vi,m+n := vi,i −
∑m+n−1

j=1;j 6=i vi,j , where

i = 1, . . . ,m+ n− 1, and vm+n,m+n :=
∑m+n−1

i=1 vm+n,i. Generally, the inversion V −1 does

not have a closed form expression. To estimate V −1 for inference purposes, we devise a matrix

S = (si,j) to approximate V −1, constructed as follows:

si,j =



δi,j
vi,i

+ 1
vm+n,m+n

, i, j = 1, . . . ,m,

− 1
vm+n,m+n

, i = 1, . . . ,m, j = m+ 1, . . . ,m+ n− 1,

− 1
vm+n,m+n

, i = m+ 1, . . . ,m+ n− 1, j = 1, . . . ,m,

δi,j
vi,i

+ 1
vm+n,m+n

, i, j = m+ 1, . . . ,m+ n− 1,

(5)

and δi,j = 1 if i = j and is otherwise zero. The upper bound of the approximation error is

presented in Lemma S1.1 of Supplementary material.
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3.2. Consistency, uniqueness and asymptotic normality

Suppose for some qm,n and Qm,n, we have qm,n < α∗i + β∗j < Qm,n for all i, j. We will first

show that there is a unique solution in the neighborhood of θ∗:

D = {θ : ‖θ − θ∗‖∞ ≤ 2r} ⊂ {θ : qm,n − 4r ≤ αi + βj ≤ Qm,n + 4r, i ∈ [m], j ∈ [n]},

(6)

where r = ‖[F ′(θ∗)]−1F (θ∗)‖∞, and further show that this local solution is also the unique

global solution. Assume that µ(·) is second order differentiable and satisfies the following two

regularity conditions

• Condition (1): When 0 < qm,n ≤ u ≤ Qm,n, there are three positive numbers bm,n,0, bm,n,1,

and bm,n,2 such that

bm,n,0 ≤|µ′(u)| ≤ bm,n,1, (7)

|µ′′(u)| ≤ bm,n,2, (8)

where bm,n,0, bm,n,1 and bm,n,2 may depend on qm,n and Qm,n.

• Condition (2): xi,j is sub-exponential in that E[xpi,j]
1/p ≤ λi,jp for all p ≥ 1 for some parameter

λi,j > 0, and there exists a constant Q̃m,n > 0 such that supi,j λi,j ≤ Q̃m,n.

We notice that the assumption (7) guarantees that µ′(u) is always positive (or always nega-

tive) in [qm,n, Qm,n] and thus bounded away from zero. We would use this fact later. A well-

known corollary of Condition (2) is the sub-exponential Bernstein’s inequality as follows. A

proof can be found in Corollary 2.8.3 of [15].
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Lemma 1. Under Condition (2), for a sufficiently large constant bm,n,3 > 0, there exists a con-

stant CQ̃m,n,bm,n,3 such that with probability at least 1− CQ̃m,n,bm,n,3(m+ n)−1, it holds that

max{ max
i=1,··· ,m

|di − E(di)|, max
j=1,··· ,n

|bj − E(bj)|} ≤ bm,n,3(
√
m logm+

√
n log n). (9)

Since we earlier assumed n ≤ m, the right hand side of (9) can be replaced by

bm,n,3
√
m logmwithCQ̃m,n,bm,n,3 taking a different constant value. Now, we are ready to present

our first main result.

Theorem 1. Suppose Conditions (1) and (2) hold, m/n = O(1), and

b2m,n,1bm,n,3

b3m,n,0
= o

(√
n

logm

)
, (10)

b4m,n,1bm,n,2bm,n,3

b6m,n,0
= o

(√
n

logm

)
. (11)

(i) Then with probability at least 1− CQ̃m,n,bm,n,3(m+ n)−1, the moment estimator θ̂ exists and

is unique in the following neighborhood:

{
θ : ‖θ − θ∗‖∞ ≤

Cb3m,n,0 · n
b2m,n,1bm,n,2 ·m

}
(12)

where C is some global constant, and moreover, for this θ̂, we also have

‖ θ̂ − θ∗ ‖∞= O

(
b2m,n,1bm,n,3

b3m,n,0

√
logm

n

)
= o(1). (13)

(ii) The unique solution θ̂ in the neighborhood (12) is also the unique solution in {θ : qm,n ≤

αi + βj ≤ Qm,n, i ∈ [m], j ∈ [n]}.
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Remark 1. The main technique that we used to establish the main results is the analysis of

an oracle Newton iteration initiated at θ∗, which provably converges to θ̂. Here we briefly

explain the roles of the assumptions in this theorem. In Condition (1), the equation (7) ensures

that the Jacobian matrix F ′(θ) belongs to the matrix class Lm,n(bm,n,0, bm,n,1) (or −F ′(θ) ∈

Lm,n(bm,n,0, bm,n,1). For simplicity, in this paper, we only focus on the case where µ′(u) > 0

and F ∈ L. Proof for the case where µ′(u) < 0 and −F ∈ L can be established similarly).

(8) guarantees that the Jacobian matrix F ′(θ) is Lipschitz continuous, which would be a key in

bounding the errors of the Newton iterations and eventually the error in θ̂. Condition (2) implies

Lemma 1 and some important concentration results dependent on node degrees in our analysis,

see details in Lemmas S1.4, S1.6, S1.8 in the Supplementary material. The apparently mild

assumptions (10) and (11) will be needed in some technical proof steps. In fact, our results allow

the complexity of the population model to increase with the sample sizes m,n. In most existing

models, the population distribution is fixed, and in this case, qm,n, Qm,n, bm,n,0, bm,n,1, bm,n,2 and

bm,n,3 will all be global constants, and our assumptions (10) and (11) would trivially hold.

Remark 2. If bm,n,2/bm,n,0 goes to zero slowly enough, there exists a small constant ε > 0

such that the solution to the moment functions (3) exists and is unique in Ω(θ∗, ε). Moreover,

if the initial point θ(0) is close enough to the true value. that is, θ(0) ∈ Ω(θ∗, ε), the iterative

sequence provably converges to θ̂. For more details, see conclusion (iii) of Lemma S1.2 in the

Supplementary material. For cleanness, in this paper we only present theoretical guarantees

for the estimator obtained by the Newton iterations initiated at θ(0) = θ∗, and the analysis for

θ(0) ∈ Ω(θ∗, ε) is similar but with much more involved formulation.
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Our second main result describes the asymptotic normality of θ̂. It turns out that the asymp-

totic variance of θ̂ can be characterized by the covariance structure of observed node degrees.

Let g = (d1, · · · , dm, b1, · · · , bn−1)T and gm+n = bn denote the observed degree sequence. De-

fine U = (ui,j) = Cov {g − E(g)}. Now we assume the following mild regularity condition.

Condition (3) For some 0 < ηm,n,4 < ηm,n,5, we have

ηm,n,4 ≤ min
i,j

Var(xi,j) ≤ max
i,j

Var(xi,j) ≤ ηm,n,5. (14)

We have the following relationship between θ̂ and g:

Lemma 2. Under Condition (3) and

b6m,n,1b
2
m,n,3bm,n,2m

1/2 logm

b9m,n,0n
= o(1), (15)

b2m,n,1ηm,n,5/b
3
m,n,0η

1/2
m,n,4 = o(n1/2),

then we have

(θ̂ − θ∗)i = [S∗{g − E(g)}]i + op(m
−1/2). (16)

where S∗ is the designed approximation in (5) to the inverse matrix of V ∗ = F ′(θ∗), V ∗ denotes

the Jacobian matrix of F (θ) at the true point θ∗, and we borrow the op(·) notion from the

commonly-used probability theory notion system.

Notice that S∗ in (16) is a non-random coefficient matrix, and g − E(g) is asymp-

totically normal. Now we characterize the distribution of g via its covariance ma-

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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trix. Under assumption (14), for 1 ≤ i 6= i′ ≤ m and m+ 1 ≤ j 6= j′ ≤ m+ n− 1, we

have ui,i′ = Cov(
∑

j′ xi,j′ ,
∑

j′ xi′,j′) = 0, and similarly uj,j′ = 0, and further, ui,j =

Cov(
∑

j′ xi,j′ ,
∑

i′ xi′,j) = Var(xi,j). It is easy to check the remaining conditions to verify that

indeed U ∈ Lm,n(ηm,n,4, ηm,n,5). Define um+n,m+n = Var(bn), and define

Z = um+n,m+n/v
2
m+n,m+n + diag(u1,1/v

2
1,1, · · · , um+n−1,m+n−1/v

2
m+n−1,m+n−1).

Since d1/u1,1, . . . , dr/ur,r and b1/um+1,m+1, . . . , bs/um+s,m+s are asymptotically independent,

we have the following characterization of g’s asymptotic behavior.

Proposition 1. Under Condition (2), if m/n = O(1), then

(gi − E(gi))/u
1/2
i,i

d→ N(0, 1),m→∞,

where gi is the ith element of g. Also, for any fixed k ≥ 1, as m→∞, the vector consisting of

the first k elements of S∗{g − E(g)} is asymptotically normal with mean zero and covariance

matrix given by the upper left k × k submatrix of Z.

Remark 3. When the maximum likelihood equations of f coincides with the moment equa-

tions, as is the case in maximum entropy models, Poisson model and β-model, then (14) implies

(7), and it can be shown by a order-one Taylor expansion that the Jacobian matrix of the parame-

ter vector and the covariance matrix of the degree sequence coincide. If xi,j is a sub-exponential

random variable with parameter λi,j, E|xi,j|3 ≤ (3λi,j)
3. For i ∈ [m], u

−3/2
i,i

∑n
j=1 E|xi,j|3 ≤

C0m
−1/2η

−3/2
m,n,4 → 0, as m→∞, where C0 is some absolute constant. By Lyapunov Central

Limit Theorem [[5], page 362], we get that u−1/2i,i (di − E(di))
d→ N(0, 1),m→∞. Similarly,

The Canadian Journal of Statistics / La revue canadienne de statistique DOI:
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we also obtain that for j ∈ [n], u
−1/2
m+j,m+j(bj − E(bj))

d→ N(0, 1),m→∞.

With the above preparations, we are now ready to present our second main result on the

asymptotic normality of θ̂.

Theorem 2. Suppose (8), (13)–(15) and b2m,n,1ηm,n,5/b
3
m,n,0η

1/2
m,n,4 = o(n1/2) hold, then for any

fixed k ≥ 1, as m→∞, we have

θ̂[1:k] − θ[1:k]
d→ N(0, Z[1:k,1:k]) (17)

where θ̂[1:k] and θ[1:k] are the first k elements of the corresponding vector and Z[1:k,1:k] pertains

to the upper left k × k submatrix of Z.

Remark 4. Theorem 2 implies that for any fixed k, asymptotically, the standard deviation

of θ̂i is Zi,i = u
1/2
i,i /vi,i, satisfying (ηm,n,4/mb

2
m,n,1)

1/2 � u
1/2
i,i /vi,i � (ηm,n,5/nb

2
m,n,0)

1/2. Using

Theorem 2, we can conveniently construct approximate marginal and joint confidence inter-

vals for estimating θ∗. For example, an approximate 1− α confidence interval for θi − θj is

θ̂i − θ̂j ± Z1−α/2(ûi,i/v̂
2
i,i + ûj,j/v̂

2
j,j)

1/2, where Z1−α/2 is the 1− α/2-quantile of the standard

normal distribution, and v̂i,i and v̂j,j are the moment estimates of vi,i and vj,j by replacing all θi

with their moment estimates. Here, û and v̂ are the estimated covariance matrix Cov {g − E(g)}

and the estimated Jacobian matrix F ′(θ̂), respectively.

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique
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4. APPLICATIONS

4.1. Generalized β-model

The β-model [6] is an exponential random graph model with the degree sequence as the exclu-

sively sufficient statistic. Here, we generalize it to bipartite graphs. For simplicity, we assume

that edges belong to the sample space Λ = {0, 1, . . . , q − 1}, where q ≥ 2 is a constant. Assume

the edges xi,j’s are independently generated with the following probability mass function:

P (xi,j = a) =
ea(αi+βj)∑q−1
k=0 e

k(αi+βj)
, a = 0, 1, . . . , q − 1.

In this example, we consider D defined in (6) and set qm,n = −Qm,n. By definition, we have

µ(αi + βj) =

q−1∑
a=0

aea(αi+βj)∑q−1
k=0 e

k(αi+βj)
.

Now we check the conditions of Theorem 1. For Condition (1), straight calculation shows that,

µ′(αi + βj) =

∑
0≤k<l≤q−1(k − l)2e(k+l)(αi+βj)

(
∑q−1

a=0 e
a(αi+βj))2

.

This yields

1

2(1 + eQm,n+2r)
≤ |µ′(αi + βj)| ≤

q2

2
, and

1

2(1 + eQm,n)
≤ |µ′(α∗i + β∗j )| ≤

q2

2
.

Thus F ′(θ∗) ∈ Lm,n(b∗m,n,0, b
∗
m,n,1), where b∗m,n,1 =

q2

2
, b∗m,n,0 =

1

2(1 + eQm,n)
.

Next, Condition (2) is easy to verify since the distribution is discrete with a finite sample

space, it is certainly sub-exponential. Thus, we choose bm,n,3 = q − 1. Again, by Lemma S1.1
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in the Supplementary material, we have

r = O

(
e3Qm,n

√
logm

n

)
.

If eQm,n = o
(
(n/ logm)1/6

)
and m/n = O(1), we have r → 0 as m→∞. For any θ ∈

Ω(θ∗, 2r), we have F ′(θ) ∈ Lm,n(bm,n,0, bm,n,1), where

bm,n,1 =
q2

2
, bm,n,0 =

1

2(1 + eQm,n+2r)
.

(18)

On the other hand, for any i ∈ [m], j ∈ [n],

µ′′(αi + βj) =
(1/2)

∑
k 6=l,a(k − l)2(k + l − 2a)e(k+l+a)(αi+βj)

(
∑q−1

a=0 e
a(αi+βj))3

.

Since
∑

k 6=l,a e
(k+l+a)(αi+βj) ≤ (

∑q−1
a=0 e

a(αi+βj))3, we can choose bm,n,2 = (q − 1)3. If eQm,n =

o
(
(n/ logm)1/12

)
,

b4m,n,1bm,n,2bm,n,3

b6m,n,0

√
logm

n
= O

(
e6Qm,n

√
logm

n

)
= o(1),

where bm,n,1 and bm,n,0 are given in (18), then (13) is satisfied. By Theorem 1, the uniform

consistency of θ̂ holds as follows.

Corollary 1. If eQm,n = o
(
(n/ logm)1/12

)
,m/n = O(1), then asm goes to infinity, with prob-

ability approaching one, the moment estimator θ̂ exists and is unique in {θ : qm,n ≤ αi + βj ≤

Qm,n, i ∈ [m], j ∈ [n]}. Furthermore, we have

‖ θ̂ − θ∗ ‖∞= O

(
e3Qm,n

√
logm

n

)
= o(1).
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Note that the moment equations of the maximum entropy distributions are equal to the

maximum likelihood equations, then the covariance matrix of {g − E(g)} is V = F ′(θ) ∈

Lm,n(bm,n,0, bm,n,1), such that

n

2(1 + eQm,n)
≤ vi,i ≤

mq2

2
, i = 1, · · · ,m+ n− 1.

By the central limit theorem for the bounded case [[10], page 289], v−1/2i,i (di − E(di))

and v
−1/2
m+j,m+j(bj − E(bj)) are asymptotically standard normal if vi,i diverges. If eQm,n =

o

 n1/9

(logm)1/9m1/18

, then

b6m,n,1b
2
m,n,3bm,n,2m

1/2 logm

b9m,n,0n
= O

e9Qm,nm1/2 logm

n

 = o(1).

Now that all required conditions checked, we apply Theorem 2 and obtain

Corollary 2. If eQm,n = o

 n1/9

(logm)1/9m1/18

 ,m/n = O(1), then for any fixed k ≥ 1, as

m→∞, the vector consisting of the first k elements of θ̂ − θ∗ is asymptotically multivari-

ate normal with mean zero and covariance matrix given by the upper left k × k submatrix of

Z.
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4.2. Poisson model

In this example, independent weighted edges take value in Λ = N0 and each follows an edge-

specific Poisson distribution:

P (xi,j = a) =
ea(αi+βj)

a!
exp(−eαi+βj), a = 0, 1, 2, · · · . (19)

Now we check the conditions of Theorem 1. For Condition (1), we have

µ(αi + βj) = eαi+βj and µ′(αi + βj) = eαi+βj .

For Condition (1), we have, for θ ∈ D,

eqm,n−2r ≤ |µ′(αi + βj)| ≤ eQm,n+2r, and eqm,n ≤ |µ′(α∗i + β∗j )| ≤ eQm,n .

Thus F ′(θ∗) ∈ Lm,n(b∗m,n,0, b
∗
m,n,1), where b∗m,n,1 = eQm,n and b∗m,n,0 = eqm,n . By Lemmas S1.1

and S1.4 in the Supplementary material, we can set

r = O

(
e4Qm,n−3qm,n

√
logm

n

)
.

If e4Qm,n−3qm,n = o
(
(n/ logm)1/2

)
,m/n = O(1), then r → 0 as m goes to infinity. For any

θ ∈ Ω(θ∗, 2r), we have F ′(θ) ∈ Lm,n(bm,n,0, bm,n,1), where

bm,n,1 = eQm,n , bm,n,0 = eqm,n−2r, and bm,n,2 = eQm,n . (20)

By Lemma S1.4 in the Supplementary material, we can choose

bm,n,3 = 2c

√
2e4Qm,n

γ
, (21)
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where c, γ are absolute constants. If e7Qm,n−6qm,n = o
(
(n/ logm)1/2

)
,

b2m,n,1bm,n,3

b3m,n,0

√
logm

n
= o(1),

b4m,n,1bm,n,2bm,n,3

b6m,n,0

√
logm

n
= O

(
e7Qm,n−6qm,n

√
logm

n

)
= o(1),

where bm,n,1 and bm,n,0 are given in (20). Now Condition (1) is verified. Also, Condition (2) is

satisfied since Poisson distribution is sub-exponential. By Theorem 1, we have

Corollary 3. If e7Qm,n−6qm,n = o
(
(n/ logm)1/2

)
,m/n = O(1), then asm goes to infinity, with

probability approaching one, the moment estimator θ̂ exists and is unique in {θ : qm,n ≤ αi +

βj ≤ Qm,n, i ∈ [m], j ∈ [n]}. Furthermore this unique solution satisfies

‖ θ̂ − θ∗ ‖∞= O

(
e4Qm,n−3qm,n

√
logm

n

)
= o(1).

In this example, the moment equations coincide with the maximum likelihood equations.

The covariance matrix of {g − E(g)} is V = F ′(θ) ∈ Lm,n(bm,n,0, bm,n,1). As the third moment

of the Poisson with parameter eαi+βj is E(a3i,j) = eαi+βj + 3e2(αi+βj) + e3(αi+βj). Recall that

0 < qm,n ≤ α∗i + β∗j ≤ Qm,n, we have

∑n
j=1 E(a3i,j)

v
3/2
i,i

≤ n(eQm,n + 3e2Qm,n + e3Qm,n)

n3/2e3qm,n/2
≤ 5e4Qm,n−2qm,n

n1/2

and

∑m
i=1 E(a3i,j)

v
3/2
m+j,m+j

≤ 5e4Qm,n−2qm,n

n1/2
.
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If e2Qm,n−qm,n = o(n1/4), the above expression goes to zero. This satisfies the conditions

of the Lyapunov Central Limit Theorem [[5], page 362]. Therefore, v−1/2i,i (di − E(di)) is

also asymptotically standard normal when e2Qm,n−qm,n = o(n1/4). Similarly, v−1/2m+j,m+j(bj −

E(bj)) is also asymptotically standard normal under the same conditions. If e4Qm,n−3qm,n =

o

 n1/3

m1/6(logm)1/3

, then

b6m,n,1b
2
m,n,3bm,n,2m

1/2 logm

b9m,n,0n
= O

e12Qm,n−9qm,nm1/2 logm

n

 = o(1).

Now we can apply Theorem 2 and obtain the following result.

Corollary 4. If e4Qm,n−3qm,n = o

 n1/3

m1/6(logm)1/3

 ,m/n = O(1), then for any fixed k ≥ 1,

asm→∞, the vector consisting of the first k elements of θ̂ − θ∗ is asymptotically multivariate

normal with mean zero and covariance matrix given by the upper left k × k submatrix of Z.

4.3. Rayleigh distribution

Our third example assumes that independent edges xi,j ∈ R+ are sampled from the following

Rayleigh density function

f(xi,j = a) =
a

eαi+βj
e−a

2/(2eαi+βj ), a > 0.

To verify Condition (1), notice that

µ(αi + βj) =

√
π

2
e(αi+βj)/2.
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By direct calculations, we have, for θ ∈ D,

µ′(αi + βj) =
1

2

√
π

2
e(αi+βj)/2,

1

2

√
π

2
e(qm,n−2r)/2 ≤ |µ′(αi + βj)| ≤

1

2

√
π

2
e(Qm,n+2r)/2,

1

2

√
π

2
eqm,n/2 ≤ |µ′(α∗i + β∗j )| ≤

1

2

√
π

2
eQm,n/2.

Thus F ′(θ∗) ∈ Lm,n(b∗m,n,0, b
∗
m,n,1), where b∗m,n,1 = 1

2

√
π
2
eQm,n/2, b∗m,n,0 = 1

2

√
π
2
eqm,n/2. By

Lemmas S1.1 and S1.6 in the Supplementary material, we have

r = O

(
e

3
2
(Qm,n−qm,n)

√
logm

n

)
.

If eQm,n−qm,n = o
(
(n/ logm)1/3

)
, then r → 0 as m goes to infinity. For any θ ∈ Ω(θ∗, 2r), we

have F ′(θ) ∈ Lm,n(bm,n,0, bm,n,1), where

bm,n,1 =
1

2

√
π

2
eQm,n/2, bm,n,0 =

1

2

√
π

2
eqm,n/2. (22)

On the other hand, for any i ∈ [m], j ∈ [n],

µ′′(αi + βj) =
∂2µ(αi + βj)

∂βj∂αi
=

1

4

√
π

2
e(αi+βj)/2.

Thus, bm,n,2 = 1
4

√
π
2
eQm,n/2. By Lemma S1.6 in Supplementary material, we can choose

bm,n,3 = 2c

√
2eQm,n

γ
, (23)
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where c, γ are absolute constants, respectively. If eQm,n−qm,n = o
(
(n/ logm)1/6

)
,

b2m,n,1bm,n,3

b3m,n,0

√
logm

n
= O

(
e

3
2
(Qm,n−qm,n)

√
logm

n

)
= o(1),

b4m,n,1bm,n,2bm,n,3

b6m,n,0

√
logm

n
= O

(
e3(Qm,n−qm,n)

√
logm

n

)
= o(1),

where bm,n,1 and bm,n,0 are given in (22). Also Condition (2) holds because the distribution is

sub-Gaussian, thus also sub-exponential. By Theorem 1, we have

Corollary 5. If eQm,n−qm,n = o
(
(n/ logm)1/6

)
,m/n = O(1), then as m goes to infinity, with

probability approaching one, the moment estimator θ̂ exists and is unique in {θ : qm,n ≤ αi +

βj ≤ Qm,n, i ∈ [m], j ∈ [n]}. Furthermore this unique solution satisfies

‖ θ̂ − θ∗ ‖∞= O

(
e

3
2
(Qm,n−qm,n)

√
logm

n

)
= o(1).

Again, note that both di =
∑n

k=1 ai,k and bj =
∑m

k=1 ak,j are sums of n and m in-

dependent random variables, respectively. It can be shown that U = Cov{g − E(g)} ∈

Lm,n(ηm,n,4, ηm,n,5), where

ηm,n,4 =
4− π

2
eqm,n , ηm,n,5 =

4− π
2

eQm,n .

Hence we have

4− π
2

neqm,n ≤ ui,i ≤
4− π

2
meQm,n , i = 1, · · · ,m+ n.
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As the third moment of the Rayleigh distribution with parameter e
αi+βj

2 is E(a3i,j) =

3
√

π
2
e

3(αi+βj)

2 . Recall that 0 < qm,n ≤ α∗i + β∗j ≤ Qm,n, we have

∑n
j=1 E(a3i,j)

v
3/2
i,i

≤
3n ∗ 4

√
π
2
e3Qm,n

n3/2e3qm,n/2
≤ 24e3Qm,n−qm,n

n1/2
,

and

∑m
i=1 E(a3i,j)

v
3/2
m+j,m+j

≤ 24e3Qm,n−qm,n

n1/2
.

If e3Qm,n−qm,n = o(n1/4), the above expression goes to zero. This satisfies the conditions

of the Lyapunov Central Limit Theorem [[5], page 362]. Therefore, v−1/2i,i (di − E(di)) is

also asymptotically standard normal when e3Qm,n−qm,n = o(n1/4). Similarly, v−1/2m+j,m+j(bj −

E(bj)) is also asymptotically standard normal under the same conditions. If eQm,n−qm,n =

o

 n2/9

(logm)2/9m1/9

, then

b6m,n,1b
2
m,n,3bm,n,2m

1/2 logm

b9m,n,0n
= O

e
9
2
(Qm,n−qm,n)m1/2 logm

n

 = o(1).

Applying Theorem 2, we have the folloiwng asymptotic normality result for θ̂.

Corollary 6. If eQm,n−qm,n = o

 n2/9

(logm)2/9m1/9

 ,m/n = O(1), then for any fixed k ≥ 1, as

m→∞, the vector consisting of the first k elements of θ̂ − θ∗ is asymptotically multivariate

normal with mean zero and covariance matrix given by the upper left k × k submatrix of Z.
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4.4. Maximum entropy distributions with continuous weights

We consider maximum entropy distributions with continuous weights, that is, Λ = R0, where

the moment equations are equal to the maximum likelihood equations. Assume that each

xi,j, i ∈ [m], j ∈ [n], are mutually independent exponential random variables with the density

function

f(xi,j = a) = (αi + βj)e
−a(αi+βj), a > 0.

We first apply Theorem 1 to obtain the existence and consistency of θ̂. In this case, we have

µ(αi + βj) = (αi + βj)
−1.

By direct calculations, we have, for θ ∈ D,

µ′(αi + βj) =
−1

(αi + βj)2
,

1

(Qm,n + 2r)2
≤
∣∣∣ 1

(αi + βj)2

∣∣∣ ≤ 1

(qm,n − 2r)2
,

1

Q2
m,n

≤
∣∣∣ 1

(α∗i + β∗j
)2
∣∣∣ ≤ 1

q2m,n
.

Thus −F ′(θ∗) ∈ Lm,n(b∗m,n,0, b
∗
m,n,1), where b∗m,n,1 = q−2m,n, b

∗
m,n,0 = Q−2m,n. By Lemmas S1.1

and S1.8 in the Supplementary material, we have

r = O

(
Q6
m,n

q5m,n

√
logm

n

)
.

IfQm,n/qm,n = o
(
(n/ logm)1/12

)
, then r → 0 asm goes to infinity. For any θ ∈ Ω(θ∗, 2r),we

have −F ′(θ) ∈ Lm,n(bm,n,0, bm,n,1), where

bm,n,1 =
1

q2m,n
, bm,n,0 =

1

Q2
m,n

.
(24)
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On the other hand, for any i ∈ [m], j ∈ [n],

µ′′(αi + βj) =
∂2µ(αi + βj)

∂βj∂αi
=

2

(αi + βj)3
.

Thus, bm,n,2 = 2/q3m,n. By Lemma S1.8 in the Supplementary material, we can choose

bm,n,3 =

√
8

γq2m,n
, (25)

where γ is an absolute constant. If Qm,n/qm,n = o
(
(n/ logm)1/24

)
,

b2m,n,1bm,n,3

b3m,n,0

√
logm

n
= O

(
Q6
m,n

q5m,n

√
logm

n

)
= o(1),

b4m,n,1bm,n,2bm,n,3

b6m,n,0

√
logm

n
= O

(
Q12
m,n

q12m,n

√
logm

n

)
= o(1),

where bm,n,1 and bm,n,0 are given in (24). Condition (2) is checked since this distribution is

sub-exponential. By Theorem 1, the uniform consistency of θ̂ is as follows.

Corollary 7. If Qm,n/qm,n = o
(
(n/ logm)1/24

)
,m/n = O(1), then as m goes to infinity, with

probability approaching one, the moment estimator θ̂ exists and is unique in {θ : qm,n ≤ αi +

βj ≤ Qm,n, i ∈ [m], j ∈ [n]}. Furthermore this unique solution satisfies

‖ θ̂ − θ∗ ‖∞= O

(
Q6
m,n

q5m,n

√
logm

n

)
= o(1).

Again, note that both di =
∑n

k=1 ai,k and bj =
∑m

k=1 ak,j are sums of n and m independent

exponential random variables, respectively. Note that the moment equations of the maximum

entropy distributions are equal to the maximum likelihood equations, then the covariance matrix

of {g − E(g)} is V = −F ′(θ) ∈ Lm,n(bm,n,0, bm,n,1). As the third moment of the exponential

random variable with parameter 1/(αi + βj) is E(a3i,j) = 6/(αi + βj)
3. Under the assumption
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that 0 < qm,n ≤ α∗i + β∗j ≤ Qm,n, we have

∑n
j=1 E(a3i,j)

v
3/2
i,i

=
6
∑n

j=1(αi + βj)
−3

v
3/2
i,i

≤
6Q3

m,n/q
3
m,n

n1/2

and

∑n
j=1 E(a3i,j)

v
3/2
m+j,m+j

=
6
∑n

j=1(αi + βj)
−3

v
3/2
m+j,m+j

≤
6Q3

m,n/q
3
m,n

n1/2

If Qm,n/qm,n = o(n1/6), then the above expression goes to zero. This shows that the condi-

tion for the Lyapunov Central Limit Theorem [[5], page 362] holds. Therefore, v−1/2i,i (di −

E(di)) is also asymptotically standard normal ifQm,n/qm,n = o(n1/6). Similarly, v−1/2m+j,m+j(bj −

E(bj)) is also asymptotically standard normal under the same conditions. If Qm,n/qm,n =

o( n1/18

m1/36(logm)1/18
), then

b6m,n,1b
2
m,n,3bm,n,2m

1/2 logm

b9m,n,0n
= o(1),

By Theorem 2, the asymptotic normality of θ̂ is as below.

Corollary 8. IfQm,n/qm,n = o( n1/18

m1/36(logm)1/18
),m/n = O(1) then for any fixed k ≥ 1, asm→

∞, the vector consisting of the first k elements of θ̂ − θ∗ is asymptotically multivariate normal

with mean zero and covariance matrix given by the upper left k × k submatrix of Z.

5. NUMERICAL STUDIES

In this section, we present numerical experiments on synthetic data generated by the Poisson

model (19) to assess the performance of our moment estimator. This model is widely used to

DOI: The Canadian Journal of Statistics / La revue canadienne de statistique



26 FAN, JIANG, YAN AND ZHANG Vol. xx, No. yy

describe the likelihood of discrete events occurring in a continuous manner, such as website

visits, user-ratings, crime and disease incident reports. We also present an data example of the

US Law Firms and World Cities network.

5.1. Simulations

FIGURE 1: The QQ plots of v̂1/2i,i (α̂i − αi)
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(a) Poisson model (m=100, n=50)

We set α∗i = (m− i)L/(m− 1) , β∗i = (n− i)L/(n− 1) and β∗n = 0 . Here we

fix the bipartite network size at (m,n) = (100, 50), (200, 100) and test L on log

scale, that is, L ∈ {0, log(logm), logm}. We consider the asymptotical distribu-

tions of ξ̂i,j = [α̂i − α̂j − (α∗i − α∗j )]/(1/v̂i,i + 1/v̂j,j)
1/2 and η̂i,j = [β̂i − β̂j − (β∗i −
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β∗j )]/(1/v̂n+i,n+i + 1/v̂m+j,m+j)
1/2, where v̂i,i is the estimate of vi,i by replacing θ∗i with

θ̂i, and empirically verify Corollary 4. We assess the asymptotic normality of ξ̂i,j, η̂i,j by

Q-Q plot under various L. We also evaluate the coverage probabilities and the lengths of the

95% confidence intervals. We also record the frequency that the estimate does not exist. Each

simulation is repeated 10, 000 times.

We test the bipartite network size of (m,n) = (100, 50) and (200, 100), respectively, and find

the Q-Q plots of α∗i − α∗j and β∗i − β∗j to be similar under (m,n) = (100, 50) and (200, 100).

Therefore, we only show the Q-Q plot of α∗i − α∗j under (m,n) = (100, 50) in Figure 1 due

to page limit. In Figure 1, the horizontal and vertical axes are the theoretical and empirical

quantiles, respectively, and the red lines correspond to the reference lines y = x. From Figure

1, we see that under all three α∗i − α∗j configurations, the empirical distribution shows clear

normality when L ≤ log(m).

Table 1 contains the results for estimating θ∗i − θ∗j , including coverage probabilities and

lengths of the 95% confidence intervals and the frequency that a such confidence interval does

not exist. Here, a large L regulates the confidence interval length downward, while the length

decreases as the bipartite network size of (m,n) increases. As we read from Table 1, the cover-

age frequencies are all close to the nominal level 95% for all L. Furthermore, we use a Lilliefors

test to verity whether our data sample is from a normally distributed population, as shown in Ta-

ble 2. In Table 2, we see that when L = 0, p = 0.00 for all pairs (i, j) implies that it is unlikely

that this sample came from a normal population; when L = log(logm) and L = logm, the p-

values for most pairs (i, j) are not less than 0.05, which implies that the empirical distribution
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TABLE 1: Estimated coverage probabilities (×100%) of θ∗i − θ∗j for a pair (i, j) as well as the length of confidence intervals

(in square brackets), and the probabilities(×100%) that the estimate does not exist (in parentheses).

node (i, j) L = 0 L = log(log(m)) L = logm

m=100 (1,2) 95.03[0.40](0) 95.14[0.12](0) 94.88[0.01](0)

(50,51) 94.92[0.40](0) 94.89[0.18](0) 95.11[0.03](0)

(99,100) 94.86[0.40](0) 95.23[0.26](0) 94.70[0.08](0)

n=50 (1,2) 94.63[0.28](0) 95.16[0.09](0) 95.00[0.01](0)

(25,26) 94.85[0.28](0) 94.82[0.13](0) 94.85[0.02](0)

(49,50) 95.21[0.28](0) 94.87[0.18](0) 94.97[0.06](0)

m=200 (1,2) 95.10[0.28](0) 95.06[0.08](0) 94.79[0.00](0)

(100,101) 95.24[0.28](0) 94.83[0.12](0) 95.13[0.01](0)

(199,200) 95.28[0.28](0) 95.12[0.18](0) 95.08[0.05](0)

n=100 (1,2) 95.16[0.20](0) 95.03[0.05](0) 95.13[0.00](0)

(50,51) 95.38[0.20](0) 95.00[0.08](0) 95.27[0.01](0)

(99,100) 94.71[0.20](0) 94.85[0.12](0) 95.18[0.03](0)

TABLE 2: Lilliefors test of θ∗i − θ∗j for a pair (i, j): statistic (in left) and p.value (in square brackets).

node (i, j) L = 0 L = log(log(m)) L = logm

m=100 (1,2) 0.02[0.00] 0.01[0.02] 0.00[0.93]

(50,51) 0.02[0.00] 0.01[0.00] 0.01[0.61]

(99,100) 0.02[0.00] 0.01[0.00] 0.01[0.20]

n=50 (1,2) 0.02[0.00] 0.01[0.32] 0.00[0.92]

(25,26) 0.01[0.00] 0.01[0.11] 0.01[0.14]

(49,50) 0.02[0.00] 0.01[0.08] 0.01[0.66]

m=200 (1,2) 0.02[0.00] 0.01[0.03] 0.01[0.01]

(100,101) 0.02[0.00] 0.01[0.16] 0.01[0.65]

(199,200) 0.02[0.00] 0.01[0.02] 0.01[0.26]

n=100 (1,2) 0.01[0.00] 0.01[0.69] 0.01[0.40]

(49,50) 0.01[0.00] 0.01[0.72] 0.01[0.51]

(99,100) 0.01[0.00] 0.01[0.37] 0.01[0.80]
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TABLE 3: The running times of θ∗i − θ∗j for a pair (i, j).

(m,n) (100, 50) (200, 100) (400, 200)

Time in seconds: mean (std.) 0.50(0.02) 7.35(0.06) 113.43(0.20)

may be normally distributed.

In Table 3, we report the running times of our algorithm under different configurations. Our

method scales comfortably to networks of roughly 500 senders and receivers, respectively. The

memory cost of our method is O((m+ n)2) using a Newton method.

5.2. Data Example

FIGURE 2: The histograms of α̂i’s and β̂j’s for the US Law Firms and World Cities data with 98 firms and 68 cities.
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(a) The histogram of the estimates of the 98 firms (left) and 68 cities (right) parameters in the

US Law Firms and World Cities data.
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TABLE 4: US Law Firms and World Cities network dataset: the estimators of α̂i and β̂j and their standard errors (in

parentheses), and selected top ten and bottom ten Firms and Cities according to the degree sequences, respectively.

Firm ID Degree α̂i City ID Degree β̂j

45 1802 2.48(0.02) 36 761 3.30(0.04)

2 224 0.40(0.07) 46 441 2.76(0.05)

6 174 0.15(0.08) 27 427 2.72(0.05)

18 160 0.06 (0.08) 11 261 2.23(0.06)

4 134 -0.12 (0.09) 68 156 1.72(0.08)

83 98 -0.43(0.10) 62 138 1.60(0.09)

1 93 -0.48(0.10) 20 134 1.57(0.09)

3 73 -0.72(0.12) 43 129 1.53(0.09)

11 59 -0.94(0.13) 55 123 1.48(0.09)

7 58 -0.95(0.13) 58 115 1.41(0.09)

...
...

...
...

...
...

85 2 -4.32(0.71) 67 4 -1.95(0.50)

87 2 -4.32(0.71) 17 3 -2.23(0.58)

43 1 -5.01(1.00) 45 3 -2.23(0.58)

52 1 -5.01(1.00) 12 2 -2.64(0.71)

61 1 -5.01(1.00) 44 2 -2.64(0.71)

71 1 -5.01(1.00) 66 2 -2.64(0.71)

75 1 -5.01(1.00) 21 1 -3.33(1.00)

89 1 -5.01(1.00) 33 1 -3.33(1.00)

95 1 -5.01(1.00) 51 1 -3.33(1.00)

99 1 -5.01(1.00) 65 1 -3.33(1.00)

TABLE 5: The minimum, quartiles and maximum values of degrees from 98 firms and 68 cities.

Degree minimum 1/4 quantile median 3/4 quantile maximum

d 1 4 11 33 1802

b 1 6 24 59 761

We apply our method to the US Law Firms and World Cities network dataset in [4], extracted

from https://www.lboro.ac.uk/gawc/datasets/da5_1.html. The dataset con-

tains the numbers of lawyers of 100 American law firms with foreign offices in 72 cities outside
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FIGURE 3: The QQ plots of α̂i’s and β̂j’s for the US Law Firms and World Cities data with 98 firms and 68 cities.
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(a) The QQ plots of the estimates of the 98 firms (left) and 68 cities (right) parameters in the US Law Firms and

World Cities data.

US. We pre-processed the data by removing isolated nodes and obtained a bipartite graph with

98 firms and 68 cities. We used the GLM package with a Poission link function in parameter

estimation. Table 4 shows the estimated αi and βj values with standard errors and observed

degrees. Recall that we set β69 = 0. In Table 4, we observe a clear positive relationship between

α̂ and d, and between β̂ and b alike. The full version of this table is presented in the Supple-

mentary Material. Table 5 contains quantiles of firm- and city-degrees and shows that d spreads

a wild range from 1 to 1802, so is b, varying 1 to 761. This is also reflected in the spread of

α̂i, ranging from −5.01 to 2.48, and β̂j from −3.33 to 3.30, as is shown in Figure 2. The his-

tograms of both α̂i’s and β̂j’s indicate that they approximately follow normal distributions. We
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TABLE 6: US Law Firms and World Cities network dataset: the mean degrees of 100 bootstrap degree sequences and their

95% bootstrap confidence intervals(i.e, CI)(in square brackets), and selected top ten and bottom ten Firms and Cities in order,

respectively.

Firm ID d d̄ 95% bootstrap CI City ID b b̄ 95%bootstrap CI

1 93 93.78 [76.31, 111.25] 1 40 39.05 [26.81, 51.29]

2 224 225.57 [194.43, 256.71] 2 103 102.51 [85.00, 120.02]

3 73 73.03 [57.73, 88.33] 3 84 82.57 [ 64.59, 100.55]

4 134 133.29 [113.32, 153.26] 4 22 21.66 [13.25, 30.07 ]

5 50 50.76 [ 37.71 , 63.81 ] 5 33 33.63 [22.42, 44.84]

7 58 57.47 [ 42.18 , 72.76 ] 7 33 33.74 [22.93, 44.55 ]

8 6 5.94 [1.34 , 10.54 ] 8 9 9.25 [3.89, 14.61]

9 29 28.4 [ 18.04 , 38.76 ] 9 6 6.02 [1.77 , 10.27 ]

10 43 42.61 [ 28.00 , 57.22] 10 261 261.36 [225.65, 297.07]

...
...

...
...

...
...

...
...

90 3 2.91 [-0.32 , 6.14] 60 5 5.39 [ 1.11, 9.67]

91 3 3.19 [-0.06 , 6.44] 61 15 14.71 [7.98, 21.44]

92 39 38.29 [26.41 , 50.17] 62 138 138.25 [114.03, 162.47]

93 8 8.28 [2.44 , 14.12] 63 63 64.81 [49.19, 80.43]

94 9 9.08 [3.33 , 14.83] 64 4 3.72 [0.03, 7.41]

95 1 1.1 [-1.23 , 3.43] 65 1 1.03 [ -0.88 , 2.94 ]

96 34 33.51 [21.40 , 45.62] 66 2 2.01 [-0.80 , 4.82]

97 25 25.51 [15.45 , 35.57] 67 4 4.13 [-0.05 , 8.31 ]

99 1 1.08 [-0.75 , 2.91] 68 156 156.34 [133.49, 179.19 ]

100 11 10.99 [4.53, 17.45 ] 69 28 28.05 [18.78, 37.32 ]

also give the Q-Q plots of both α̂i’s and β̂j’s in Figure 3. In Figure 3, the horizontal and vertical

axes are the theoretical and empirical quantiles, respectively, and the red lines correspond to the

reference lines y = x. From Figure 3, we see that many points are close to the reference lines

y = x, especially in the middle, but the points in the tails are a little far off. It appears that both
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α̂i and β̂j are approximately follow normal distributions.

As an application of our method, we use the estimated parameters to generate 100 boot-

strapped adjacency matrices. The outputted bootstrapped adjacency matrices can then be used

to build 95% bootstrap confidence intervals for the degree sequences, as reported in Table 6.

We can see that the mean degrees of 100 bootstrap degree sequences are close to the original

degrees from the observed network dataset. Moreover, these original degrees are included in the

95% bootstrap confidence intervals. On the other hand, we also calculate the mean skewness of

100 bootstrap degree distributions and the skewness of each bootstrap degree distribution, re-

spectively, as shown in Table 7. Compared with the skewness of original degree distributions,

these skewness values are found to be quite similar to each other in Table 7.

We make the following observations from Table 4. First, as one naturally expects, the es-

timated standard errors on high-degree nodes (also known as “hub nodes” or core nodes) are

significantly smaller than low-degree nodes (“leaf nodes”, or peripheral nodes), since nodes

with higher popularity provide more data about their connection patterns. Second, in light of

Remark 4 in Section 3.2, we can construct a marginal approximate 95% t-confidence interval

for each αi and βj parameter, using
(
α̂i ± 2ŝ.e.(α̂i)

)
. Let us inspect the top-10 highest degree

firms in Table 4. A high α̂i suggests that the company is highly “internationalized”. Similarly, a

high β̂j suggests the city’s attraction to US law firms. Tracing the top-ranked cities in Table 4,

we find the top 3 to be London, Paris and Hong Kong, all of which ranked at the top tiers in the

recent GaWC Global City Index (London is Alpha++, the other two are Alpha+). Those ranked

4–10 (Brussels, Warsaw, Tokyo, Frankfurt, Moscow and Singapore, in order) suggest that while
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there is a clear positive relationship between a city’s global centrality and its attraction to US

law firms, there may be other factors that lead to their discrepancy. For instance, two potentially

very relevant other factors are law systems and geographical distance. UK, Hong Kong and Sin-

gapore share the same law system (common law) as US, which might facilitate their connection

in law businesses. This might also partially explain for Tokyo since Japanese law system is a

mixture of civil and common law systems. On the other hand, the observation that European

continent cities that adopt civil laws are significantly elevated in the ranking of Table 4 com-

pared to their global city indexes, possibly due to the geographical and cultural closeness to US,

compared to some other Asian-Pacific cities with high global centrality. On the other hand, the

estimated α̂i values in the same table may be a good reminder of the potential limitation of our

study. The most internationalized companies (Firm 45) has almost twice as many as the total

connections of the rest of top 10 firms. Consequently, this firm alone has a high impact on the

estimation of βj parameters, and one should keep this in mind when interpreting the β̂j values.

TABLE 7: The skewness of degree distributions from 98 firms and 68 cities: βS indicates the skewness of original degree

distributions, β̂Sm indicates the mean skewness of 100 bootstrap degree distributions, while the skewness of the ith bootstrap

degree distributions is denoted by β̂Si .

Type βS β̂Sm β̂S1 β̂S25 β̂S50 β̂S75 β̂S100

Firms 9.03 9.02 9.01 8.99 9.05 9.05 9.00

Cities 3.92 3.93 3.82 3.89 4.10 3.83 3.97
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6. DISCUSSION

In this paper, we proposed a general model for degree-based modeling and analysis of bipartite

graphs. Our model generalizes several popular models along this line of approach in existing

literature. In contrast to the common likelihood-based methods, we proposed a moment method

for parameter estimation that is computationally efficient and enjoys nice theoretical properties

under mild conditions. Our proof makes an original use of the theory on Newton iterations to

this setting.

Our model applies to a rich family of network models, and as demonstrated in Section 4, it

provides a general framework for systematically studying the asymptotic properties of many ex-

isting models as its special cases. The simulations under Poisson model and the data application

demonstrated the effectiveness of our method on concrete examples.

There are several interesting future works. One interesting direction is to seek finite sample

error bound guarantees rather than asymptotics. The analysis method is not very challenging,

but the formulation will become much more involved, therefore for cleanness of results, we did

not pursue this goal in this paper.

Another interesting question is to investigate the case where m and n are at very different

scales. Very different m and n would significantly complicate the approximation to V −1, which

is a key technical ingredient in our analysis, and this complication would propagate to all con-

sequent analysis and results. While we envision this as doable, it amounts to be a separate work

and exceeds the scope of this paper.
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The asymptotic approximation and concentration results that our analysis relies on can in

fact accommodate slight dependency across network edges. Considering the recently raising

research interest in networks with dependent edges, we are also interested in exploring the

relaxation of the independent edge assumption that is almost universally assumed in the current

bipartite graph literature.

Finally, a natural research interest is to consider richer network features beyond degrees.

In fact, degrees can be viewed as a rescaled version of the simplest network moment, namely,

edges [21]. Other motifs such as stars and cycles are also useful and very meaningful quantities

to study. On the other hand, in view of the reality that methods and theory for degree-based

ERGM’s are still in active development and not yet complete, in this paper, we aim at a more

comprehensive understanding of the relatively simpler degree-based models as a solid step for-

ward. Also, while including more statistics into the ERGM, one must also be very careful with

model identifiability, which is generally a challenging task for many network models.

Supplementary Materials

Supplement to “Asymptotic theory in bipartite graph models with a growing number of param-

eters.” The supplement contains all the proofs for the main results and the full table of the real

data numerical results in Section 5.2.
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