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Abstract

Predicting missing segments in partially observed functions is challenging due to
infinite-dimensionality, complex dependence within and across observations, and ir-
regular noise. These challenges are further exacerbated by the existence of two dis-
tinct sources of variation in functional data, termed amplitude (variation along the
y-axis) and phase (variation along the x-axis). While registration can disentangle
them from complete functional data, the process is more difficult for partial obser-
vations. Thus, existing methods for functional data prediction often ignore phase
variation. Furthermore, they rely on strong parametric assumptions, and require
either precise model specifications or computationally intensive techniques, such as
bootstrapping, to construct prediction intervals. To tackle this problem, we propose
a unified registration and prediction approach for partially observed functions un-
der the conformal prediction framework, which separately focuses on the amplitude
and phase components. By leveraging split conformal methods, our approach inte-
grates registration and prediction while ensuring exchangeability through carefully
constructed predictor-response pairs. Using a neighborhood smoothing algorithm,
the framework produces pointwise prediction bands with finite-sample marginal cov-
erage guarantees under weak assumptions. The method is easy to implement, compu-
tationally efficient, and suitable for parallelization. Numerical studies and real-world
data examples clearly demonstrate the effectiveness and practical utility of the pro-
posed approach.

Keywords: phase variation, split conformal prediction, square-root slope transform, neigh-
borhood smoothing
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1 Introduction

Accurate prediction of future trajectories given historical functional data plays a crucial role

in many real-world applications. For instance, given previous (complete) daily observations

of traffic flow rate, and a partial observation (up to some time) for a new day, prediction

of traffic flow rate for the rest of that day can help optimize transportation networks and

reduce congestion during rush hour [Chiou, 2012]. Similarly, given complete historical

daily maximum temperature measurements at a particular location, one may be interested

in a daily maximum temperature forecast for the rest of the current year, which can help

mitigate societal risks related to extremely cold weather. Both of these examples are

considered in Section 5. There are many other applications where such prediction problems

are of primary interest, including growth rate prediction for people or other natural objects,

forecasting of pollutant density, etc. These predictions can be used to anticipate future

trends and help inform biomedical, environmental and social decisions.

Functional data is challenging to analyze, because it is inherently infinite-dimensional,

exhibits complex dependencies within and potentially across observations, and is often

observed at discrete time points with heteroscedastic noise. Functional observations en-

compass two sources of variation, one along the x-axis called phase and one along the y-axis

called amplitude. A common practice during statistical analyses is to first separate ampli-

tude and phase variations. This is done via a process called registration, which “warps”

the functions’ domains to align their key features with respect to time [Kneip and Gasser,

1992, Ramsay and Silverman, 2005, Srivastava et al., 2011]. However, registration is often

treated as a pre-processing step, with subsequent statistical modeling and inference ap-

plied to “well-aligned” data. Thus, registration uncertainty is often ignored in downstream

tasks. Furthermore, when the data contains partial observations, registration is much more
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challenging since the domains of partial and complete functions are fundamentally different

[Bauer et al., 2021, Bryner and Srivastava, 2021].

To tackle the aforementioned challenges, we propose a framework for prediction of par-

tially observed functions wherein registration is directly incorporated. Comparing to a

sequential approach of “registration then prediction”, our approach bypasses the need for

registration of partial observations to complete ones, and propagates registration uncer-

tainty to the prediction step. We adapt conformal prediction, a distribution-free uncertainty

quantification method that provides valid finite-sample coverage validity [Vovk et al., 2005,

Lei et al., 2018]. This requires a careful construction of exchangeable predictor-response

data pairs, which are not naturally defined in our context. In addition, we employ a non-

parametric, neighborhood smoothing prediction algorithm [Zhang et al., 2017], which offers

flexibility without strong modeling assumptions on the relationship between predictors and

responses. Thus, our main contributions are as follows.

1. We propose a novel framework that integrates registration into conformal prediction

of the amplitude component for partial functional data. This results in more accurate

prediction intervals, as compared to procedures that do not utilize registration, when

functional data contains phase variation. We additionally define a separate conformal

prediction procedure for the phase component, which incorporates a monotonicity

constraint. Our approach builds on the elastic functional data analysis (EFDA)

framework for registration [Srivastava et al., 2011, Srivastava and Klassen, 2016].

2. Our method offers distribution-free uncertainty quantification with a finite-sample

guarantee. For conformal prediction of partially observed functions, we carefully

construct predictors and responses from raw data that maintain exchangeability

throughout the procedure, and leverage ideas from split conformal methods to in-
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tegrate registration. Unlike traditional parametric approaches, our method imposes

fairly weak assumptions on the data generating process. We employ a nonparamet-

ric neighborhood smoothing prediction algorithm that provides more flexibility than

competitors such as functional linear regression.

3. Compared to nonparametric bootstrap or Bayesian uncertainty quantification, our

approach is much faster, making it well-suited for large-scale applications.

1.1 Related work

There exist many approaches for functional data prediction, albeit none of them consider

the challenges posed by phase variation. They include functional regression [Chiou, 2012,

Maity, 2017], time series models [Didericksen et al., 2012, Leroux et al., 2018], neural net-

works [Yin et al., 2021], or a combination of different aforementioned methods [Jiao et al.,

2023]. For uncertainty quantification, these approaches generally use closed-form confi-

dence intervals based on variance estimates [Leroux et al., 2018], or nonparametric boot-

strap residual sampling [Chiou, 2012, Jiao et al., 2023]. However, these methods require

strong parametric assumptions, and the resulting prediction intervals’ coverage rate con-

verges to the desired nominal level asymptotically with no finite-sample guarantee. Matuk

et al. [2022] and Earls and Hooker [2017] define Bayesian models for joint registration and

prediction, where prediction intervals are constructed from posterior samples. Nonetheless,

the high computational cost of these approaches hinders their application to large datasets.

Conformal prediction provides prediction intervals that have a finite-sample coverage

guarantee without imposing assumptions on the data generating process [Saunders et al.,

1999, Vovk et al., 2005]. It is generally computationally more efficient when compared

to Bayesian methods which utilize Markov chain Monte Carlo to sample form the poste-
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rior distribution. Since being introduced, conformal prediction has been widely applied

in a variety of scenarios, ranging from regression and classification for multivariate data

[Lei et al., 2018, Cauchois et al., 2021] to prediction tasks involving more complex data

structures, e.g., survival analysis [Candès et al., 2023, Gui et al., 2024], time series [Zaf-

fran et al., 2022, Angelopoulos et al., 2023], and matrix data [Gui et al., 2023, Shao and

Zhang, 2023]. However, relatively few works have focused on the application of conformal

prediction to functional data. Lei et al. [2015] use a basis projection for functional ob-

servations and obtain prediction sets for basis coefficients; they do not consider partially

observed functions. Diquigiovanni et al. [2022] and Ajroldi et al. [2023] apply conformal

prediction to multivariate functional data and functional time series using a nonconformity

score based on functional depth. Recently, Diana et al. [2023] and De Magistris et al. [2024]

apply conformal prediction to spatial functional data for uncertainty quantification. All of

the aforementioned methods treat registration as a pre-processing step, which can affect

prediction accuracy when the data contains phase variation.

The rest of the article is organized as follows. Section 2 discusses preliminaries includ-

ing full conformal prediction for partial functional data without registration and a brief

introduction of the elastic functional data analysis (EFDA) framework. Section 3 defines

the joint registration and prediction method. Comprehensive simulations and real-world

data examples are presented in Sections 4 and 5 to demonstrate the validity and efficiency

of the proposed method. We conclude with a brief discussion in Section 6. Lemmas and

proofs are included in appendices.
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2 Preliminaries

2.1 Full functional conformal prediction without registration

Consider f1, . . . , fn+1
iid∼ PF , where PF is a probability distribution on the function space

F , where F = {f : [0, 1] → R|f is absolutely continuous}. We use [0, 1] as the function

domain without loss of generality. The observed portion of the (n+1)th sample is denoted

by fJ
n+1, where J ⊆ [0, 1]. For simplicity, we assume J = [0, U ], where U ∼ πu is a random

stopping point and πu is a probability distribution on [0, 1]. This can be generalized to

other observation patterns (see Section 3.2). Given f1, . . . , fn and fJ
n+1, our goal is to

construct pointwise prediction intervals for fn+1 on a fixed, uniform grid of time points,

T := {t1, . . . , tT}, where t1 = 0, tT = 1 and tk+1 − tk = 1/(T − 1), k = 1, . . . , T − 1.

For each time point t ∈ T and any user specified significance level α ∈ (0, 1), we want

the prediction interval It for fn+1(t) to satisfy finite-sample coverage validity,

P(fn+1(t) ∈ It) ≥ 1− α. (1)

In conformal prediction, (1) is guaranteed through three key principles [Vovk et al., 2005]:

1. exchangeable predictor-response data pairs ((X1, Y1), . . . , (Xn+1, Yn+1)) ∼ PX×Y ,

i.e., given ((X1, Y1), . . . , (Xn, Yn)) as well as Xn+1, the aim is to predict Yn+1;

2. a permutation symmetric algorithm that inputs augmented data ((X1, Y1), . . . ,

(Xn, Yn), (Xn+1, y)) and fits model µ̂y : X → Y , i.e., µ̂((xπ(1), yπ(1)), . . . , (xπ(n), yπ(n))) =

µ̂((x1, y1), . . . , (xn, yn)) for all permutations π : [1 : n] ↔ [1 : n];

3. a nonconformity score that measures the discrepancy of each observation relative

to the fit, e.g., the absolute residual Si := |Yi − µ̂y(Xi)|.

6



To apply conformal prediction to partially observed functional data, we need to construct

exchangeable {(Xi, Yi)}, as there are no natural predictor and response variables. The

prediction target fn+1(t) is analogous to the response Yn+1, and thus, we define Yi(t) :=

fi(t), i = 1, . . . , n+1, i.e., we are predicting fn+1 at time t, ∀ t ∈ T . Since we observe fJ
n+1,

it can be viewed as the new feature Xn+1. To define X1, . . . , Xn that are exchangeable with

Xn+1, we cut f1, . . . , fn at t = U , and set Xi := fJ
i , i = 1, . . . , n + 1. Since f1, . . . , fn+1

are i.i.d. samples from PF , Y1(t), . . . , Yn+1(t) are exchangeable (note that evaluating each

function fi at time t is deterministic, and therefore preserves exchangeability). On the

other hand, there are two sources of randomness in Xn+1: fn+1 and U ∼ πu. To ensure

exchangeability of predictors, we introduce Assumption 1, which can be interpreted as

Missing Completely at Random (MCAR) [Rubin, 1976].

Assumption 1. U is independent of fi, ∀ i = 1, . . . , n+ 1.

Assumption 1 ensures joint exchangeability of {(Xi, Yi(t))} for all t ∈ T . This assumption is

fairly mild and holds in many real-world data scenarios where the truncation time point does

not depend on the observation process, e.g., monitoring of environmental measurements.

With exchangeable {(Xi, Yi(t))} and a properly chosen symmetric algorithm and non-

conformity score, we can implement Full Functional Conformal Prediction (FFCP) as fol-

lows. For each y ∈ Ytrial, a set of trial values for Yn+1(t), we set Yn+1(t) = y and

fit µ̂y to the augmented data ((X1, Y1(t)), . . . , (Xn, Yn(t)), (Xn+1, y)). We then compute

Si = |Yi(t) − µ̂y(Xi)| for i = 1, . . . , n + 1 and include y in the prediction interval It

if Sn+1 is within the 1 − α quantile of the empirical distribution of {S1, . . . , Sn+1}, i.e.,

It := {y : |y − µ̂y(Xn+1)| = Sn+1 ≤ Q1−α({S1, . . . , Sn+1})}, where Qβ(·) denotes the lower

β quantile function. We repeat this procedure for each t ∈ T , and get the set of prediction

intervals It1 , . . . , ItT for fn+1(t1), . . . , fn+1(tT ), where each prediction interval Itk satisfies
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Figure 1: Full Functional Conformal Prediction (FFCP) algorithm.

the coverage validity in (1). The specific choice of the symmetric algorithm, which plays

a critical role in our functional conformal prediction framework, will be discussed in detail

in Section 3.1. The full FFCP algorithm is presented in Figure 1.

To provide a clearer understanding of the practical performance of FFCP, we present a

small simulation study. We consider two-peak functions without and with phase variation

(see examples in top and bottom of Figure 2(a), respectively). To assess the performance of

FFCP, we use B = 1000 Monte Carlo samples with n = 100, truncation time point U = 0.5

for fn+1, and 1− α = 0.9. Evaluation is based on two criteria,

1. coverage validity: empirical pointwise coverage rate

pk =
1

B

B∑
b=1

1

{
f
(b)
n+1(tk) ∈ I(b)

tk

}
, k = 1, . . . , T ; (2)

2. prediction accuracy: pointwise average prediction interval (PI) length

`k =
1

B

B∑
b=1

length(I(b)
tk
), k = 1, . . . , T. (3)

Results for functional data without (with) phase variation are given in the top (bottom)

row of Figure 2. Panels (b) and (c) show pointwise coverage rates pk, with pointwise
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(a) (b) (c) (d)

Figure 2: FFCP for two-peak functions without (row 1) and with (row 2) phase variation. (a) Data.

(b)&(c) Coverage rates pk with 95% CIs (shaded region) and average PI lengths `k, respectively.

(d) Partial observation fJ
n+1 (black), ground truth f

[0,1]\J
n+1 (dashed blue), and pointwise PIs (red).

95% confidence intervals (CIs) (shaded region), and pointwise average PI lengths `k for

k = 1, . . . , T , respectively. The time-averaged coverage rate p̄ =
∑T

k=1 pk/T and PI length

¯̀ =
∑T

k=1 `k/T are also reported. We see that FFCP guarantees finite-sample coverage

validity for any t ∈ T for functions without and with phase variation. However, pointwise

PI lengths tend to be much larger when phase variation is present in the data. Panel

(d) demonstrates pointwise prediction intervals It1 , . . . , ItT for f (b)
n+1 for a randomly chosen

Monte Carlo sample b ∈ {1, . . . , B}. We show the partial observation fJ
n+1 (black), the

ground truth missing segment f
[0,1]\J
n+1 (dashed blue), and the lower and upper boundaries

of the pointwise PIs (red). When there is no phase variation in the data, the PIs form

a prediction band that accurately captures the geometric features, i.e., two peaks and
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one valley, of the underlying function fn+1. However, when phase variation is present,

the prediction band is less effective at capturing such geometric features, since their timing

varies considerably across observations. As a result, Yi(t) fails to provide useful information

for predicting Yn+1(t). These results indicate that FFCP is better suited for functional data

without phase variation. To improve FFCP in the presence of phase variation, we will

incorporate registration, based on the elastic functional data analysis (EFDA) framework.

2.2 Registration via EFDA

Phase variation in functional data is characterized through warping functions, which are

elements of Γ := {γ : [0, 1] → [0, 1]|γ(0) = 0, γ(1) = 1, γ̇ > 0}. Given γ ∈ Γ, the domain

warping of a function f ∈ F is given by composition: f ◦ γ. To register a function f2

with respect to another function f1, we need a distance d(·, ·) that is preserved under

simultaneous warping: d(f1, f2) = d(f1 ◦ γ, f2 ◦ γ). It is well-known that the standard L2

distance, given by d2(f1, f2) :=
( ∫ 1

0
(f1(t)−f2(t))

2dt
)1/2

, does not satisfy this property. To

address this, one can instead use (the extension of) the Fisher-Rao (FR) Riemannian metric

that is preserved under simultaneous warping. However, the resulting Riemannian distance

cannot be computed in closed form. Srivastava et al. [2011] proposed the square-root slope

function (SRSF) that reduces the FR metric to the L2 metric. For a function f ∈ F , its

SRSF q : [0, 1] → R is given by Q(f) = q := sign(ḟ)
√

|ḟ |, where Q : F → Q. Given f(0),

the inverse of Q is given by Q−1(q, f(0))(t) = f(0) +
∫ t

0
q(s)|q(s)|ds. The space of SRSFs

Q is a subset of L2([0, 1],R). Finally, the domain warping of a function f by γ, f ◦ γ, is

given by the following transformation of its SRSF: (q ◦ γ)
√
γ̇. Thus, given two functions

f1, f2 ∈ F and their SRSFs q1, q2 ∈ Q, dFR(f1, f2) = d2(q1, q2) = d2((q1◦γ)
√
γ̇, (q2◦γ)

√
γ̇).

Given these results, pairwise registration of f2 to f1, with corresponding SRSFs q2 and

10



q1, is given by the optimization problem

γ∗ = argmin
γ∈Γ

d2
(
q1, (q2 ◦ γ)

√
γ̇
)
, (4)

which can be solved using dynamic programming [Robinson, 2012]. Then, f2 ◦ γ∗ is regis-

tered to f1, and the amplitude distance between them is given by da(f1, f2) = d2(q1, (q2 ◦

γ∗)
√
γ̇∗); γ∗ is the relative phase of f2 with respect to f1. Multiple registration of functions

f1, . . . , fn is performed pairwise using (4) with respect to a suitable template function. Let

q1, . . . , qn be the SRSFs of f1, . . . , fn, and define the sample Karcher mean as the template,

which is given by

q̄ := argmin
q∈Q

n∑
i=1

min
γi∈Γ

d22(q, (qi ◦ γi)
√
γ̇i). (5)

See Algorithms 2 and 3, and Section 3.4 in Srivastava et al. [2011] for details of the sample

Karcher mean computation, and the complete multiple registration algorithm. The corre-

sponding Karcher mean in F is f̄ := Q−1(f̄(0), q̄), where f̄(0) = 1
n

∑n
i=1 fi(0). Multiple

registration results in (i) {γ∗
i }, the relative phases with respect to the sample Karcher mean,

and (ii) {fi ◦ γ∗
i }, the amplitudes of {fi}.

3 Joint registration and prediction for functional data

Next, we incorporate registration into conformal prediction when functional data exhibits

phase variation. In this context, the prediction target changes to the amplitude fn+1◦γ∗
n+1,

where γ∗
n+1 ∈ Γ registers fn+1 to a template function. Thus, we define new response vari-

ables Yi(t) := (fi ◦ γ∗
i )(t) for each t ∈ T , while keeping the predictors Xi = fJ

i unchanged.

However, a critical challenge now is the choice of template function for registration that

preserves exchangeability of (Xi, Yi(t)).

One simple choice is to randomly select a function from the complete observations

f1, . . . , fn as the template, e.g., f1. However, this would break exchangeability of (Xi, Yi(t)),

11



since the registration process would treat f1 differently from f2, . . . , fn+1. Instead, we will

choose a template function that is independent of f1, . . . , fn+1. This will be accomplished

using the split conformal prediction approach. Specifically, we randomly split f1, . . . , fn

into two independent training and calibration sets of sizes n1 and n2 = n − n1, respec-

tively. We first use the training set f1, . . . , fn1 to compute the sample Karcher mean f̄

using (5) and the inverse SRSF mapping Q−1. We then register each function in the cal-

ibration set, fn1+1, . . . , fn, to f̄ by computing γ∗
1 , . . . , γ

∗
n2

via (4) (γ∗
i is the relative phase

of fn1+i with respect to f̄). Finally, we use the amplitudes f̃i := fn1+i ◦ γ∗
i to construct

the response variables Yi(t) = f̃i(t), i = 1, . . . , n2. The response corresponding to fn+1

is Yn2+1(t) = (fn+1 ◦ γ∗
n2+1)(t). This procedure maintains exchangeability of (Xi, Yi(t)),

as permutation symmetry is preserved when the template function is computed using an

independent training set. After constructing exchangeable (Xi, Yi(t)), they can be used

as the input of FFCP described in Section 2.1. We call this procedure Split Functional

Conformal Prediction (SFCP) and present it in Figure 3. Like FFCP, SFCP also provides a

marginal finite-sample coverage guarantee, which is formally stated in Theorem 1. The

proof of Theorem 1 is provided in Appendix A.

Theorem 1. Under Assumption 1, for any T ≥ 2, 0 < n1 < n, α ∈ (0, 1) and each tk ∈ T ,

the prediction set Itk from SFCP satisfies 1−α ≤ P
(
(fn+1 ◦γ∗

n2+1)(tk) ∈ Itk

)
≤ 1−α+n−1

2 .

Notice that the relationship between FFCP and SFCP is slightly different from the rela-

tionship between classical full and split conformal prediction. The split conformal method

was originally developed to improve computational efficiency of the full conformal method.

In our case, however, the training set is used to estimate the sample Karcher mean, which

acts as the template for registration of the calibration set, as well as the target function.

The goal is not to speed up computation, but rather to construct new response variables
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Figure 3: Split Functional Conformal Prediction (SFCP) algorithm.

that improve prediction accuracy in the presence of phase variation. Both FFCP and SFCP

are suitable prediction methods for functional data with or without phase variation as they

both guarantee finite-sample coverage. However, failing to account for phase variation gen-

erally inflates variance [Marron et al., 2015], and as a result, impairs prediction; see the

simulation example in Section 2.1. Thus, we advocate the use of SFCP rather than FFCP

for functional data with phase variation.

3.1 Symmetric prediction algorithm: neighborhood smoothing

A permutation symmetric algorithm is required to fit µ̂y to the augmented data composed

of functional predictors Xi and scalar responses Yi(t) ∈ R. One choice is linear scalar-

on-function regression, for each t ∈ T , which satisfies permutation symmetry. But, it

imposes strong assumptions on the relationship between predictors and responses, and the

error, which might not hold for complex functional data. Here, we adapt the neighborhood

smoothing technique from Zhang et al. [2017], which is a renaissance of the Nadaraya-

Watson estimator [Nadaraya, 1964, Watson, 1964] for non-conventional data types. We
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later find that a preexisting work [Ferraty et al., 2007] bears the similar spirit. It enforces

minimal assumptions on the predictor-response relationship. Specifically, the neighborhood

smoothing estimator for Yi(t) is given by

Ŷi(t) :=

∑
i′ 6=iK(h−1d(Xi, Xi′))Yi′(t)∑

i′ 6=i K(h−1d(Xi, Xi′))
, i = 1, . . . , n+ 1, (6)

where K(·) is a kernel function, e.g., triangular or Gaussian kernel, h is a bandwidth

parameter, and d(Xi, Xi′) is a distance between functions Xi and Xi′ . Higher weights are

assigned to Yi′ for predictors Xi′ that are closer to Xi as measured via distance d(·, ·); h

controls the weights’ concentration. This approach is computationally efficient, because (6)

can be computed for all t ∈ T using a one-pass evaluation of a symmetric distance matrix

D ∈ R(n+1)×(n+1) with Di,j := d(Xi, Xj) [Shao and Zhang, 2023]. This prediction algorithm

can be used in both FFCP and SFCP. In our implementation, we use the Gaussian kernel for

K(·). In addition, we must choose the distance d(·, ·) between functional predictors and

bandwidth parameter h in the kernel, both of which can affect prediction accuracy.

Choice of distance. The L2 distance d2(·, ·) is most commonly used in functional data

analysis. Another choice is the FR Riemannian distance dFR(·, ·) as defined in Section 2.2.

These two choices are computationally efficient when evaluating the distance matrix D.

Alternatively, we can use the amplitude distance da(·, ·) introduced in Section 2.2, which

registers predictors thus potentially leading to better prediction accuracy, but is slower to

compute due to optimization over Γ.

Choice of bandwidth parameter. To tune the bandwidth parameter, we adapt the

method of Liang et al. [2024], which ensures coverage validity while selecting a model that

minimizes PI length. Specifically, we run SFCP with neighborhood smoothing as the predic-

tion method for a set of candidate bandwidth values h ∈ H and obtain prediction intervals

Ih
tk

for k = 1, . . . , T . We can set H to be a grid of fixed values, or the lower β quantile
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of the empirical distribution of the distances {Di,j}1≤i<j≤n+1, for a grid of β ∈ (0, 1). We

select the optimal bandwidth h∗ (i) globally, h∗ := argminh∈H
1
T

∑T
k=1 length(Ih

tk
), or (ii)

locally, h∗
tk
:= argminh∈H length(Ih

tk
), k = 1, . . . , T .

3.2 Other observational regimes for partial functional data

FFCP and SFCP are not limited to settings where a single continuous segment of fn+1 on

J = [0, U ] is observed. The approaches can be trivially generalized to the case of J =

[U1, U2], where U1, U2 ∼ πu, 0 ≤ U1 < U2 ≤ 1 and πu is a probability density on [0, 1]2.

Two other generalizations apply to fragmented and sparse functional data.

Fragmented. The observed portions of fn+1 are spread across random disjoint subin-

tervals, J = ∪J
j=1Jj, where each Jj = [Uj,1, Uj,2]. This is often seen in applications

involving segmented or intermittent functional observations, such as X-ray measurements

of bone mineral density [Bachrach et al., 1999]. In this case, the predictors are Xi = fi :=

(fJ1
i , . . . , fJJ

i ), i = 1, . . . , n+ 1. One can then define a distance for neighborhood smooth-

ing as dprod(Xi, Xi′) :=
∑J

j=1 λjd(f
Jj

i , f
Jj

i′ ), where λj are weights with
∑J

j=1 λj = 1. The

simplest choice is λj = 1/J ∀ j. Alternatively, one can choose λj to be proportional to the

length of each subinterval j.

Sparse. Here, fn+1 is observed at a set of discrete time points, J = {t1, . . . , tNt} ⊆

[0, 1]. Such observations are common when full continuous measurements are difficult or

impractical to collect, e.g., longitudinal data in clinical trials [Yao et al., 2005]. Now, the

predictors are Xi := (fi(t1), . . . , fi(tNt)) ∈ RNt , and we use the Euclidean distance in RNt

for neighborhood smoothing: de(Xi, Xi′) :=
√∑Nt

k=1(fi(tk)− fi′(tk))2.
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3.3 Conformal prediction of relative phase

SFCP focuses on predicting the amplitude component fn+1 ◦ γ∗
n2+1, but it is also useful for

prediction of the relative phase γ∗
n2+1. Phase prediction allows assessment of uncertainty in

the relative timing of amplitude features of fn+1 with respect to the sample Karcher mean

f̄ . We use the same functional predictors as before, Xi = fJ
n1+i, i = 1, . . . , n2 + 1, which

include amplitude and phase variation. However, we cannot predict the target function

γ∗
n2+1 pointwise at each t ∈ T independently, because the resulting PIs {Itk} would not be

monotonically increasing (recall that γ̇(t) > 0 ∀ t). Instead, we predict γ∗
n2+1 jointly for

all t ∈ T , by considering Yn2+1 = (γ∗
n2+1(t1), . . . , γ

∗
n2+1(tT )) ∈ RT as the prediction target.

Thus, we define the other response variables as Yi = (γ∗
i (t1), . . . , γ

∗
i (tT )) for i = 1, . . . , n2.

This results in exchangeable (Xi,Yi) (see Lemma 3 in Appendix A). We again employ

the neighborhood smoothing estimator in (6), which yields Ŷi ∈ RT , i = 1, . . . , n2 + 1.

Note that the discretization grid T for prediction of relative phase using SFCPP can be

different from the discretization grid used for prediction of amplitude using SFCP. Due to

computational considerations, we use a much coarser (equally spaced) time grid for relative

phase prediction.

Since Yi ∈ RT is a discretized version of γ∗
i , we use the FR distance on Γ [Srivastava

and Klassen, 2016] as the nonconformity score. To efficiently compute the FR distance,

we again employ the SRSF representation: for a γ ∈ Γ, its SRSF is qγ =
√
γ̇. Under

the SRSF representation, the space of warping functions is the positive orthant of the

Hilbert sphere and the FR metric simplifies to the L2 metric. Thus, the distance between

two warping functions γi and γj is dw(γi, γj) := cos−1(
∫ 1

0
qγi (t)q

γ
j (t)dt), resulting in the

nonconformity score Si = dw(Yi, Ŷi) for i = 1, . . . , n2 + 1. The prediction set is given

by Iγ := {y : Sn2+1 ≤ Q1−α/(T−2)({S1, . . . , Sn2+1})}, where y = (y1, . . . , yT ) ∈ RT are
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Si = dw(Yi, bYi)

Figure 4: Split Functional Conformal Prediction for relative Phase, (SFCPP) algorithm.

trial vectors for Yn2+1. Here, Sn2+1 is compared to the 1 − α/(T − 2) quantile of the

empirical distribution of the nonconformity scores, because γ(0) = 0 and γ(1) = 1 for all

γ ∈ Γ. Due to the required constraints on γ (fixed end points and monotonicity), the T -

dimensional search for y reduces to a T − 2-dimensional search for y = (0, y2, . . . , yT−1, 1)

with 0 < y2 < · · · < yT−1 < 1. Figure 4 illustrates the algorithm, which we refer to as Split

Functional Conformal Prediction for relative Phase (SFCPP).

4 Simulations

We simulate i.i.d. f1, . . . , fn+1 without phase variation from (i) a homogeneous population

of two-peak functions: fi(t) = Zi1 exp{−(t− 0.25)2/0.072}+Zi2 exp{−(t− 0.25)2/0.072},

Zi := (Zi1,Zi2)
iid∼ N(2, 0.1I2); (ii) a heterogeneous population of one- and two-peak

functions: one-peak functions are fi(t) = Zi exp{−(t − 0.5)2/0.25}, Zi
iid∼ N(2, 0.1), while

two-peak functions are as in (i). We induce phase variation in {fi} by simulating γi = Fa,b,

where Fa,b is the cumulative distribution function of a Beta(a, b) with a, b
iid∼ Unif(1, 3), and

computing fi ◦ γi. To evaluate coverage validity, prediction accuracy and computational
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(a) (b) (c) (d) (e)

Figure 5: Row 1: homogeneous population, global tuning. Row 2: same as 1, but with local

tuning. Row 3: heterogeneous population, global tuning. Row 4: same as 3, but with local

tuning. (a) Random subsample of 5 functions. (b) Coverage rates with 95% CIs (shaded regions),

U = 0.25. (c) Average PI lengths, U = 0.25. (d) Same as (b), but U = 0.75. (e) Same as (c), but

U = 0.75. In (b)-(e), d2(·, ·) is in red, dFR(·, ·) in dark blue and da(·, ·) in light blue.

efficiency, we use B = 500 Monte Carlo samples with n = 100, size of time grid T = 100

and 1− α = 0.9 in all simulations.

Simulation 1: choice of distance metric and bandwidth parameter for SFCP. We
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Figure 6: Log time cost in seconds for a single prediction for (a) U = 0.25 and (b) U = 0.75.

compare three distances for neighborhood smoothing, d2(·, ·), dFR(·, ·) and da(·, ·), and two

bandwidth tuning methods, global and local. We use H = {Qβ({Di,j}1≤i<j≤n+1), β =

0.1, . . . , 0.9}. Figure 5 shows the results. Rows 1&2 (3&4) use functions from a homoge-

neous (heterogeneous) population with phase variation. Rows 1&3 (2&4) use global (local)

tuning for h. Panel (a) shows a random subsample of five functions for each case. Panels

(b)-(e) compare pointwise coverage rates (with 95% CIs as shaded regions) and average

PI lengths for truncation time points U = 0.25 ((b)&(c)) and U = 0.75 ((d)&(e)) in fn+1,

respectively. Our method provides valid coverage in all cases. When U = 0.25, using d2(·, ·)

yields the smallest time-averaged PI length ¯̀. On the other hand, when functions are sam-

pled from a heterogeneous population and U = 0.75 (rows 3&4(e)), da(·, ·) yields PIs with

smallest ¯̀. This is because, when a larger portion of the predictors is observed, da(·, ·) is

effective at registering their geometric features, resulting in better predictive power.

To assess computational efficiency, Figure 6 shows log time cost in seconds for a sin-

gle prediction using the three distances. As expected, d2(·, ·) and dFR(·, ·) are faster than

da(·, ·). Summarily, using d2(·, ·) is most computationally efficient and results in best pre-

diction accuracy in most cases. Further, local and global bandwidth tuning result in valid

coverage rates, comparable PI lengths and computational cost. Thus, we use d2(·, ·) with

local tuning in all subsequent numerical experiments.
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Simulation 2: SFCP after smoothing. In some real-world data scenarios, it is desirable

to mitigate the effects of noise on prediction by applying smoothing. Thus, to evaluate

the effect of functional data smoothing on coverage validity and prediction accuracy of

SFCP, we consider two methods: (i) projection onto ten Fourier basis functions, and (ii)

moving average smoothing with window size of 12. For this simulation, we added i.i.d.

pointwise Gaussian noise to each function from the homogeneous population (with and

without phase variation), i.e., εi(t)
i.i.d.∼ N(0, 0.01), i = 1, . . . , n + 1, t = 1, . . . , T . After

adding noise, we generate the partial function using a truncation time point U = 0.5. To

maintain exhangeability, we apply smoothing in the following manner. First, we construct

the predictors {Xi} as before. Then, we separately smooth the predictors and the complete

functions resulting in {XF
i } and {fF

i } for Forier basis projection, or {XM
i } and {fM

i } for

the moving average smoother; these then serve as inputs into SFCP. Thus, the prediction

target becomes fF
n+1 ◦ γ∗

n2+1 or fM
n+1 ◦ γ∗

n2+1, respectively.

Figure 7(a) shows a randomly sampled noisy functional observation (blue) and its

smoothed versions (Fourier basis projection in red and moving average smoother in yel-

low). Panels (b)&(c) show pointwise coverage rates (with 95% CIs as shaded regions) and

average PI lengths, respectively. Panels (d)&(e) show examples of PIs for fF
n+1 ◦ γ∗

n2+1 and

fM
n+1 ◦ γn2+1, respectively, with a point prediction in blue (midpoint of PIs at each time

point). SFCP yields PIs with valid coverage in all cases. The PIs constructed after Fourier

basis projection are shorter close to t = 0 and t = 1 than those generated after applying the

moving average smoother. This is not surprising due to the boundary effect associated with

the latter approach. Overall, the time averaged PI length l̄ is a bit smaller for Fourier basis

projection. Finally, both methods yield prediction bands that are effective at capturing the

geometric features, i.e., two peaks and one valley, of the underlying noiseless function.
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Figure 7: SFCP for smoothed functions, U = 0.5. Row 1: without phase variation. Row 2: with

phase variation. (a) Noisy observation (blue), smoothed function after applying Fourier basis pro-

jection (red) and moving average smoother (yellow). (b)&(c) Coverage rates with 95% CIs (shaded

regions) and average PI lengths (Fourier basis projection in red and moving average smoother in

blue), respectively. (d)&(e) Target function (black), point prediction (blue) and pointwise PIs

(red) after applying Fourier basis projection and moving average smoother, respectively.

Simulation 3: comparison to other prediction methods. Next, we compare SFCP and

FFCP to two state-of-the-art functional regression methods, implemented in the R package

refund [Goldsmith et al., 2024]: (i) scalar-on-function regression (SoF), with predictors

fJ
i and responses fi(t) fitted independently for each t ∈ T , and (ii) function-on-function

regression (FoF), with predictors fJ
i and responses fi. To ensure numerical stability of the

optimization procedures for SoF and FoF, we apply functional principal component analysis

(FPCA) to the predictors, fixing the dimension to 8 or a number that explains 90% of the

total variance, whichever is smaller. In addition to the pointwise coverage rates pk, we also

evaluate the empirical overall coverage rate, p = 1
B

∑B
b=1 1

{
f
(b)
n+1(tk) ∈ I(b)

tk
∀ k ∈ [1 : T ]

}
,
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Figure 8: Row 1: without phase variation. Row 2: with phase variation. (a) Pointwise coverage

rates with 95% CIs (shaded regions) and (b) average PI lengths for SoF (light blue), FoF (green),

FFCP (red) and SFCP (dark blue). (c)-(f) Target function (black), point prediction (blue), pointwise

PIs (red) for SoF, FoF, FFCP and SFCP, respectively.

which checks whether the entire target function is within the pointwise prediction band.

Figure 8 shows results for functions generated from a homogeneous population without

(row 1) and with (row 2) phase variation, using a truncation time point U = 0.5 for fn+1.

Panels (a)&(b) show pointwise coverage rates (with 95% CIs as shaded regions) and average

PI lengths, respectively. Panels (c)-(f) show examples of PIs (red) and a point prediction

(blue) from SoF, FoF, FFCP and SFCP, respectively. Note that the prediction target for the

first three methods is fn+1, but for SFCP it is the amplitude of fn+1. SoF and FoF generate

PIs with very small lengths, but fail to provide valid coverage. PIs from FFCP and SFCP

have valid coverage. However, in the presence of phase variation, SFCP yields PIs with

smaller length than FFCP; qualitatively, SFCP results in much better pointwise PIs in this

case. Table 1 reports the overall coverage rate p. In absence of phase variation, SoF and

FoF have p = 0, whereas FFCP and SFCP have p ≈ 0.7. When phase variation is present
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in the data, the overall coverage decreases to 0.362 for FFCP, but remains stable for SFCP

at p = 0.674. Computationally, SFCP is faster than SoF and FFCP, but slower than FoF,

when phase variation is not present in the data. When phase variation is present, SFCP and

SoF have comparable speed and are both faster than FFCP, but slower than FoF. A more

detailed description of the computational speed comparison is provided in Appendix B.

Table 1: Overall coverage rates with standard errors in parentheses.

Data SoF FoF FFCP SFCP

No phase variation 0 (0) 0 (0) 0.6900 (0.0207) 0.6800 (0.0209)

Phase variation 0 (0) 0 (0) 0.3620 (0.0215) 0.6740 (0.0210)

Simulation 4: other observational regimes. We evaluate the performance of SFCP

for fragmented and sparse observations. For fragmented data, we simulate J1 = [0, 0.2],

J2 = [0.4, 0.6], J3 = [0.8, 1], and use λj = 1/3 in the distance dprod(·, ·). For sparse data,

we simulate J = {0, 0.1, . . . , 0.9, 1}. Here, we use data from the homogeneous population

with phase variation. Row 1 (row 2) in Figure 9 shows results for the fragmented (sparse)

case. Panel (a) shows observed (black) and missing (dashed blue) segments of fn+1. Panels

(b)&(c) show pointwise coverage rates (with 95% CIs as shaded regions) and average PI

lengths, respectively. Panel (d) shows the resulting PIs (red) with a point prediction (blue)

for the amplitude of fn+1 (ground truth in black). SFCP yields PIs that preserve coverage

validity in both observational regimes, with very similar PI lengths.

Simulation 5: prediction of relative phase. We apply SFCPP to predict the relative

phase component γ∗
n2+1 using data from the homogeneous population with phase variation.

Since SFCPP predicts γ∗
n2+1 for all time points simultaneously, we use global tuning for the

bandwidth parameter in neighboorhood smoothing. We use a coarse grid of time points
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(a) (b) (c) (d)

Figure 9: Row 1: fragmented regime. Row 2: sparse regime. (a) Observed (black) and missing

(dashed blue) segments for fn+1. (b)&(c) Coverage rates with 95% CIs (shaded regions) and

average PI lengths, respectively. (d) Ground truth fn+1 ◦ γ∗n+1 (black), point prediction (blue)

and pointwise PIs (red).

for prediction, T := {0, 0.25, 0.5, 0.75, 1}, and set α = 0.1 as before. Figure 10 shows

prediction results for a randomly selected Monte Carlo sample. Panels (a)-(c) correspond

to truncation time points U = 0.25, 0.5 and 0.75 in fn+1, respectively. In all cases, SFCPP

provides a reasonable point prediction (blue) and informative PIs (red). The coverage

rates and associated 95% CIs for (a)-(c) are 0.976 (0.963, 0.989), 0.980 (0.968, 0.992) and

0.978 (0.965, 0.991), respectively; the proposed method has valid coverage. The time aver-

aged PI lengths (average computed over the coarse time grid T ) for (a)-(c) are 0.297, 0.270

and 0.258, respectively. Overall, the PIs become narrower as we observe more of fn+1

matching intuition.
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(a) (b) (c)

Figure 10: Ground truth γ∗n2+1 (black), point prediction (blue), PIs (red) and identity warping

(green). (a)-(c) Truncation time points U = 0.25, 0.5 and 0.75, respectively.

5 Data examples

Example 1: real-world data with simulated truncation time point. We compare

prediction performance of SoF, FoF, FFCP and SFCP on four functional datasets with a

simulated truncation point. Rows 1-4 in Figure 11(a) show the following four datasets,

respectively.

1. Berkeley growth rate functions. First derivative of measurements on heights in

centimeters for n = 93 boys and girls from age 1-18 [Ramsay and Silverman, 2005].

2. PQRST complexes. Segmented PQRST complexes from a long electrocardiogram

(ECG) signal; n = 80 [Kurtek et al., 2013].

3. Gait pressure functions. Gait dynamics during walking; n = 50 individuals

[Kurtek et al., 2013].

4. Traffic flow rate functions. A smoothed version of n = 84 days of traffic flow rate

data on National Highway 5 in Taiwan [Chiou, 2012, Jiao et al., 2023].

In each case, we rescaled the time axis to [0, 1] and normalized all functions to have unit
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(a) (b) (c) (d) (e)

Figure 11: Rows 1-4: Berkeley growth rate functions, PQRST complexes, gait pressure functions

and traffic flow rate functions. (a) Data. (b)-(e) Prediction results, with target function (black),

point prediction (blue) and pointwise PIs (red), for SoF, FoF, FFCP and SFCP, respectively.

L2 norm. For each dataset, fn+1 is chosen at random and truncated using U = 0.5.

Panels (b)-(e) show PIs (red) and point predictions (blue) from SoF, FoF, FFCP and SFCP,

respectively; the target function is in black. Compared to the other approaches, SFCP yields

much more accurate point predictions and PIs, which capture the main geometric features
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(a) (b) (c)

Figure 12: Prediction of MDT in Rhode Island. (a) Complete historical data with partial

observation for 2024 in red. (b)&(c) PIs (red) and point prediction (blue) for raw and presmoothed

data using Fourier basis projection, respectively.

of the target functions. In most cases, SoF and FoF generate PIs that are overly smooth

and fail to capture the true target function. FFCP generates much wider PIs to maintain

its coverage guarantee, but the resulting point predictions are not accurate.

Example 2: prediction of maximum daily temperature. Finally, we focus on fore-

casting maximum daily temperatures (MDTs) in Rhode Island. We use complete observa-

tions of MDT from 1950 to 2023 to predict MDT for (the remainder of) 2024, based on

a partial observation from January 1 to October 15 [NCEI, 2024]. The data is shown in

Figure 12(a) with the partial observation highlighted in red. We apply SFCP to both, raw

data and data after smoothing using Fourier basis projection. Panels (b) and (c) in Figure

12 show the PIs (red) and point predictions (blue) generated by SFCP based on raw and

smoothed data, respectively. Overall, the proposed approach performs very well. Based

on raw data, it generates PIs that capture the overall MDT trend as well as (local) daily

fluctuations. Based on smoothed data, the resulting prediction band captures the global

MDT trend with reasonable pointwise PI lengths. The 2024 MDT trend in Rhode Island

has one maximum in mid-July and one minimum in late January.
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6 Discussion

We introduced a novel conformal prediction framework for partial functional data that in-

corporates registration. Results based on simulations and real-world data examples validate

the proposed method’s finite-sample coverage, high prediction accuracy and computational

efficiency. Despite these advantages over competing approaches, several challenges remain

that we leave as future work. First, SFCP may be less effective for highly heterogeneous

populations with significant amplitude variation across subpopulations. In such cases, inac-

curate estimation of the Karcher mean, a key step in our framework, may impair prediction

accuracy. Addressing this issue requires strategies that account for such heterogeneity, e.g.,

a group conditional approach given observed labels for subpopulations. Second, SFCP re-

lies on a grid search over trial values when constructing prediction intervals, which can

be computationally expensive for a very dense grid of time points. This issue is further

amplified in SFCPP, where joint prediction over multiple time points is required. Exploring

alternative conformal prediction methods that avoid an exhaustive grid search can signifi-

cantly improve computational efficiency and broaden the practical utility of the framework.

Finally, SFCP generates pointwise prediction intervals with marginal coverage validity only.

We will explore alternative formulations that utilize basis expansions with a global coverage

validity guarantee.
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Appendices

A Lemmas and proofs

Exchangeability lemmas. We state and prove three exchangeability lemmas that are

used to establish the coverage guarantee of PIs generated using FFCP, SFCP and SFCPP.

Lemma 1 (Exchangeability, FFCP). Suppose Assumption 1 holds. For any t ∈ T , let

Xi = fJ
i and Yi(t) = fi(t) for i = 1, . . . , n + 1. Then {(Xi, Yi(t))}, i = 1, . . . , n + 1 are

exchangeable.

Lemma 2 (Exchangeability, SFCP). Suppose Assumption 1 holds. For any t ∈ T , let

Xi = fJ
n1+i and Yi(t) = f̃i(t) = (fn1+i ◦ γ∗

i )(t) for i = 1, . . . , n2 + 1. Then {(Xi, Yi(t))}, i =

1, . . . , n2 + 1 are exchangeable.

Lemma 3 (Exchangeability, SFCPP). Suppose Assumption 1 holds. Let Xi = fJ
n1+i and

Yi = (γ∗
i (t1), . . . , γ

∗
i (tT )) for i = 1, . . . , n2 + 1. Then {(Xi,Yi)}, i = 1, . . . , n2 + 1 are

exchangeable.

Proof. We first prove Lemma 2. Let f̄ be the sample Karcher mean of functions f1, . . . , fn1

in the training set. For any t ∈ T , define mapping g : F×F×R → X ×Y , g(fn1+i, f̄ , U) =

(Xi, Yi(t)), i = 1, . . . , n2 + 1. Given U , f̄ and fn1+i, g is a deterministic procedure, which

involves (i) truncating fn1+i at t = U to generate Xi, (ii) registering fn1+i to f̄ via (4),

and (iii) evaluating the registered fn1+i at t ∈ T ; steps (ii) and (iii) result in Yi(t), t ∈ T .

Under Assumption 1, g is symmetric with respect to fn1+i, i = 1, . . . , n2 + 1. Further,

again using Assumption 1, for any t ∈ T , (Xi, Yi(t))|(f̄ , U), i = 1, . . . , n2 + 1 are i.i.d.,

which implies (Xi, Yi(t)), i = 1, . . . , n2 + 1 are exchangeable.

Proofs of Lemmas 1 and 3 follow similar arguments as the proof of Lemma 2. For Lemma
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1, FFCP only involves truncating {fi} at t = U to generate Xi and evaluating {fi} at

t ∈ T to generate Yi(t) for i = 1, . . . , n + 1. Thus, under Assumption 1, (Xi, Yi(t))|U, i =

1, . . . , n + 1 are i.i.d.. For Lemma 3, and again using Assumption 1, since registering

fn1+i, i = 1, . . . , n2+1 to f̄ is deterministic and symmetric, the resulting warping functions

γ∗
i |f̄ , i = 1, . . . , n2 + 1 are i.i.d., and thus Yi|f̄ and (Xi,Yi)|(f̄ , U), i = 1, . . . , n2 + 1 are

also i.i.d.

Proof of Theorem 1. Lemma 2 ensures exchangeability of {(Xi, Yi)}, i = 1, . . . , n2 + 1.

Given exchangeable predictors and responses, a permutation symmetric algorithm, and

absolute residual as nonconformity score, the coverage guarantee in Theorem 1 follows

directly from standard conformal prediction literature [Vovk et al., 2005, Barber et al.,

2023]. The anti-conservative bound follows from the proof in Lei et al. [2018], assuming no

ties in {Si}.

B Comparison of computational cost

To compare computational efficiency of SoF, FoF, SFCP and FFCP, we recorded log time

cost for a single prediction of a target function based on n = 100 complete functions

sampled at T = 100 time points. For SFCP, we used an equal number of training and

calibration samples, i.e., n1 = n2 = 50. Figure 13 shows the results for data without

(a) and with (b) phase variation. In general, FoF is faster than other methods. This is

because FoF performs prediction for fn+1 simultaneously at all time points. In contrast, the

other methods predict the target function in a pointwise manner. Note that computational

efficiency of the pointwise approaches can be improved via a parallel implementation across

time points. Also, SFCP is faster than FFCP in both cases. Unlike standard split conformal

methods, SFCP does not avoid the grid search. However, the computational cost depends on
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(a) (b)

Figure 13: (a)&(b) Log time cost in seconds for a single prediction for functions without and

with phase variation, respectively.

the number of predictor-response pairs. SFCP only uses n2 = 50 samples in the calibration

set to generate {Xi, Yi(t)} for prediction, which is much smaller than the n = 100 samples

used in FFCP. SFCP is slower when phase variation is present in the data than when it is not.

The Karcher mean is estimated via an iterative algorithm, which requires more iterations

to converge in the presence of phase variation.
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