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Abstract

U-statistics play central roles in many statistical learning tools but face the haunt-
ing issue of scalability. Despite extensive research on accelerating computation by
U-statistic reduction, existing results almost exclusively focused on power analysis.
Little work addresses risk control accuracy, which requires distinct and much more
challenging techniques. In this paper, we establish the first statistical inference proce-
dure with provably higher-order accurate risk control for incomplete U-statistics. The
sharpness of our new result enables us to reveal how risk control accuracy also trades
off with speed, for the first time in literature, which complements the well-known
variance-speed trade-off. Our general framework converts the challenging and case-
by-case analysis for many different designs into a surprisingly principled and routine
computation. We conducted comprehensive numerical studies and observed results
that validate our theory’s sharpness. Our method also demonstrates effectiveness on
real-world data applications.

Keywords: Nonparametrics, statistical learning, Edgeworth expansion, fast computation.
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1 Introduction

A U-statistic, denoted by Un, is associated with an i.i.d. sample X1, . . . , Xn drawn from a

general probability space and a degree-r permutation-invariant kernel function hpx1, . . . , xrq,

s.t. hpx1, . . . , xrq “ hpxπp1q, . . . , xπprqq for any bijection π : r1 : rs Ø r1 : rs. It is defined as

Un :“

ˆ

n

r

˙´1
ÿ

1ďi1ă...ăirďn

hpXi1 , . . . , Xirq “:

ˆ

n

r

˙´1
ÿ

IrPCr
n

hpXIrq, (1)

where Ck
n :“ tpi1, . . . , ikq : 1 ď i1 ă . . . ă ik ď nu is the collection of all r-tuples and define

the shorthand XIk :“ pXi1 , . . . , Xikq for any k P r1 : rs. U-statistics play central roles in

many contemporary statistical learning methods, such as in the following applications:

Example 1.1 (Example 1 of [24]). Test the symmetry of the distribution of X P R by

hpx1, x2, x3q :“ signp2x1 ´ x2 ´ x3q ` signp2x2 ´ x3 ´ x1q ` signp2x3 ´ x1 ´ x2q.

Example 1.2 (Bergsma-Dassios sign covariance [2, 31]). To test the independence of

X P SX and Y P SY , where SX and SY are Banach spaces equipped with metrics ρX

and ρY , respectively, define h
`

px1, y1q, . . . px4, y4q
˘

:“ sXpxi1 , . . . , xi4qsY pyi1 , . . . , yi4q, where

sXpt1, . . . , t4q :“ sign
␣

ρXpt1, t2q`ρXpt3, t4q´ρXpt1, t3q´ρXpt2, t4q
(

, and define sY similarly.

Example 1.3 (Treatment effect measurement [34, 44]). Let Y1, . . . , Yn denote the observed

treated-minus-control matched pair differences. Given integers r, r and r̄ satisfying 1 ď r ď

r ď r, consider any r observations YIr :“ pYi1 , . . . , Yirq. Define hpYIrq :“
řr

ℓ“r 1rYIr,pℓqą0s,

where Ir,pℓq denotes the index of the ℓ-th largest |Yik | for k “ 1, . . . , r.

One primary challenge in the practical use of U-statistics is the high computational cost.

Even just evaluating Un costs Opnrq time, where r varies across applications, ranging from

r “ 2 for Maximum Mean Discrepancy (MMD) [16, 35] and energy distance [40], to r “ 4

for dCov [40, 42] and SignCov (Example 1.2), and even up to around 20 in Example 1.3
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(see Tables 3 and 4 in [44]). To mitigate this burden, researchers have developed two main

approaches. The first explores shortcuts to fast-compute Un: [34, 22, 6, 14] showed that

some U-statistics can be computed in Opn log nq time. However, these shortcuts only work

for scalar inputs1, limiting their applicability to complex input data types. For instance,

the Bergsma-Dassios sign covariance (Example 1.2) with manifold-valued functional tra-

jectories as inputs [31] cannot benefit from the acceleration tricks in [20, 14]. Moreover,

for non-scalar X-inputs, even evaluating a single hpXIrq term can sometimes be expensive.

In our data analysis in Section 5.2, we consider earthquake and starlight change curves

Xiptq for t P r0, T s, see Figure 1. We aim to assess their within- and between- cluster dis-

similarity by mean pairwise distance for different earthquake scales and star types, using a

distance hpXip¨q, Xjp¨qq between curves, eliminating nuisance phase discrepancy. A mature

technique for aligning curves by matching their key landscape features is to compute a

“warping function” [38, 39]. However, evaluating a single hpXip¨q, Xjp¨qq using this method

can take a few seconds on a high-performance computing (HPC) server.

This naturally motivates the second acceleration strategy: U-statistic reduction, that

is, to average over a much smaller set of r-tuples. Let

Jn,α :“
`

Ip1q
r , . . . , Ip|Jn,α|q

r

˘

(2)

be a collection of elements in Cr
n with |Jn,α| — nα for some α P p1, rq – we shall treat Jn,α

almost like a subset of Cr
n, except that Jn,α allows duplication. The reduced U-statistic

(also known as an incomplete U-statistic [3, 8]) with design Jn,α is defined as

UJ :“ |Jn,α|
´1

ÿ

IrPJn,α

hpXIrq. (3)

There are two kinds of prices we must pay for computation reduction. First, this reduction

inflates VarpUJq, which further determines: (i) the confidence interval radius; and (ii) the

1[14] exploits the coordinate-wise order relations, but its trick cannot apply to non-vector inputs.
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Figure 1: UCR data sets: row 1: Earthquakes, where blue curves show raw data and red

curves show a moving average smoothing of window size ℓ “ 7; row 2: Starlight.

minimum separation condition |µHa ´ µH0 | for consistently2 testing H0 : µ “ µH0 versus

Ha : µ “ µHa , where µ :“ ErUns. This aspect of computational-statistical trade-off is easy

to quantify thus well-understood. The overwhelming majority of existing literature on U-

statistic reduction regards this aspect, pioneered by [3] and followed up by many works

aiming at designing Jn,α smartly to minimize VarpUJq under a given computational budget

Opnαq [26, 27, 28, 33, 10, 24, 13].

The second kind of price for speeding-up, namely, the deterioration of risk control

accuracy in statistical inference, is much more elusive and difficult to characterize. Here,

by “risk control accuracy”, we refer to: (i) |Pptrue µ P CIq ´ p1 ´ βq| for confidence

intervals; and (ii) |Ppactual type I error rateq ´ β| for hypothesis testing, where 1 ´ β and

2Test consistency: a test is called consistent if its type-I and type-II errors both converge to 0.
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β are the nominal confidence and significance levels, respectively. Characterizing this

accuracy requires a higher-order accurate approximation to the sampling distribution of the

studentized reduced U-statistic, which most existing works fail to describe by only providing

asymptotic results [4, 23, 7, 8]. Our paper is the first to uncover the computational-

statistical trade-off in risk control accuracy, filling in a critical gap in the literature.

This paper makes several significant contributions. We present the first comprehensive

study on risk control accuracy in statistical inference for reduced U-statistics. We establish

the first higher-order accurate distribution approximation for non-degenerate reduced U-

statistics under general designs, leading to Cornish-Fisher confidence intervals and tests

both with higher-order accurate risk controls. Our approach requires only two natural,

weak, and easy-to-verify assumptions that are satisfied by many popular designs. Notably,

our method strictly complies with the Opnαq computational budget in all parts and allows

for easy parallel computing.

Our method’s accuracy significantly improves over the best existing results. The sharp-

ness of our error bounds enables us to reveal, for the first time, the trade-off between

computation complexity (speed) and risk control accuracy of reduced U-statistics. Inter-

estingly, we discovered that higher-order risk control accuracy can be achieved for any

α ą 1; meanwhile, it may be surprising that we also find that the computation reduction

from Opnrq to Opn2q is nearly free lunch, without deteriorating risk control error rate and

only inflating VarpUJq imperceptibly. For practitioners, our method provides fast and easy-

to-implement solutions with tuning guidance, as well as advice on the minimum sample

size requirement to achieve a target risk control accuracy goal.

The theoretical analysis in this paper differs significantly from the complete U-statistic

literature [21, 30, 32] and features several innovations. Incompleteness introduces new and
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complicated leading terms and breaches the symmetry of remainder terms, rendering exist-

ing bounds and analysis routines in [21, 30] inapplicable. We tackle these challenges with

our original analyses. A key methodological contribution of this paper is the development

of a succinct and weak condition on the reduction design, formalized as Assumption 2,

which was distilled from our theoretical explorations. In the proof of Lemma 3.2, a crucial

supporting result for Corollary 3.2, we address the intricate dependency structures that

arise in certain random sampling schemes.

Our paper goes beyond any single application or specific data structure, focusing instead

on the fundamental question of risk control accuracy in U-statistic reduction. The general

and comprehensive theoretical and methodological framework we present fills in a critical

gap in the literature, providing a much-needed toolkit for many U-statistic-based learning

methods that aim to maintain accurate risk control while scaling up.

1.1 Notation

We write Bn “ rOppbnq if PpBn ě C ¨bnq “ Opn´1q for some constant C ą 0 and large enough

n. Let Φp¨q and ϕp¨q be the CDF and PDF of Np0, 1q, respectively. For simplicity, we regard

nα and nα´1 as integers throughout, omitting duly floor/ceiling operations. We adopt the

Matlab style notation for arithmetic sequence: ra1 : a2s denotes pa1, a1 ` 1, a1 ` 2, . . . , a2q,

whereas ra1 : δ : a2s denotes pa1, a1 ` δ, a1 ` 2δ, . . . , a2q.

2 Reduction of non-degenerate noiseless U-statistics

Recall that the reduced U-statistic UJ is the average of individual hpXIrq :“ hpXi1 , . . . , Xirq

terms, where Ir :“ ti1, . . . , iru ranges over a small subset Jn,α inside Cr
n :“ tthe collection

of all r-tuples in r1 : ns :“ t1, . . . , nuu. Our goal is to perform accurate statistical infer-
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ence for µ “ ErUJ s based on UJ , within a limited computational budget of Opnαq for a

given constant α : α ă r. Following the convention [28], we call Jn,α the design of UJ .

Throughout this section, Jn,α is fixed. To ease narration, we set up two sets of symbols.

• Define the projection term gk’s recursively: first set g1pX1q :“ ErhpXr1:rsq|X1s ´ µ;

then for each k “ 2, . . . , r in order, define gkpXr1:ksq :“ ErhpXr1:rsq|Xr1:kss ´ µ ´

řk´1
k1“1

ř

Ik1 PCk1

r1:ks

gk1pXIk1 q. All gk terms are mean-zero and mutually uncorrelated

[30].

• For any size-k subset Ik of r1 : ns, let an,α;kpIkq :“
ˇ

ˇtrIr P Jn,α : Ik Ď rIru
ˇ

ˇ count

how many times Ik shows up in the design Jn,α. For example, if r “ 3, n “ 7 and

Jn,α “ tp1, 2, 4q, p2, 5, 7q, p3, 4, 6qu, then an,α;1p2q “ 2 and an,α;2pt3, 4uq “ 1.

Example 2.1. To understand the random variation in UJ , suppose r “ 3 and inspect just

one term hpXi1 , Xi2 , Xi3q. For example, suppose pi1, i2, i3q “ p1, 2, 4q, we have

hpX1, X2, X4q “ µ ` g1pX1q ` g1pX2q ` g1pX4q

` g2pX1, X2q ` g2pX1, X4q ` g2pX2, X4q ` g3pX1, X2, X4q. (4)

We call the form like (4) the “one-term Hoeffding’s decomposition” of hpXIrq. Conse-

quently, hpX1, X2, X4q contributes a count of 1 to each an,α;kpIkq, where H ‰ Ik Ď t1, 2, 4u.

In general, decomposing each hpXIrq in UJ as in Example 2.1, by [19], we have

UJ “ |Jn,α|
´1

r
ÿ

k“1

ÿ

IkPCk
n

an,α;kpIkqgkpXIkq. (5)

Next, we address two fundamental questions regarding (5) in Sections 2.1 and 2.2.

2.1 What makes a good/bad design?

There are two main considerations that define a good design. They will both translate into

our regularity assumptions and be reflected in our proposed methods.
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(i) This design should comply with computation budget and be easy to implement.

(ii) Under the premise of (i), this design minimizes VarpUJq.

Our first regularity assumption reflects consideration (i).

Assumption 1. The design of Jn,α is data-oblivious, namely,

Jn,α K pX1, . . . , Xnq. (6)

For a deterministic Jn,α, (6) means that Jn,α is designed without consulting the data Xr1:ns.

The motivation behind Assumption 1 is two-fold, both weighing on consideration (i).

First, although as pointed out by [24] that data-aware designs may have superior variance

reduction, the step of adapting the design Jn,α to the data Xr1:ns may require expensive

computation that can exceed the Opnαq budget. The second motivation regards implemen-

tation feasibility. It is inspired by the study of network moments as “noisy U-statistics”3,

where Xi’s are not only unobserved, but inestimable due to identifiability issues [15, 43].

Consideration (ii) has long been the focus in existing literature (but not always with

much attention to consideration (i)). Clearly, the dummy construction of Jn,α by repeating

r1 : rs for |Jn,α| times is useless. What makes VarpUJq small then? By (5), we have

VarpUJq “ |Jn,α|
´2

r
ÿ

k“1

!

ÿ

IkPCk
n

a2n,α;kpIkq

)

ξ2k, (7)

while for each k P r1 : rs, it always holds that
ř

IkPCk
n
an,α;kpIkq ”

`

r
k

˘

|Jn,α|. Therefore,

minimizing VarpUJq demands that for each k, all an,α;kpIkq’s are as similar as possible –

this lets UJ maximally explore different index combinations. For instance, if α P p1, 2q, this

is requiring an,α;1piq ” pr{nq ¨ |Jn,α| and an,α;kpIkq P t0, 1u for all k P r2 : rs. In other words,

3Despite this paper exclusively studies conventional, noiseless U-statistics, in a closely related work, we

will make use of the analysis techniques in this paper to analyze network U-statistics.
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we need different hpXIrq terms to contribute unique g2, . . . , gr terms (while g1 terms will

unavoidably repeat as α ą 1) – we call this the “non-overlapping property” of the design.

In alignment with these discussions, our second assumption aims at avoiding bad designs.

Assumption 2. Set α P p1, rqzZ. It holds for all k P r1 : rs and Ik P Ck
n that

an,α;kpIkq P

$

’

’

’

&

’

’

’

%

rC1, C2sn
α´k, if k ă α,

r0, C2s, if k ą α,

(8)

where C1, C2 : 0 ă C1 ă C2 are universal constants.

In Assumption 2, we exclude integer α choices for sophisticated technical reasons – but

in plain language, this would make theoretical analysis much cleaner. Practitioners who

set a working α “ 2 can use our formulas for α “ 2.001, without causing noticeable error.

Last but important, the two considerations (i) and (ii) intertwine: to our best knowl-

edge, principled and fast construction of a variance-minimizing design remains an open

challenge before this paper. The variance-minimal methods in existing literature typically

depend on brilliant, but case-by-case, constructions for special pn, r, |Jn,α|q configurations.

They provide little clue for handling general pn, r, |Jn,α|q settings. In Section 3.1, we will

solve this standing problem with an innovative design method.

2.2 How to develop a higher-order accurate statistical inference?

2.2.1 Non-degeneracy, variance estimation and studentization

With Assumptions 1 and 2, we can consider the design as “reasonably good” that provides

a solid basis for downstream analysis. In this section, we will develop higher-order accurate

statistical inference method for any given design that satisfies both assumptions. In other

words, through this section, we fix Jn,α. Like in the study of complete U-statistics, we will
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first formulate a variance estimator and use it to studentize UJ , then formulate an accurate

distribution approximation to the studentization. All these steps critically depend on the

degeneracy status of the U-statistic.

Definition 2.1. We call UJ “non-degenerate”, if ξ21 :“ Varpg1pX1qq ě constant ą 0.

Due to page limit, we leave the degenerate case, i.e., ξ1 “ 0 to future work. Next

up, we face two routes for variance estimation: we could target at either the full variance

σ2
J :“ VarpUJq or just the dominating term σ2

J ;1 :“ |Jn,α|´2
řn

i“1 a
2
n,α;1piqξ21 . This was not a

question for complete U-statistics, where σ2
J and σ2

J ;1 differ only by Opn´2q [30, 43]; but for

an incomplete UJ , we have |σ2
J ´σ2

J ;1| — n´α, which cannot be directly ignored. We choose

to estimate σ2
J ;1, because it leads to cleaner formulation and faster computation. The

discrepancy between σ2
J ;1 and VarpUJq will be accounted for by our Edgeworth correction

terms, see Remark 2.4 for more details.

To estimate σ2
J ;1, we need to estimate ξ21 :“ Varpg1pX1qq (since we know an,α;1piq’s).

Classical variance estimators, such as jackknife ([30], Section 2) and [43], do not comply

with the Opnαq computation budget limit. Therefore, we propose the following estimator

rξ21 :“ n´α
n
ÿ

i“1

nα´1
ÿ

d“1

hpXri:d:pi`pr´1qdqsqhpXri:p´dq:pi´pr´1qdqsq ´ rµ2, (9)

where rµ2 :“ n´α
řn

i“1

řnα´1

d“1 hpXri:d:pi`pr´1qdqsqhpXrpi`rdq:d:pi`p2r´1qdqsq. The formula (9) may

seem intricate at first sight, but its idea is very simple. To illustrate, set r “ 3 as in

Example 2.1 and inspect the summands corresponding to d “ 1 in the first term in (9):

n´1
n
ÿ

i“1

hpXi, Xi`d, Xi`2dqhpXi, Xi´d, Xi´2dq “ µ2
` ξ21 ` R, (10)

where R consists of several types of terms, such as g21pXiq ´ ξi, and g1pXi´dqµ, and

g1pXiqg1pXi`2dq, and so on, all averaged over i. Clearly, R is mean-zero and concentrates.

Similarly, we can understand why rµ2 is also an unbiased estimator for µ2. We stress that
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our variance estimator (9) strictly complies with the Opnαq computation budget constraint.

With the variance estimator, we can studentize UJ as

TJ :“
UJ ´ µ

|Jn,α|´1
␣
řn

i“1 a
2
n,α;1piq

(1{2
¨ rξ1

. (11)

2.3 Accurate distribution approximation to studentization

An accurate distribution approximation for TJ is the premise of accurate inference. For

this goal, it is important to understand the stochastic variations in UJ . A natural method

is to compare TJ to the standardization of UJ (replacing rξ1 in (11) by the true ξ1) and then

account for the plug-in error on the denominator. Define

Mα :“ |Jn,α|
´1

n
ÿ

i“1

a2n,α;1piq — nα´1, (12)

T1 :“

řn
i“1 an,α;1piqg1pXiq

␣
řn

i“1 a
2
n,α;1piq

(1{2
ξ1
, T2 :“

řr
k“2

ř

IkPCk
n
an,α;kpIkqgkpXIkq

␣
řn

i“1 a
2
n,α;1piq

(1{2
ξ1

,

T3 :“
n
ÿ

i“1

g21pXiq ´ ξ21
nξ21

`
1

nMαξ21

n
ÿ

i“1

Mα
ÿ

d“1

r´1
ÿ

ℓ“1

g1pXiq

!

g2pXi, Xi`ℓdq ` g2pXi, Xi´ℓdq

)

. (13)

Let us explain these definitions for general audience. First, Mα accounts for a frequently-

used non-random factor. Then T1 ` T2 is the standardization of UJ : we separate T1 and

T2 because T1 is a weighted i.i.d. sum and the dominating term, while T2 is a higher-order

bias-correction to enhance risk control accuracy. Finally, T3 captures the plug-in error in

using rξ1 in TJ . Formally, we have the following lemma.

Lemma 2.1. Set α P p1, 2q, we have rξ21 ´ ξ21 “ ξ21 ¨ T3 ` rOppn´α{2 log nq.

With the above notation preparation and supporting results, we can decompose TJ :

TJ “ pT1 ` T2qp1 ` T3q
´1{2

“ T1 ` T2 ´
1

2
T1T3 ` rOp

`

n´α{2 log n
˘

. (14)
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So far, everything may seem familiar to readers who know the U-statistic literature. How-

ever, next we will see how U-statistic reduction leads to very different bias-correction terms

in the Edgeworth expansion. Before that, we make a quick technical remark.

Remark 2.1. Aside from Assumptions 1 and 2, another commonly required assumption in

U-statistic literature is Cramér’s condition [21, 30]: lim suptÑ8

ˇ

ˇEreitξ
´1
1 ¨g1pX1qs

ˇ

ˇ ă 1. This

condition is undesirably restrictive and violated by important applications, e.g., Example

1.1 with a discrete X1 distribution. Inspired by [25] and [36], we add to TJ an artificial

smoothing term δJ „ Np0, σ2
δ “ CδJ log n ¨ n´αq independent of TJ with a large enough

constant CδJ ą 0. We will show that δJ waives Cramér’s condition without altering the

distribution approximation formula4.

Now we present our main results and accompanying remarks. Let ξ2k :“ VarpgkpXr1:ksqq.

Define the population Edgeworth expansion formula for TJ to be

GJn,αpuq :“ Φpuq ` ϕpuq

#

Γ0puq
?
n

`

t
α{2
α´1

u
ÿ

ℓ“1

Γℓpuq

Mα
ℓ

+

, (15)

where we recall the definition of Mα from (12), and define shorthand Γ0 and Γℓ’s, as

follows.

Γ0puq
?
n

:“

˜

´

řn
i“1 a

3
n,α;1piqpu2 ´ 1q

6ξ31t
řn

i1“1 a
2
n,α;1pi1qu3{2

`
r|Jn,α|u2

2t
řn

i1“1 a
2
n,α;1pi

1qu1{2nξ31

¸

Erg31pX1qs

`

˜

´

ř

1ďiăjďn an,α;1piqan,α;1pjqan,α;2pti, juqpu2 ´ 1q

t
řn

i1“1 a
2
n,α;1pi1qu3{2ξ31

`
rpr ´ 1q|Jn,α|u2

t
řn

i1“1 a
2
n,α;1pi1qu1{2nξ31

¸

Erg1pX1qg1pX2qg2pX1, X2qs, (16)

Γℓpuq

Mα
ℓ
:“ ´

H2ℓ´1puq

p2ℓq!t
řn

i1“1 a
2
n,α;1pi1quℓξ2ℓ1

ˆ

!

r
ÿ

k“2

ÿ

IkPCk
n

a2n,α;kpIkqξk

)ℓ

, (17)

4 This means that the same Edgeworth expansion formula accurately approximates both FTJ`δJ without

Cramér’s condition and FTJ
assuming this condition.
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where Hkpuq :“ p´1qkeu
2{2dk{dukpe´u2{2q is the kth Hermite polynomial ([37], page 99).

In (15), the first correction term (16) generalizes its familiar counterpart in literature.

To see this, consider the special case of complete U-statistic, where Jn,α “ Cr
n, We have

|Jn,α| “
`

n
r

˘

and an,α;kpIkq ”
`

r
k

˘`

n
r

˘

{
`

n
k

˘

“
`

n´k
r´k

˘

, thus (16) reproduces Eq. (1.6) in [21].

The second term (17), however, is unique to reduced U-statistics and was never seen

in existing literature. To facilitate understanding, in Table 2, we sketch some important

properties of the main terms in the decomposition (5). Here, while the first term in T3 is

Term in TJ ’s decomp. Asymp. order Corresp. Edgeworth terms

T1 1 Φ and Γ0

T2 n´pα´1q{2 Γ0 and Γℓ’s, ℓ ě 1

T1 ¨ T3 n´1{2 Γ0

Table 1: Properties of main terms in TJ ’s decomposition (5)

clearly — n´1{2, its second term is also — n´1{2 – to see this, simply notice that for each ℓ,

1

nMα

n
ÿ

i“1

Mα
ÿ

d“1

g1pXiqg2pXi, Xi`ℓdq “
1

n

n
ÿ

i“1

Erg1pXi´ℓdqg2pXi`ℓd, Xiq|Xis

`
1

nMα

n
ÿ

i“1

Mα
ÿ

d“1

␣

g1pXiqg2pXi, Xi`ℓdq ´ Erg1pXiqg2pXi, Xi`ℓdq|Xi`ℓds
(

, (18)

where the second term on the RHS of (18) is rOppn´α{2 log nq, thus ignorable5. From Table

2, we see that T2 leads to our newly-discovered Edgeworth expansion terms. It is crucial

that we clarify that “T2 lying in the n´pα´1q{2 order” does not automatically guarantee that

there will exist an Opn´pα´1q{2q term in the Edgeworth expansion. Roughly speaking, this

all depends on which terms will lead in the Taylor expansion E
“

eitpT1`T2q
‰

“ E
“

eitT1
`

1 `

itT2 `
pitq2

2
T 2
2 ` ¨ ¨ ¨

˘‰

, while others enter the remainder. See the proofs of Lemma S.1.3-(d)

and Proposition S.1.1 in Supplementary Material for more details.

5Notice that although this term has similar numerator as T2, its denominator is much larger.
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In practice, we use the empirical version of (15) with estimated coefficients. Define

rErg31pX1qs :“
1

n

n
ÿ

i“1

hpXri:pi`r´1qsqhpXti,rpi`rq:pi`2r´2qsuqhpXti,rpi`2r´1q:pi`3r´3qsuq ´ rµ3 (19)

rErg1pX1qg1pX2qg2pX1, X2qs :“
1

n

n
ÿ

i“1

hpXrpi´r`1q:isqhpXri:pi`r´1qsqhpXrpi`r´1q:pi`2r´2qsq

´ rµ3
´ 2UJ ¨ rξ21 (20)

rξ2k :“
1

nα

n
ÿ

i“1

nα´1
ÿ

d“1

hpXri:d:pi`pr´1qdqsqhpXrpi`pk´1qdq:p´dq:pi´pr´kqdqsq ´ rµ2
´

k´1
ÿ

k1“1

ˆ

k

k1

˙

rξ2k1 , (21)

for k P r2 : rs. These estimators all share the same idea in our development of rξ21 in (9),

thus can be understood similarly. Let rGJn,αpuq be the empirical version of GJn,αpuq with

coefficients estimated by (9), (19), (20) and (21). We have

Theorem 2.1. Set α P p1, 2q. If UJ is non-degenerate and Jn,α satisfies Assumptions 1

and 2, then we have

›

›FTJ`δJ |Jn,αpuq ´ GJn,αpuq
›

›

8
“ O

`

n´α{2 log1{2 n
˘

, (22)

›

›FTJ`δJ |Jn,αpuq ´ rGJn,αpuq
›

›

8
“ rOppn´α{2 log1{2 nq. (23)

Remark 2.2. Theorem 2.1 highlights an important practical guidance that for non-degenerate

U-statistics, setting α ą 2 will not further merit risk control accuracy, since the error

bound at α “ 2 already matches that for a complete U-statistic [21, 30]. Also, increasing

α beyond 2 only brings Opn´2q improvement to VarpUJq [28]. Considering the computa-

tional cost grows exponentially in α, it is therefore not worthwhile to set α ą 2 under

non-degeneracy.

Remark 2.3. Remark 3.1 in [8] points out that as α decreases, σJ ;1 becomes a poorer

approximation to σJ ; when α “ 1, |σJ ;1 ´ σJ | no longer vanishes as n Ñ 8, which [41, 8]

refer to as a “phase change”. While [41, 8] exclusively studied VarpUJq as α Ñ 1, our

results reveal how risk control accuracy behaves in this regime, completing the missing piece

14



in the big picture. We find that the Edgeworth expansion becomes lengthier, and the risk

control accuracy also depreciates. If we do not incorporate an increasing number of bias-

correction terms in the Edgeworth expansion, the risk control accuracy depreciates even

faster: the n´α{2 term in Theorem 2.1 will be replaced by n´pα´1q, which is the Berry-

Esseen bound of the normal approximation to TJ .

2.3.1 Higher-order accurate statistical inference

To test the hypotheses

H0 : µ “ µ0; vs. Ha : µ ‰ µ0,

we use the empirical p-value, denoted by p and defined as follows

p :“ 2min
!

rGJn,αpT
pobsq
J ` δJq, 1 ´ rGJn,αpT

pobsq
J ` δJq

)

, (24)

where T
pobsq
J :“ pUJ ´ µ0q{

␣

|Jn,α|´1t
řn

i“1 a
2
n,α;1piqu1{2

rξ1
(

.

Corollary 2.1. Under the conditions of Theorem 2.1, the test (24) enjoys a higher-order

accurate type-I error control: PH0

`

p ă β
ˇ

ˇJn,α

˘

“ β ` Opn´α{2 log1{2 nq.

Next, we invert the Edgeworth expansion to formulate the Cornish-Fisher confidence

interval (CF-CI) with higher-order accurate confidence level control. Before presenting

our method, for readers who are not familiar with this topic, we give a quick review of

how the CF-CI was derived in the classical setting. Constructing a CI requires quantiles

of the distribution of the pivot, but the Edgeworth expansion G is not guaranteed to be a

valid CDF, as its value may exceed the range r0, 1s, thus cannot be naively inverted. The

Edgeworth expansions for an i.i.d. sample mean and a complete U-statistic both take the

form Gpuq “ Φpuq ` n´1{2ϕpuqΓ0puq, at Opn´1q accuracy. Given the significance level β P

p0, 1{2q, we need to find a u that well approximates the lower-β quantile of the distribution
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approximated byG, that is, the u such thatGpuq “ β`Opn´1q. This can be achieved by the

Cornish-Fisher expansion [17, 18], which takes the form u “ G´1pzβq :“ zβ ´ n´1{2Ψ0pzβq,

where zβ :“ Φ´1pβq. To determine Ψ0pzβq, we expand Gpzβ ´n´1{2Ψ0pzβqq and set all n´1{2

terms to sum to zero. This gives Ψ0puq “ Γ0pzβq. Therefore, G´1pzβq “ ϕpzβq´n´1{2Γ0pzβq.

In contrast, the Cornish-Fisher expansion in our setting is much complicated by the

Γℓ — n´pα´1qℓ terms in the Edgeworth expansion. Our C-F expansion reads:

G´1
Jn,α

pzβq “: zβ ´
Γ0pzβq

?
n

`

t
α{2
α´1

u
ÿ

ℓ“1

Ψℓpzβq

Mα
ℓ
. (25)

Technically speaking, when plugging u “ G´1
Jn,α

pzβq into (15), the term Ψk will release

expansion terms at the orders of Mα
´k,Mα

´pk`1q, . . . ,Mα
´tpα{2q{pα´1qu. Therefore, we for-

mulate Ψk’s recursively. We describe step 1 (ℓ “ 1):

(i) Only keep Γ0 and Γ1 on the RHS of (15), temporarily ignoring other Γℓ’s. Do the

same for G´1
Jn,α

(only keep Γ0 and Ψ1).

(ii) Plug u “ G´1
Jn,α

pzβq into (15).

(iii) Set the sum of Mα
´1 terms to zero. This would solve Ψ1.

To solve Ψ2, add Γ2 and Ψ2 back into consideration in (i) and set the sum of Mα
´2 terms

to zero in (iii). Repeat this procedure until all Ψk’s are solved.

Now, we formalize the above method. Readers who do not wish to read involved

math may jump to Theorem 2.2. To start, set Ψ1pzβq :“ ´Γ1pzβq. Then for each k “

2, . . . , tpα{2q{pα ´ 1qu in order, recursively compute Ψkpzβq by

Ψkpzβq ¨ ϕpzβq “ ´

k
ÿ

ℓ1“2

#

ÿ

j1,...,jℓ1 :
1ďtj1,...,jℓ1 uďk´ℓ1`1

j1`¨¨¨`jℓ1 “k

Ψj1pzβq ¨ ¨ ¨Ψjℓ1 pzβq ¨
ϕpℓ1´1qpzβq

pℓ1q!

+

´
ÿ

k1,k2:k1`k2“k
k1“0,...,k´1

«#

ϕpzβq ¨ 1rk1“0s `

k1
ÿ

ℓ1“1

ÿ

j1,...,jℓ1 :
1ďtj1,...,jℓ1 uďk1´ℓ1`1

j1`¨¨¨`jℓ1 “k1

Ψj1pzβq ¨ ¨ ¨Ψjℓ1 pzβq ¨
ϕpℓ1qpzβq

pℓ1q!

+
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ˆ

#

Γk2pzβq `

k2´1
ÿ

ℓ1“1

k2´ℓ1
ÿ

ℓ2“1

#

ÿ

j1,...,jℓ2 :
1ďtj1,...,jℓ2 uďk2´ℓ1´ℓ2`1

j1`¨¨¨`jℓ2 “k2´ℓ1

Ψj1pzβq ¨ ¨ ¨Ψjℓ2 pzβq ¨
Γ

pℓ2q

ℓ1 pzβq

pℓ2q!

++ff

. (26)

To provide readers a more concrete view of the result, let us calculate the first three Ψk’s.

Range of α k6 Formula for computing Ψk
7

r4{3, 2s 1 Ψ1 “ ´Γ1

r6{5, 4{3q 2 ´ Ψ2 “ pΓ1
1Ψ1 ` Γ2q ` pΨ2

1{2 ` Ψ1Γ1qϕ1
{ϕ

8

r8{7, 6{5q 3
´ Ψ3 “ pΓ3 ` Ψ2Γ

1
1 ` Ψ2

1Γ
2
1{2 ` Ψ1Γ

1
2q

`pΨ1Ψ2`Ψ1Γ2 ` Ψ2
1Γ

1
1 ` Ψ2Γ1qϕ1

{ϕ ` pΨ3
1{6 ` Ψ2

1Γ1{2qϕ2
{ϕ

Table 2: Examples of C-F expansion formulas

From (26) and Table 2, we see that all C-F expansion terms are functions of Γℓ’s. Thus,

replacing Γℓ’s by rΓℓ’s, we obtain the empirical C-F expansion, denoted by rG´1
Jn,α

p¨q.

Theorem 2.2. Under the conditions of Theorem 2.1, for any given β P p0, 1q, the popu-

lation and empirical Cornish-Fisher expansions respectively satisfy

FTJ`δJ |Jn,α

`

G´1
Jn,α

pzβq
˘

“ β ` O
`

n´α{2log1{2 n
˘

, (27)

›

› rG´1
Jn,α

puq ´ G´1
Jn,α

puq
›

›

8
“ O

`

n´α{2 log1{2 n
˘

. (28)

Corollary 2.2. Under the conditions of Theorem 2.1, the Cornish-Fisher confidence in-

terval Iβ defined by

Iβ :“
´

UJ ´ p rG´1
Jn,α

pz1´β{2q ´ δJq ¨ |Jn,α|
´1
␣

n
ÿ

i“1

a2n,α;1piq
(1{2

¨ rξ1,

UJ ´ p rG´1
Jn,α

pzβ{2q ´ δJq ¨ |Jn,α|
´1
␣

n
ÿ

i“1

a2n,α;1piq
(1{2

¨ rξ1

¯

6This is the maximum k such that Ψk appears in the C-F expansion. It equals tpα{1q{pα ´ 1qu.
7Since all functions are evaluated at zβ , we omit all “pzβq” notions, e.g., we only write “Ψ1” for “Ψ1pzβq”.
8The formula for Ψ2 uses the Ψ1 computed in the “k “ 1” case. The same goes for the formula for Ψ3.
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enjoys a higher-order accurate control of the actual coverage probability around 1 ´ β:

P
`

µ P Iβ

ˇ

ˇJn,α

˘

“ 1 ´ β ` Opn´α{2 log1{2 nq.

2.3.2 Two remarks

First, as mentioned in Section 1, reducing the U-statistic inflates VarpUJq. However, we

studentize UJ by rσJ ;1, which only captures the leading term in VarpUJq, whose order does

not vary with α. Readers naturally wonder where the variance inflation is reflected in our

statistical inference procedure. Here, we use our CI formula as an example to clarify.

Remark 2.4. The radius of our Cornish-Fisher CI is O
`

n´1{2 ` n´pα´1{2q
˘

9. Studentizing

UJ with rσJ will also yield a CI radius of tOpn´1 ` n´αqu1{2 “ O
`

n´1{2 ` n´pα´1{2q
˘

. In

other words, using rσJ or rσJ ;1 to studentize UJ lead to different pivots as intermediate steps,

but eventually, their eventually produced CI lengths are on the same order.

Our second remark regards test power. In fact, any test based on an asymptotically

Np0, 1q pivot (including our method) is asymptotically power-optimal (see how Theorem

3.5 of [1] establishes asymptotic power-optimality). We reiterate that power-optimality

and risk control accuracy are distinct goals. As pointed out in [36], achieving either

goal alone is not difficult, however, achieving both is usually rather challenging. To our

best knowledge, our work is the first to achieve both goals for inference based on reduced

U-statistics.

9To see this, notice that Γ0p´uq “ Γ0puq, while Γℓp´uq “ ´Γℓpuq for all ℓ ě 1. Also notice that

p rG´1
Jn,α

pz1´β{2q ´ δJq — 1 ` n´pα´1q and |Jn,α|´1
␣
řn

i“1 a
2
n,α;1piq

(1{2
— n´1{2.
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3 Our method: application to specific designs

In this subsection, we apply our general results in Section 2 to analyzing several designs.

First, we propose and analyze a novel variance-optimal deterministic reduction scheme

in Section 3.1. Then in Section 3.2, we present the first provably higher-order accurate

inference for a few randomized designs [28, 8].

3.1 A novel variance-optimal deterministic design

As discussed in Section 2.1, existing works typically focused on minimizing the variance for

special configurations. In this section, we present a novel method to principally construct

variance-minimizing Jn,α for general pα, rq. To start, recall an important simplification

that we proposed in Remark 2.2 that we only need to consider α P p1, 2q. The key to

minimize VarpUJq is that the design Jn,α needs to satisfy the following properties.

(D1) All an,α;1piq’s are equal;

(D2) For all k ě 2 and Ik P Ck
n, all an,α;kpIkq’s are 0 or 1; or equivalently, any two member

sets of Jn,α may not overlap (intersect) by more than 1 index.

Now we describe our design. We set Jn,α to be the union of a few J pdq
n,α sets, defined as

J pdq
n,α :“

␣`

i ` p21´1
´ 1qd, i ` p22´1

´ 1qd, ¨ ¨ ¨ , i ` p2r´1
´ 1qd

˘

: i “ 1, . . . , n
(

, (29)

where we circulate indexes outside the range r1 : ns. For instance, when r “ 3 as in

Example 2.1, we have J p1q
n,α “ tp1, 2, 4q, p2, 3, 5q, . . . , pn, 1, 3qu. Clearly, any individual J pdq

n,α

satisfies both (D1) and (D2). But when we union a few J pdq
n,α sets, we need to watch out for

the compliance with (D2). For example, p1, 2, 4q from J p1q
n,α and p2, 4, 8q from J p2q

n,α overlap

by 2 indexes, violating (D2). We meticulously select the set of d values to avoid such
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multiple overlap. Our choice is:

Jn,α :“
b2¨nα´1
ď

d“b1¨nα´1

J pdq
n,α, (30)

where b1, b2 are chosen according to the following lemma.

Lemma 3.1. Suppose n ąą r. Set α P p1, 2q and b1{b2 P
`

p2r´1 ´ 1q{2r´1, 1
˘

. Our design

Jn,α specified by (29) and (30) satisfies an,α;1piq “ nα´1 and an,α;kpIkq P t0, 1u, for all

i P r1 : rs and Ik P Ck
n, k P r2 : rs. Thus it satisfies (D1) and (D2) and minimizes VarpUJq.

Lemma 3.1 ensures that this Jn,α satisfies Assumption 2. Therefore, Theorem 2.1 and

Corollaries 2.1 and 2.2 apply. This Jn,α also greatly simplifies the Edgeworth formulas.

Corollary 3.1. Under our design Jn,α as described by (30) and Lemma 3.1, we have

Γ0puq “
2u2 ` 1

6ξ31
Erg31pX1qs `

pr ´ 1qpu2 ` 1q

2ξ31
Erg1pX1qg1pX2qg2pX1, X2qs, (31)

Γℓpuq “ ´

#

řr
k“2 ξ

2
k

`

r
k

˘

pb2 ´ b1qr2ξ21

+ℓ

¨
H2ℓ´1puq

p2ℓq!
“ ´

#

σ2
h ´ rξ21

pb2 ´ b1qr2ξ21

+ℓ

¨
H2ℓ´1puq

p2ℓq!
, (32)

for ℓ “ 1, . . . , tα{t2pα ´ 1quu, where σ2
h :“ VarphpXr1:rsqq in (32).

We can estimate σ2
h by

rσ2
h :“

1

nMα

n
ÿ

i“1

Mα
ÿ

d“1

h2
pXri:d:pi`pr´1qdqsq ´ rµ2, (33)

where in contrast to (9), we should multiply two identical hpXIrq terms in term 1 in (33).

Now the empirical Edgeworth expansion formula rGJn,αpuq for hypothesis testing can be

computed by combining (15), (19), (20) and (31)–(33). Then with (25) and (26), we can

compute the Cornish-Fisher confidence interval. We skip repetitive formula presentation.

Interestingly, our method not only serves as an acceleration tool itself but also enhances

the performance of other acceleration tools. One example is the divide-and-conquer accel-

eration through parallel computing [7]. They utilize K parallel computing servers that
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return summary statistics to a main server for aggregation. But in [7], each server still

computes a complete U-statistic, leaving significant space for further acceleration. Here,

we present Algorithm 1 that couples our method with the divide-and-conquer idea in [7].

In fact, this algorithm can be viewed as a parallelized version of our own method.

Algorithm 1 Our method + Chen-Peng Reduction

Input: Data: X1, . . . , Xn; kernel function hpx1, . . . , xrq; α; number of servers K; pb1, b2q.

Output: Coefficients of the empirical Edgeworth expansion pGJpuq.

Part I: data splitting

for k “ 1 : K do

Pass: h, n, b1, b2, Xrpk´1qn{K`1´pr´kqnα´1q:pkn{K`maxtpr´1qnα´1,p2r´1´1qnα´1us to server k.

end for k

Part II: local computation

for k “ 1 : K do (On the kth local server, compute the following quantities.)

• Compute and return:

UJ ;k :“
1

nα{K

ÿ

IrPJn,α;k

hpXIrq (34)

with Jn,α;k :“
Ťb2nα´1

d“b1nα´1 J pdq

n,α;k, where J pdq

n,α;k is defined similarly to J pdq
n,α in (29),

except that i ranges in rtpk ´ 1qn{K ` 1u : pkn{Kqs instead of r1 : ns.

• Compute and return:

pE pdq

g1;3
:“

1

n{K

ÿ

iPrppk´1qn{K`1q:pkn{Kqs

hpXrpi´r`1q:isqhpXri:pi`r´1qsqhpXrpi`r´1q:pi`2r´2qsq,

pE pkq
g1g1g2

:“
1

n{K

ÿ

iPrppk´1qn{K`1q:pkn{Kqs

hpXrpi´r`1q:isqhpXri:pi`r´1qsqhpXrpi`r´1q:pi`2r´2qsq.

• For each ℓ P r0 : rs, compute and return:

pηℓ;k :“
1

nα{K

ÿ

iPrppk´1qn{K`1q:pkn{Kqs

nα´1
ÿ

d“1

hpXri:d:pi`pr´1qdqsqhpXrpi`pk´1qdq:p´dq:pi´pr´kqdqsq.
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end for k

Part III: result aggregation

On the central server, compute and output:

UJ :“
1

K

K
ÿ

k“1

UJ ;k,

pµ2 :“
1

K

K
ÿ

k“1

pη0;k,

pξ21 :“
1

K

K
ÿ

k“1

pη1;k ´ pµ2,

pξ2ℓ :“
1

K

K
ÿ

k“1

pηℓ;k ´ pµ2
´

ℓ
ÿ

ℓ1“1

ˆ

ℓ

ℓ1

˙

pξ2ℓ1 ,

pErg31pX1qs :“
1

K

K
ÿ

k“1

pE pdq

g1;3
´ pµ3,

pErg1pX1qg1pX2qg2pX1, X2qs :“
1

K

K
ÿ

k“1

pE pdq
g1g1g2

´ pµ3
´ 2UJ ¨ pξ31 .

Finally, plug these estimated quantities into Corollary 3.1 for statistical inference.

We compare our method coupled with [7] to the vanilla [7] in Table 3. For clarity, we

unified all split sizes, set K — nτ 1

as in [7] and aligned the orders of the second leading

terms in the variance formulas of both approaches, by setting α “ 2 ´ τ 1. Table 3 shows

that our method speeds up [7] by a factor of nr`1´α, without noticeable relative variance

inflation and achieving a higher risk control accuracy.

Table 3: Our method enhances [7]’s method. Set α P p1, 2q. Recall r ě 2.

Vanilla [7] Our method + [7]

Time cost on each server O
`

npr´1qpα´1q`1
˘

O
`

npα´2qpα´1q`1
˘

Variance of aggregated U-stat. r2ξ21{n ` Opn´αq r2ξ21{n ` Opn´αq

CDF approximation error opn´1{2q10 Opn´α{2q

Risk control accuracy opp1q11 rOppn´α{2 log1{2 nq
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3.2 Analysis of randomized incomplete U-statistics

Our general framework in Section 2 is a powerful tool for analyzing randomized designs.

Here, we showcase its application to some popular designs (and close variants) in literature:

(J1) Sample nα size-r subsets from Cr
n at random, with replacement.

(J2) Similar to (J1), but sample without replacement12.

(J3) For i “ 1, . . . , n, sample nα´1 size-r subsets from Cr
n containing i, with replacement.

(J4) Similar to (J3), but for each i, sample without replacement13.

These sampling schemes are very natural, and there are many more similar randomized

designs in existing literature [3, 8]. However, no available theory and methods yet exist to

provide higher-order accurate risk control for inference under these schemes. Conventional

analysis [8] typically starts with re-expressing UJ as follows.

UJ ´ µ :“ pUn ´ µq
looomooon

(Part I)

` |Jn,α|
´1

ÿ

IrPJn,α

␣

hpXIrq ´ Un

(

loooooooooooooooooomoooooooooooooooooon

(Part II)

“: pUn ´ µq ` VJ , (35)

where part I is a rescaled complete U-statistic (see definition in Eq. (1)) and part II

captures the randomness in Jn,α. One can normal-approximate both parts and eventually

UJ , via careful conditioning and convolution, see page 9–20 in [9]. While (35) is useful for

analyzing degenerate U-statistics, it is not a sharp tool in the non-degenerate case, where

the two parts, dependent on each other, both noticeably impact the Edgeworth formula.

10This further requires K “ Opnτ 1

q for τ 1 P p0, 1{4q, see Theorem 3.3-(i) in [7].
11[7] standardizes UJ , therefore, their inference is not higher-order accurate, that is unless it further

employs a “bias-correction” that consults and eventually reproduces our method. See [18], Section 3.10.2.
12In theory, sampling Jn,α : |Jn,α| “ Opnαq without replacement could be done within Opnαq budget,

in terms of both time and memory, via a lexicographic indexing of Cr
n.

13But subsets from different i-strata can still coincide
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In sharp contrast, our analysis takes a very different route: the key is to apply our

general framework in Section 2 to analyze UJ directly, without going through (35). As a

premise, we first verify that these randomized designs indeed satisfies Assumption 2 with

high probability. (Assumption 1 is easily verified.)

Lemma 3.2. Let Jn,α be constructed by one of (J1)–(J4). For any given constant C0 ą 0,

there exist constants C1, C2 : C2 ą C1 ą 0 depending on C0 and the design Jn,α, such that

Assumption 2 with these C1 and C2 holds with probability at least 1 ´ n´C0.

All four designs (J1)–(J4) have clean analytical Edgeworth formulas, which can be

handily found by taking another layer of expectation EJ r¨s over the randomness of Jn,α.

Corollary 3.2. Under the setting α P p1, 2q, we have the following results.

• For randomized designs (J1) and (J2), we have

EJ rΓ0puqs :“
2u2 ` 1

6ξ31
Erg31pX1qs `

pr ´ 1qpu2 ` 1q

2ξ31
Erg1pX1qg1pX2qg2pX1, X2qs, (36)

EJ rΓℓpuqs :“ ´
H2ℓ´1puq

p2ℓq!

!

řr
k“2

`

r
k

˘

ξ2k
r2ξ21

)ℓ

, for ℓ ě 1. (37)

• For randomized designs (J3) and (J4), we have

EJ rΓ0puqs :“
2u2 ` 1

6ξ31
Erg31pX1qs

`
pr ´ 1q

␣

pr3 ` 2r2 ´ 2qu2 ` r3 ´ 2r2 ` 2
(

2r3ξ31
Erg1pX1qg1pX2qg2pX1, X2qs, (38)

EJ rΓℓpuqs is the same as the EJ rΓℓpuqs under (J1) and (J2). (39)

Then set

GJpuq :“ Φpuq ` ϕpuq

!EJ rΓ0puqs
?
n

`

t
α{2
α´1

u
ÿ

ℓ“1

EJ rΓℓpuqs

ĂMα

ℓ

)

, (40)
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where

ĂMα :“ nα´1
¨
␣

1 ` 1{prnα´1
q
(

M

$

’

’

’

’

&

’

’

’

’

%

1 `
nα´2ξ22 ¨ rpr ´ 1q

řr
k“2

`

r
k

˘

ξ2k
, under (J1) and (J2),

1 `
nα´2ξ22 ¨ r2pr ´ 1q

2
řr

k“2

`

r
k

˘

ξ2k
, under (J3) and (J4).

(41)

We have

›

›FTJ`δJ puq ´ GJpuq
›

›

8
“ Opn´α{2 log nq. (42)

We can naturally define the empirical version rGJpuq with coefficient estimated by (9),

(19), (20) and (33) and use it for downstream analysis, accompanied by theoretical guaran-

tees exactly similar to Corollaries 2.1 and 2.2. We skip the repetitive detailed descriptions.

We conclude this section by instantiating the general formula for the Cornish-Fisher

confidence interval, using the formula under (J1). Define σ2
h,p´1q

:“
řr

k“2 pr
kqξ

2
k

r2ξ21
. We have

Range of α k Ψkpuq

r4{3, 2s 1 1
2
uσ2

h,p´1q

r6{5, 4{3q 2 1
24

␣

pu3 ´ 3uqσ2
h,p´1q

` 3uσ4
h,p´1q

(

r8{7, 6{5q 3

u

720pu2 ´ 1q

!

pu6
´ 11u4

` 25u2
´ 15qσ2

h,p´1q

` 45pu2
´ 1q

2σ4
h,p´1q ´ p15u2

´ 45qσ6
h,p´1q

)

Table 4: First three Ψk’s under (J1).

4 Simulations

We assess the accuracy of the CDF approximation for noiseless non-degenerate U-statistics.

The goal is to accurately approximate FTJ`δJ , where we set a small variance with Cδ “ 0.008

for δJ . We generate synthetic data with X1, . . . , Xn
i.i.d.
„ PDF: px ` 1q{2, x P r´1, 1s, and
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use the kernel function hpx1, x2, x3q :“ sinpx1 `x2 `x3q. We experiment with our proposed

deterministic design from Section 3.1 and the random design (J1) from Section 3.2. We

compare our method to the following benchmarks: 1. Np0, 1q; 2. resample bootstrap

(bootstrap iteration B “ 200 [29]); and 3. subsample bootstrap (subsample size: n1{2). To

emulate the true sampling distribution of TJ ` δJ , we use a Monte-Carlo approximation

with nMC :“ 106 samples14. The performance measure is:

sup
uPr´2,2s;uPZ{10

ˇ

ˇ pFTJ`δJ puq ´ FTJ`δJ puq
ˇ

ˇ. (43)

We vary n P t10, 20, 40, 80u and set α “ 1.5 (results for α “ 1.7 are provided in Supplemen-

tary Material). For each pn, αq setting, we repeated the experiment 30 times and recorded

the mean and standard deviation of the distribution approximation errors (43).

Figure 2: CDF approximation accuracy: plots 1–2: true CDF “ FTJ`δJ puq, n “ 80; plots

3–4: log-transformed CDF approximation error.

Figure 2 shows the true and estimated CDF curves for TJ ` δJ . Our method’s esti-

mated CDF almost overlaps the true curve; whereas all other methods exhibit much more

noticeable estimation errors. It also shows the log-transformed CDF approximation errors

of all methods under different pn, αq configurations. Our method shows clear advantage

in accuracy across all settings, and we are the only method that exhibits an empirical

14We need to set nMC to be much larger than p1{e´5q2 « 2.2 ˆ 104, in view of DKW inequality.
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Figure 3: CI-related performance measures: column 1: CI coverage probability, dashed

blue line “ 90%; column 2: CI length; column 3: log-transformed time cost (log-second).

error rate faster than n´1{2. All these results well-align with our theory’s prediction and

demonstrate the higher-order accuracy of our method.

Next, we compare our Cornish-Fisher confidence interval to that produced by the

benchmark methods in Simulation 1, plus the C-F CI constructed based on the complete

U-statistic. Performance measurements include: coverage probability, CI length and

computation time. We fix the confidence level at 1 ´ β “ 90% and focus on the two-sided

CI for simplicity. The simulation set up is mostly inherited from Simulation 1, except that

now we no longer need a large nMC and can test for larger n’s: n P t25, 50, 100, 200, 400u.

In each experiment, which will produces one empirical CI coverage probability, we generate

3000 CI’s for our method, Np0, 1q and complete U-statistics; and 500 CI’s for resampling

and subsampling bootstraps since they are slower. Then we repeat the experiment 100 times

for all methods except the complete U-statistic method (repeated 20 times) to evaluate
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the variance of the coverage probability of each method.

Figure 3 shows the result for deterministic and random designs. Our method shows

clear advantage in accuracy of controlling the empirical coverage probability around the

nominal level level of 90%, significantly improving over normal approximation, especially

for small n’s. As n grows large, our method’s speed advantage over bootstrap methods be-

comes clearer. Compared to inference based on complete U-statistic, our method effectively

reduces computational complexity, reflected by its much flatter log-time curve, without

noticeable loss in risk control accuracy. All methods except subsampling bootstrap produce

similar CI lengths. This echoes our earlier remarks that the CI length reflects a different

aspect of U-statistic reduction (inference power, Section 2.3.2); and different approaches

may perform similarly in this aspect, if they are all asymptotically normal approximations.

5 Data examples

5.1 Data example 1: Stock market data

The S&P 500 historical data [11] records the daily prices of 412 stocks from 11 sectors.

Following [5], we computed the monthly logarithmic return rates of each stock from 1-Mar-

2000 to 29-Aug-2022, yielding n “ 138 observations. Our goal is to assess the pairwise

dependency between sectors via independence tests. Denote the log-return sequence of

stock i from sector X by SX
i “ pSX

i,1, ..., S
X
i,nq; similarly define SY

t . We measure dependency

between sectors X and Y by dCov, rewritten as a complete U-statistic (Lemma 1 of [42]):

dCov2pX, Y q :“

ˆ

n

4

˙´1
ÿ

iăjăqăr

hpZi, Zj, Zq, Zrq, (44)
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where hpZi, Zj, Zq, Zrq :“
ři,j,q,r

s,t,u,vpastbuv ` astbst ´ astbsu ´ astbtvq
L

24 15, aij “ }SX
i ´ SX

j }2,

and bij “ }SY
i ´ SY

j }2. Set α “ 1.5. We test H0 : ErdCov2pX, Y qs “ 0 between each

sector pair, versus a two-sided alternative. As a reference, on the diagonal, we randomly

split the stocks in each sector into two sets and tested their dependency. Figure 4 shows

that our method well-aligns with the test decisions that would have been made using the

complete U-statistic, but our method computes much faster (see Table 5). On the diagonal,

the sectors that exhibit strongest inner dependency include CD, E, F, I and IT. This is

understandable since they tend to be more sensitive to global economic fluctuations. In

contrast, members of CmS, CnS and U sectors focus more on local markets, so their within-

sector price fluctuations are less synchronized. This understanding also applies to cross-

sector relations, such as the tight connection between the pairs (CD, I) and (I, IT), whereas

U is comparatively less dependent on other sectors except E.

5.2 Data example 2: UCR time series data (Earthquakes, Starlight)

In the second example, we analyze two UCR time series data sets [12]: Earthquakes and

Starlight. The earthquakes data consist of n “ 461 earthquake curves, each of length

T “ 512. These curves are classified into K “ 2 clusters: n0 “ 368 non-major and n1 “ 93

major earthquakes. Following the approach of [5] and [45], we treat each earthquake curve

as a point in a Hilbert space and aim at comparing the population distributions of the

curves of different types using Maximum Mean Discrepancy (MMD). We measure the

distance between two earthquake curves by comparing their SRVF transforms [38], which

synchronize their phases in the presence of amplitude discrepancy. However, computing

the SRVF for each curve pair is slow [39]. To accelerate and also to tame the violent

15The summation notation “
ři,j,q,r

s,t,u,v” means summing ps, t, u, vq over all permutations of pi, j, q, rq.
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Figure 4: Pairwise dependency test: heatmaps of test statistics. High values (red):

high detected dependency. Each cell reports mean(std.) of test statistics over 30 repeated

experiments, except the off-diagonal of complete U-statistic method (no repetition needed).

fluctuation in the raw data, we pre-processed each curve txtu
512
t“1 by a moving average

(window size ℓ) with down-sampling:
␣

rxt :“ Mean
`

xrtt´pℓ´1q{2u:tt`pℓ´1q{2us

˘(

tPt4k`1,kPr0:127su
.

Due to page limit, we only present results for ℓ “ 7, leaving results for more window sizes

to Supplementary Material.

We applied our method with α “ 1.5 to estimate the average pairwise distance (using

SRVF) within each cluster to assess its internal cohesion. For the between-cluster com-

parison, we sub-sampled the larger group (non-major earthquakes) and rewrote the MMD

a one-sample U-statistic following Equation (6) in [35] with the RBF kernel kpx, yq :“

expp´SRVFpx, yq2{5000q. The we applied our method with α “ 1.5 to reduce this MMD

U-statistic. Figure 5 shows the results, in which, we used the complete two-sample MMD

U-statistic value in lieu of the unknown population mean discrepancy. Our Cornish-Fisher

confidence intervals with randomized design (J1) demonstrate good coverage in both in-
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ference tasks for within- and between-cluster distances, respectively.

Next, we apply this analysis method to the much larger Starlight data set that contains

K “ 3 types of stars, with cluster sizes n1 “ 1329, n2 “ 2580 and n3 “ 5327. Here, each

curve is a length 1024 sequence, which we down-sampled to length 128 without smoothing,

because the starlight curves are much smoother than that in the earthquake data. Even

with the down-sampling, evaluating a complete U-statistic for comparing any two star

types remains computationally infeasible, due to the large sample sizes. Our method with

α “ 1.5 allows users to implement a reduced version of Equation (6) in [35] with the

RBF kernel kpx, yq :“ expp´SRVFpx, yq2{100q. Due to page limit, in Figure 5, we only

present the result for the comparison between type 1 and type 2 stars, relegating the rest

to Supplemental Material. We observed that the MMD CI’s produced by the starlight

data are much narrower than the counterpart from the earthquakes data, possibly due to

the much larger sample size. Also, for the between-cluster comparison, some MMD CI’s

of the earthquakes data contain 0 (will not reject H0), while all CI’s for the starlight data

clearly support a two-sided alternative. This is echoed by the much smaller within-cluster

distance and the clearer between-cluster differences in the starlight data.

Table 5: Time cost: our method (α “ 1.5) vs. complete U-statistic

Time cost Stock Market (r “ 4) Earthquakes (r “ 2)

(Unit = sec.) All Major Non-major Maj. vs. Non-Maj.

Our method 3.47 303.94 2471.70 1223.50

Complete U 8099.73 708.99 11199.92 17912.91

Time cost Starlight (r “ 2)

(Unit = sec.) Type 1 Type 2 Type 3 1 vs. 2 1 vs. 3 2 vs. 3

Our method 4512.95 12773.76 41282.26 19140.13 19149.33 50413.75

Complete U 48227.72 158233.7 (Time out) (Time out) (Time out) (Time out)
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Figure 5: Results of data example 2. Plots 1–2: Earthquakes ; plots 3–4: Starlight. Plots

1 & 3: 90% CI of based on reduced between-cluster MMD; column 4: 90% CI of within-

cluster average pairwise distance (using SRVF [38]). Dashed line: complete U-statistic

(evaluations of complete U-statistics timed out (ą 48 hours) in most settings for Starlight).

6 Discussion

Our study throughout this paper exclusively focuses on data-oblivious reduction schemes.

Recently, [24] proposed a data-aware reduction scheme, based on their key observation that

Xr1:rs « Yr1:rs implies hpXr1:rsq « hpYr1:rsq, thus by clustering Xi’s, one can effectively reduce

the U-statistic’s computation. While their method shows very attractive performance,

finite-sample higher-order analysis for their method poses an interesting open challenge.

There is also a computational price for being data-aware. For example, in the setting

considered by [31], the clustering of all Xi’s in some Banach space requires computing at

leastOpn2q many potentially expensive (like in our second data example) pairwise distances.

Acknowledgment

We thank the Editor, the AE and the Reviewer for very helpful comments that led to sig-

nificant improvement of this paper. We thank Davide Giraudo for his reply to our question

32



on Math-Stackexchange16; and Peter Craigmile, Sebastian Kurtek and Wen Zhou for help-

ful discussion; and Steven MacEachern and Ji Zhu for warm encouragements. Meijia Shao

and Yuan Zhang were supported by NSF grant DMS-2311109. Dong Xia was supported

by Hong Kong RGC Grant GRF 16303320.

Conflict of interest. The authors declare no conflict of interest.

References

[1] Banerjee, D. and Z. Ma (2017). Optimal hypothesis testing for stochastic block models
with growing degrees. arXiv preprint arXiv:1705.05305 .

[2] Bergsma, W. and A. Dassios (2014). A consistent test of independence based on a sign
covariance related to Kendall’s tau. Bernoulli 20 (2), 1006–1028.

[3] Blom, G. (1976). Some properties of incomplete U-statistics. Biometrika 63 (3), 573–
580.

[4] Brown, B. and D. Kildea (1978). Reduced U-statistics and the Hodges-Lehmann esti-
mator. The Annals of Statistics , 828–835.

[5] Chakraborty, S. and X. Zhang (2021). A new framework for distance and kernel-based
metrics in high dimensions. Electronic Journal of Statistics 15 (2), 5455–5522.

[6] Chaudhuri, A. and W. Hu (2019). A fast algorithm for computing distance correlation.
Computational Statistics & Data Analysis 135, 15–24.

[7] Chen, S. X. and L. Peng (2021). Distributed statistical inference for massive data. The
Annals of Statistics 49 (5), 2851–2869.

[8] Chen, X. and K. Kato (2019a). Randomized incomplete U-statistics in high dimensions.
The Annals of Statistics 47 (6), 3127–3156.

[9] Chen, X. and K. Kato (2019b). Supplementary Material to “Randomized incomplete
U-statistics in high dimensions”. The Annals of Statistics .
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