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Abstract

In this article, we present a fast and stable algorithm for solving a class of op-
timization problems that arise in many statistical estimation procedures, such as
sparse fused lasso over a graph, convex clustering, and trend filtering, among oth-
ers. We propose a so-called augmented alternating direction methods of multipliers
(ADMM) algorithm to solve this class of problems. Compared to a standard ADMM
algorithm, our proposal significantly reduces the computational cost at each iteration
while maintaining roughly the same overall convergence speed. We also consider a
new varying penalty scheme for the ADMM algorithm, which could further accelerate
the convergence, especially when solving a sequence of problems with tuning param-
eters of different scales. Extensive numerical experiments on the sparse fused lasso
problem show that the proposed algorithm is more efficient than the standard ADMM
and two other existing state-of-the-art specialized algorithms. Finally, we discuss a
possible extension and some interesting connections to two well-known algorithms.
Supplemental materials for the article are available online.
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1 Introduction

Many statistical procedures rely on regularization (or penalization) to strike a proper bal-

ance between model bias and model variability. Classical regularization functions are

mostly smooth, which is possibly due to its amenability to computation. Non-smooth

regularization functions have attracted increasing attention in the past two decades. Its

popularity is perhaps due to its ability to not only achieve a proper bias/variance trade-off,

but it also allows the fitted model to exhibit certain desired structures. A notable example

is the pursuit of sparsity structure through lasso regularization (Tibshirani, 1996; Chen

et al., 1998).

On the other hand, the use of non-smooth regularization often creates more challenging

optimization problems. In this article, we consider a particular type of non-smooth convex

optimization problem that arises in many statistical estimation problems. Specifically, we

aim to solve optimization problems of the following form

minimize
θ∈Rp

f(θ) + g(Aθ), (1)

where both f(·) and g(·) are “simple” convex functions (in a sense to be made precise),

and A ∈ Rm×p. Moreover, we allow f(·) and g(·) to be defined on an extended real line so

that (1) also includes problems with constraints.

Consider, for example, the generalized lasso problem (Tibshirani and Taylor, 2011)

minimize
β∈Rp

(1/2) · ‖y −Xβ‖2
2 + λ‖Aβ‖1, (2)

where y ∈ Rn is a response vector, X ∈ Rn×p is a data matrix, λ is a tuning parameter,

and A is a user-specified penalty matrix. This problem is clearly a special case of (1).

When A = I, it reduces to the popular lasso problem. In fact, with different choices of A

and X, the above problem includes many already well-known problems in statistics: fused

lasso (Tibshirani et al., 2005), grouping pursuit (Shen and Huang, 2010; Zhu et al., 2013;

Ke et al., 2015), and trend filtering (Kim et al., 2009; Tibshirani et al., 2014; Ramdas and

Tibshirani, 2014), among others.

In this article, we propose to solve (1) using a so-called augmented alternating direction

methods of multipliers (ADMM) algorithm. The ADMM algorithm has attracted a lot of
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attention recently in both statistics and machine learning communities, partly because of

its flexibility in simplifying a wide range of optimization problems that arise in statistical

machine learning applications, and partly because of its general convergence properties.

It has also been proved to be quite flexible and versatile in dealing with many large-

scale statistical estimation problems (see, e.g., Boyd et al., 2011). Here we apply the

ADMM algorithm to (1) in a somewhat non-standard fashion, leading to a more general

and potentially more efficient algorithm. The resulting algorithm is not new; it turns out

to be closely related to two well-known algorithms used in imaging literature. Nevertheless,

our ADMM-based derivation gives an unified view of both algorithms.

1.1 Existing literature

There is a huge literature on large-scale non-smooth convex optimization of form (1).

Although the traditional primal-dual interior point method could still be quite effective

for problems with certain special structures (Kim et al., 2009), more recent developments

have been focusing on fast first-order methods. In particular, some recent proposals for

solving (1) (or its special cases) often fall into three different categories: (i) path following

(homotopy) algorithms (Shen and Huang, 2010; Tibshirani and Taylor, 2011; Zhou and Wu,

2014; Arnold and Tibshirani, 2015); (ii) fast first-order methods for optimizing so-called

composite functions (Becker et al., 2011; Beck and Teboulle, 2012); and (iii) alternating

direction methods of multipliers (Boyd et al., 2011; Ramdas and Tibshirani, 2014).

Path following algorithms for solving special cases of (1) have been studied recently

in Shen and Huang (2010); Tibshirani and Taylor (2011); Zhou and Wu (2014); Arnold

and Tibshirani (2015). In particular, Shen and Huang (2010); Tibshirani and Taylor

(2011); Arnold and Tibshirani (2015) consider the generalized lasso problem, where f(θ)

is quadratic and g(·) is `1 norm. Zhou and Wu (2014) proposes a path following algorithm

for a more general problem. But the proposal requires solving an ODE, which makes it

undesirable for high-dimensional problems.

General fast first-order methods (Nesterov, 2007; Tseng, 2008; Beck and Teboulle, 2009)

have become quite popular for optimizing the composite function, which is a sum of a

smooth and a non-smooth convex function. However, its effectiveness may diminish greatly
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when the non-smooth part is not a “simple” function. To overcome this difficulty, Becker

et al. (2011); Beck and Teboulle (2012) employ the smoothing technique of Nesterov (2005)

and solve the smoothed objective function by a fast first-order method. However, this

extra smoothing step typically makes the convergence rate slower, and fairly complicated

backtracking procedures have to be used to select the step size.

The ADMM algorithm provides an alternative way for solving large-scale non-smooth

optimization problems. Unlike fast first-order algorithms, it does not require line search,

which often makes its implementation easier. For instance, Wahlberg et al. (2012) use the

ADMM algorithm to solve a fused lasso problem which is a special case of (2). Their pro-

posal, however, crucially depends on a banded structure of the linear operator A, without

which one still has to solve a p×p linear system, which can be computationally prohibitive

for large-scale problems. More recently, Ramdas and Tibshirani (2014) propose a spe-

cialized ADMM algorithm for solving a trend filtering problem. But their proposal also

depends on the banded structure of A, hence may be inappropriate for problems involving

more general linear operators.

1.2 Our approach

Our approach for solving (1) is based on a special application of the ADMM algorithm.

First, let us work through the standard ADMM approach for solving (1). The standard

ADMM proceeds by first decoupling the two functions in (1) by introducing new equality

constraints Aθ = γ. Then, the standard ADMM solves an equivalent formulation of (1)

minimize
θ∈Rp,γ∈Rm

f(θ) + g(γ) subject to Aθ − γ = 0 (3)

by alternately updating the primal variables (θ, γ) and associated dual variable α:

θk+1 = arg min
θ∈Rp

(
f(θ) +

ρ

2

∥∥Aθ − γk + ρ−1αk
∥∥2

2

)
, (4a)

γk+1 = arg min
γ∈Rm

(
g(γ) +

ρ

2

∥∥Aθk+1 − γ + ρ−1αk
∥∥2

2

)
, (4b)

αk+1 = αk + ρ(Aθk+1 − γk+1) . (4c)

In the above expressions, ρ > 0 is a positive penalty parameter. This updating scheme

has been shown to be equivalent to the proximal point algorithm (Eckstein and Bertsekas,
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1992), and thus converges under very mild conditions on f(·) and g(·). Also see He and

Yuan (2012) for a proof of O(1/k) rate of convergence for the ADMM algorithms.

Sometimes, the θ-update in (4a) is difficult to carry out, especially when A is not a

diagonal matrix. To get around this difficulty, we consider an “augmented” variable (γ, γ̃),

where γ̃ relates to θ through γ̃ = (D−A>A)1/2θ with D ∈ Rp×p satisfying D � A>A. This

gives us a new formulation of (1)

minimize
θ,γ̃∈Rp,γ∈Rm

f(θ) + g(γ) subject to

 A

(D − A>A)1/2

 θ −

γ
γ̃

 = 0 . (5)

Note that the augmented variable γ̃ and the associated equality constraint are totally

redundant. However, when applying the standard ADMM algorithm to this seemingly

more complicated formulation, we obtain surprisingly simple updates

θk+1 = arg min
θ∈Rp

(
f(θ) + (2αk − αk−1)>Aθ +

ρ

2
(θ − θk)>D(θ − θk)

)
, (6a)

γk+1 = arg min
γ∈Rm

(
g(γ) +

ρ

2

∥∥Aθk+1 − γ + ρ−1αk
∥∥2

2

)
, (6b)

αk+1 = αk + ρ(Aθk+1 − γk+1) , (6c)

which does not involve the augmented γ̃ at all. We defer a detailed derivation and the

analysis of its convergence properties until later sections. Here we would like to point out

that when D = A>A, the above algorithm reduces back to the standard ADMM algorithm;

and for a general D, the new θ-update (6a) can be viewed as a one-step MM update for

solving the original θ-update (4a).

The main advantage of the above augmented ADMM is its added flexibility for choosing

D to simplify the θ-update (6a). Such simplification is indeed possible in many problems,

and this is the primary reason why the proposed augmented ADMM algorithm could be

more efficient than the standard ADMM. In fact, for problems in which the problem di-

mension greatly exceeds the sample size, the augmented ADMM runs much faster than the

standard ADMM algorithm. Moreover, we demonstrate through runtime experiments that

the proposed algorithm is also competitive with two existing state-of-the-art algorithms on

the sparse fused lasso problem.

5



1.3 Outline

The rest of the paper is structured as follows. In Section 2 we give a detailed derivation of

the augmented ADMM algorithm and an interesting extension, and in Section 3 we discuss

its connections to two existing algorithms that are widely used in the imaging literature. In

Section 4 we present an application to a sparse fused lasso problem. In Section 5 we apply

the the proposed method to simulated datasets to demonstrate its superior computational

efficiency. More discussion is provided in the last section.

2 Augmented ADMM algorithm

This section gives a detailed derivation of the augmented ADMM algorithm described in

(6). First, we introduce a few useful notions and results in convex analysis that proved

to be useful in the derivation of the proposed augmented ADMM algorithm. Second, we

formally establish the equivalence of (6) to a standard ADMM algorithm applying to (5).

Third, we propose a new varying penalty scheme. Finally, we present an application of the

augmented ADMM to a more general ADMM problem involving two linear operators.

2.1 Some useful results from convex analysis

This subsection introduces some useful notions and a few basic analytical results that will

help to structure and clarify the subsequent analysis. Most of the material here can be

readily found (often in more general and abstract form) in textbooks such as (Rockafellar,

1997). Reader well-versed in convex analysis may skip this subsection.

First, let us introduce the notion of conjugate function and Fenchel-Moreau Theorem.

For any function Ω(·), its conjugate function is defined by Ω∗(v) := supu〈u, v〉−Ω(u), which

is convex. Moreover, the Fenchel-Moreau Theorem says that if Ω(·) is a closed and proper

convex function, its biconjugate function (conjugate of conjugate) equals to itself, that is,

Ω∗∗(·) = Ω(·).

Next, we introduce the concept of proximal map and Moreau’s identity. For a given
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function Ω(·), its proximal map is another function defined by

proxΩ(·)(u) = arg min
v

(
Ω(v) +

1

2
‖u− v‖2

2

)
. (7)

The proximal map proxΩ(·)(u) exists and is unique for all u if Ω(·) is a closed and proper

convex function. Moreau’s identity relates the proximal map of Ω(·) to that of its conjugate

function Ω∗(·). According to Moreau’s identity,

u = proxtΩ(·)(u) + t proxt−1Ω∗(·)(t
−1u) (8)

for any t > 0. Hence, the proximal map of the conjugate Ω∗(·) is as easy to compute as

Ω(·).

Lastly, we introduce the usual assumptions made in the literature for analyzing conver-

gence of the ADMM algorithms (see Boyd et al., 2011, Section. 3.2). First, we define the

Lagrangian of (3)

L(θ, γ, α) = f(θ) + g(γ) + α>(Aθ − γ), (9)

where α ∈ Rm is often referred to as the Lagrangian dual variable. Then, the dual problem

to (3) equates to maximizing the dual function infθ,γ L(θ, γ, α), or equivalently,

maximize
α∈Rm

−f ∗(−A>α)− g∗(α), (10)

Throughout the rest of the section, we make the following assumptions about problem (3):

Assumption A:

(i) The functions f : Rp → R∪ {+∞} and g : Rm → R∪ {+∞} in (1) are

closed, proper, and convex;

(ii) the Lagrangian function as defined in (9) has a saddle point (i.e., there

exist (θ?, γ?, α?) for which L(θ?, γ?, α) ≤ L(θ?, γ?, α?) ≤ L(θ, γ, α?) holds for

all θ, γ, α).

Note that the second assumption is equivalent to strong duality, which can be ensured by

constraint qualifications such as Slater’s condition (see Section 5.4.2 of Boyd et al., 2011).

2.2 Derivation of the augmented ADMM algorithm

Recall that our goal is to solve (1) and our augmented ADMM algorithm considers solving

(5), which is an equivalent formulation of (1). Again, the only difference between the
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new formulation (5) and the standard ADMM formulation (3) is the newly introduced

“augmented” variable γ̃ = (D−A>A)1/2θ. The motivation behind choosing this particular

equality constraint is to simplify the θ-update when we apply the standard ADMM to the

new formulation (5).

Applying the standard ADMM algorithm to (5) by alternating between θ and (γ, γ̃)

gives the following ADMM updates

θk+1 = arg min
θ∈Rp

(
f(θ) +

ρ

2

(
‖Aθ − γk + ρ−1αk‖2

2

+ ‖(D − A>A)1/2θ − γ̃k + ρ−1α̃k‖2
2

))
,

(11a)

γk+1 = arg min
γ∈Rm

(
g(γ) +

ρ

2
‖Aθk+1 − γ + ρ−1αk‖2

2

)
, (11b)

γ̃k+1 = (D − A>A)1/2θk+1 + ρ−1α̃k, (11c)

αk+1 = αk + ρ(Aθk+1 − γk+1), (11d)

α̃k+1 = α̃k + ρ
(
(D − A>A)1/2θk+1 − γ̃k+1

)
, (11e)

where α ∈ Rm, α̃ ∈ Rp are the associated dual variables. Basically, the augmented ADMM

algorithm follows from the above updating scheme after some manipulation and simplifica-

tion. First, combining (11c) and (11e) gives α̃k+1 = 0. Then, substituting (11c) to (11a),

the θ-update becomes

θk+1 = arg min
θ∈Rp

(
f(θ) +

ρ

2

(
‖Aθ − γk + ρ−1αk‖2

2 + ‖(D − A>A)1/2(θ − θk)‖2
2

))
, (12)

which, together with (11d), gives (6a). Now it becomes more clear as to why we add the

additional constraint (D − A>A)1/2θ = γ̃ at the first place. This particular constraint

simplifies the quadratic term θA>Aθ in the θ-update (12).

Second, γ-update and α-update can be combined further and simplified. Indeed, com-

bining (11b) and (11d) gives ρ−1αk+1 = ρ−1αk+Aθk+1−proxρ−1g(·)
(
ρ−1αk+Aθk+1

)
. Then,

Moreau’s identity (8) allows us to further simplify it to αk+1 = proxρg∗(·)
(
αk + ρAθk+1

)
.

As a result, there is no need to keep track of the newly introduced “augmented” variable

(γ, γ̃); the augmented ADMM algorithm updates the primal variable θ and the dual vari-

able α alternately. We summarize this augmented ADMM algorithm and its convergence

result in the following theorem.

8



Theorem 1 Under Assumption A, for any matrix D ∈ Rp×p satisfying D � A>A and

any positive scalar ρ > 0, the following update

θk+1 = arg min
θ∈Rp

(
f(θ) + (2αk − αk−1)>Aθ +

ρ

2
(θ − θk)>D(θ − θk)

))
, (13a)

αk+1 = proxρg∗(·)
(
αk + ρAθk+1

)
(13b)

converges in the sense that primal objective functions along the sequence of primal variables

converge to the optimal value: f(θk) + g(Aθk) → infθ f(θ) + g(Aθ), and the sequence of

dual variables converge to an optimal dual point: αk → α?, where α? is the optimal point

of (10)—the Lagrangian dual problem to (1).

The proof is straightforward given standard convergence results for ADMM algorithms

(see Section 3.2 of Boyd et al., 2011) and the equivalence between the augmented ADMM

and the standard ADMM that we just showed above. A more detailed proof is provided

in the online Supplemental materials. Again, we emphasize that D can be any matrix

that dominates A>A. In particular, if D = A>A, the above augmented ADMM algorithm

reduces back to the standard ADMM algorithm

θk+1 = arg min
θ∈Rp

(
f(θ) + (2αk − αk−1)>Aθ +

ρ

2
(θ − θk)>A>A(θ − θk)

))
, (14a)

αk+1 = proxρg∗(·)
(
αk + ρAθk+1

)
. (14b)

As pointed out by one referee, the objective function in (13a) can be viewed as a majoriza-

tion of that in (14a) at the current iterate θk, although it is unclear why such combination

still preserves the algorithm’s convergent property. Similar ideas have also been used in

the literature to simplify the standard ADMM algorithm (Chen and Teboulle, 1994; Zhang

et al., 2011, 2010; Esser et al., 2009), but they all require separate convergence analysis.

For specific problems, we would like to choose D to simplify the θ-update (13a) (as

compared to (14a)), which is possible in many cases. For example, a simple choice would

be D = δI with δ ≥ ‖A‖2
op, where ‖A‖op denotes the operator norm of A. With this choice,

the θ-update (13a) can be viewed as a proximal map of f(·)

θk+1 = prox(ρδ)−1f

(
θk − (ρδ)−1A>(2αk − αk−1)

)
.
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As a final remark, the α-update (13b) requires that the proximal map of the conju-

gate function of g(·) is easy to calculate. Fortunately, this is the case in many statistical

estimation problems—the regularization function g(·) is simple enough that very efficient

algorithms are available to calculate its proximal map (and hence that of its conjugate g∗(·)

thanks to the Moreau’s identity (8)).

2.3 Stopping criterion and a new varying penalty strategy

We use the standard stopping criterion for the ADMM algorithm based on primal and dual

residuals following Section 3.3 of Boyd et al. (2011). Specifically, we define the primal and

dual residuals

rk+1 = Aθk+1 − γk+1 = ρ−1(αk+1 − αk),

sk+1 = ρA>(γk+1 − γk) = ρA>A(θk+1 − θk) + A>(2αk − αk−1 − αk+1)

as well as the termination criterion ‖rk+1‖2 ≤ εpri, ‖sk+1‖2 ≤ εdual, where the primal and

dual feasibility εpri and εdual are specified as suggested by Boyd et al. (2011).

Theoretically, the primal and dual residuals rk and sk will converge to zero for any

fixed penalty parameter ρ > 0. In practice, however, the convergence speed depends

heavily on the choice of ρ, and it is often not clear how to choose ρ, especially when

solving a sequence of problems with different tuning parameters. A simple varying penalty

strategy is suggested in Section 3.4.1 of Boyd et al. (2011). However, we find this strategy

unstable, sometimes creating too many redundant ρ-updating steps. This instability has

been pointed out recently by Ramdas and Tibshirani (2014).

To overcome this unstable behavior, we propose a slightly different varying penalty

strategy with two minor modifications. First, we set the updating rule for ρ to be

ρ =

ηρ if ‖rk‖2/ε
pri ≥ µ‖sk‖2/ε

dual

η−1ρ if ‖sk‖2/ε
dual ≥ µ‖rk‖2/ε

pri,
(15)

where η, µ are set to be 2 and 10 as suggested by Boyd et al. (2011). Note that the

difference here is that the primal and dual residual are scaled further by the primal and

dual feasibility parameter, respectively. The idea is to improve convergence when primal

and dual feasibilities are on different scales.
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Moreover, instead of invoking (15) at every iteration as suggested in Boyd et al. (2011),

we only update ρ for every ki iterations with {ki}∞i=1 being an increasing sequence and

limi→∞ ki = ∞. In other words, we only invoke updating rule (15) when k =
∑l

i=1 ki for

some positive integer l. Ideally, we should choose the first few ki’s such that the complexity

of ki’s ADMM iteration is roughly the same as that of performing a proximal map of f .

On these grounds, we choose ki = imin(n, p), which works quite well in practice.

Based on our limited experience, the resulting new varying penalty strategy is much

more stable and greatly reduces the number of ρ-updating. Moreover, the convergence

speed could be accelerated substantially by this new strategy, especially when solving a

sequence of problems with different A’s.

2.4 An extension

In this subsection, we apply the augmented ADMM algorithm to more general problems

in which both parts in the objective function are composition of a linear operator and a

simple function. This is motivated by statistical estimation problems in which the proximal

map of f(·) may be difficult to evaluate, but f(·) is a composition of a linear operator and

a “simple” function. For example, empirical loss functions for linear models are often a

composition of a linear operator and a “simple” function. In such cases, we demonstrate

that the augmented ADMM could still be quite useful. Specifically, consider the following

problem

minimize
θ∈Rp

g1(A1θ) + g2(A2θ),

where A1 ∈ Rm1×p and A2 ∈ Rm2×p. Again we assume that both g1(·) and g2(·) are closed

proper convex functions and their proximal maps are easy to calculate.

Although the above problem seems to be more general than (1), the augmented ADMM

algorithm for (1) can still be applied here. Specifically, note that we can think of the entire

objective function g1(A1θ) + g2(A2θ) as g(Aθ) in (1) with A =

A1

A2

, and apply the

augmented ADMM algorithm (13) to the above problem with g(Aθ) = g1(A1θ) + g2(A2θ)
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and f(θ) = 0. The resulting updating scheme is

θk+1 = θk − ρ−1D−1
(
A>1 ᾱ

k
1 + A>2 ᾱ

k
2

)
,

αk+1
1 = proxρg∗1(·)

(
ρA1θ

k+1 + αk1
)
, ᾱk+1

1 = 2αk+1
1 − αk1,

αk+1
2 = proxρg∗2(·)

(
ρA2θ

k+1 + αk2
)
, ᾱk+1

2 = 2αk+1
2 − αk2 ,

where D � A>1 A1 + A>2 A2. It is worth noting that we only need to perform one Cholesky

factorization for D at the beginning and cache it for all subsequent iterations. This is in

contrast to the augmented ADMM algorithm for (1), in which Cholesky factorization has

to be recomputed every time we change ρ.

3 Connections to existing algorithms

In this section, we shall establish equivalence to two well known algorithms used in the

image processing literature. Specifically, we show that the augmented ADMM can be

understood as the first-order primal-dual algorithm (Chambolle and Pock, 2011) and the

linearized ADMM algorithm (Chen and Teboulle, 1994; Zhang et al., 2011, 2010; Esser et al.,

2009). Both algorithms have been extensively studied in the image processing literature.

As a result, existing convergence theories for the ADMM algorithm would also apply to

both algorithms, leading to a unifying theoretical framework.

3.1 First-order primal-dual algorithm

The first-order primal-dual algorithm proposed by Chambolle and Pock (2011) solves ex-

actly the same problem (1) by primal-dual updates. Their algorithm is remarkably similar

to the proposed augmented ADMM algorithm when D is an identity matrix.

Indeed, their main algorithm (c.f. Algorithm 1 of Chambolle and Pock (2011)) is

equivalent to the following updates

αk+1 = proxσg∗(·)
(
αk + σAθ̄k

)
θk+1 = proxτf(·)

(
θk − τA>αk+1

)
θ̄k+1 = 2θk+1 − θk ,

(16)

where σ, τ are positive scalars. Convergence analysis is performed for the above updates

under the condition that στ‖A‖2
op < 1 (c.f. Theorem 1 of Chambolle and Pock (2011)).
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Specifically, a convergence rate of O
(
1/k
)

is established. Note that this is the same con-

vergence rate for the ADMM algorithm (He and Yuan, 2012).

To see their connection, we choose D = δI with δ = (στ)−1, the penalty parameter

ρ = σ in (13a), and define ᾱk = 2αk − αk−1. Then the augmented ADMM algorithm (13)

reduces to

θk+1 = proxτf(·)
(
θk − τA>ᾱk

)
αk+1 = proxσg∗(·)

(
αk + σAθk+1

)
ᾱk+1 = 2αk+1 − αk ,

which looks almost identical to the primal-dual first order algorithm in (16) except that the

ADMM algorithm performs an extrapolation of αk (to 2αk − αk−1) whereas the first-order

primal-dual algorithm performs an extrapolation of θk. Moreover, the condition for con-

vergence matches—our augmented ADMM requires that δ ≥ ‖A‖2
op, which is equivalent to

στ‖A‖2
op ≤ 1. Of course, this similarity is not a coincidence. The next theorem establishes

their connections.

Theorem 2 The first-order primal-dual algorithm (Theorem 1 of Chambolle and Pock

(2011)) is equivalent to the augmented ADMM algorithm (13) applied to the Lagrangian

dual to (1) with D = (στ)−1I and ρ = τ .

The proof is provided in the online Supplemental materials. In essence, the first-order

primal-dual algorithm is equivalent to applying the augmented ADMM algorithm to the

dual problem.

3.2 Linearized/preconditioned ADMM

Linearized/preconditioned ADMM (Chen and Teboulle, 1994; Esser et al., 2009; Zhang

et al., 2010, 2011) is proposed with the same motivation—to simplify the θ-update in the

standard ADMM algorithm. Although it is related to the ADMM algorithm, to the best

of our knowledge, their equivalence has not been established in the literature.

The idea of the linearized ADMM is to modify the θ-update (4a) of the standard

ADMM algorithm by adding an extra quadratic term 1
2
(θ − θk)>Q(θ − θk) with Q � 0.
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This modification leads to the following θ-update:

θk+1 = arg min
θ∈Rp

(
f(θ) +

ρ

2

∥∥Aθ − γk + ρ−1αk
∥∥2

2
+

1

2
(θ − θk)>Q(θ − θk)

)
.

It is easy to verify that it is equivalent to the augmented ADMM algorithm. Hence, in

view of the augmented ADMM algorithm, the linearized/preconditioned ADMM algorithm

is just ADMM algorithms that is applied to a new formulation. Thus, all the convergence

results of the ADMM algorithm would apply to the the linearized/preconditioned ADMM.

4 Application to the sparse fused lasso over a graph

In this section, we consider the so-called sparse fused lasso problem. Interests in this type

of problems often stem from statistical modeling of genomic data (Tibshirani et al., 2005;

Bondell and Reich, 2008; Shen and Huang, 2010; Zhu et al., 2013; Ke et al., 2015) and fMRI

data (Xin et al., 2014). The proposed augmented ADMM algorithm is readily applicable

in this case, and is especially appealing when the problem dimension greatly exceeds the

sample size. We also illustrate its advantage over the standard ADMM algorithm by

comparing their computational complexities.

4.1 Problem setup

Let G = (V , E) be a graph, where V is the node set and E is the edge set. Often the

node set V encodes the features/covariates in the model and the edge set encodes their

relationships. Based on such a graph, we consider the following optimization problem

minimize
β∈Rp

(1/2) · ‖y −Xβ‖2
2 + λ

∑
(i,j)∈E

|βi − βj|+ ν · λ‖β‖1, (17)

where y ∈ Rn is the response vector, X ∈ Rn×p is a data matrix, and (λ, ν) are regular-

ization parameters. This problem is commonly referred to as the sparse fused lasso over a

graph. Usually one needs to solve many instances of (17) with different choices of tuning

parameters (λ, ν).

Note that whenX = I, the above problem can be solved very efficiently using specialized

algorithm (see, e.g., Chambolle and Darbon, 2009). For a general X, the above problem

becomes much more challenging.
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4.2 ADMM algorithm

This subsection applies the augmented ADMM algorithm to (17). We let λ1 = λν and

λ2 = λ and write (17) in the form of (1) with A =

 I
C

 and g(γ) = λ1‖γ1‖1 + λ2‖γ2‖1

where C is the oriented incidence matrix associated with graph G and γ =

γ1

γ2

 with

γ1 ∈ Rp, γ2 ∈ Rm. Then, applying the augmented ADMM gives the following updates

βk+1 =
(
ρD +X>X

)−1 (
ρDβk +X>y − A>(2αk − αk−1)

)
,

αk+1 = P{‖α1‖∞≤λ1,‖α2‖∞≤λ2}
(
αk + ρAβk+1

)
,

where α =

α1

α2

 ∈ Rp+m with α1 ∈ Rp, α2 ∈ Rm, and D ∈ Rp×p satisfying D � I + C>C.

In the augmented ADMM algorithm, we choose D = Diag
(

2d1 + 1, · · · , 2dp + 1
)

, where

di is the degree of the ith node in G, i = 1, · · · , p. On the other hand, choosing D = A>A

gives the standard ADMM updates.

Clearly, the difference lies in the β-updates: the β-update for the augmented ADMM

algorithm involves inverting matrix ρD + X>X, whereas the standard ADMM algorithm

involves inverting ρA>A + X>X. The difference in carrying out these matrix inversions

would be huge when p � n. Next, we perform a detailed analysis of the computational

complexity of both ADMM algorithms for solving (17).

4.3 Computational complexity

This subsection investigates the computational complexities of both ADMM algorithms for

solving (17). We first introduce some notation to be used in our analysis. Let Nadmm be

the number of ADMM iterations and Nchol the total number of Cholesky factorizations.

Let a∨ b and a∧ b denote the larger and smaller number between a and b, respectively. We

should stress at the outset that Nchol is typically less than 10, even when solving a path of

solutions, and that Nadmm typically scales as O
(
1/ε
)

based on convergence theory for the

ADMM algorithm (see, e.g., He and Yuan, 2012).

We summarize the computational complexities for both ADMM algorithms in Table

1. Detailed derivations are provided in the online Supplemental materials. Note that the
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computational complexity for both algorithms is identical when p ≤ n. However, when

p > n, the computational complexity for the augmented ADMM is linear in p (if m < np),

whereas the computational complexity for the standard ADMM is cubic in p for Cholesky

factorization and quadratic in p for each ADMM iteration. The gain in computational

efficiency is due to an application of the Woodbury matrix identity to invert a matrix

that is a sum of a diagonal matrix and a low rank matrix (see the online Supplemental

materials for more details). The gain in efficiency could be huge for targeted applications

where p� n.

p ≤ n p > n

augADMM O (Ncholp
2n+Nadmmp

2) O (Ncholn
2p+Nadmm[pn ∨m])

stanADMM O (Ncholp
2n+Nadmmp

2) O (Ncholp
3 +Nadmmp

2)

Table 1: Computational complexity of the augmented ADMM algorithm (augADMM) and the

standard ADMM algorithm (stanADMM). Here Nadmm and Nchol denote the number of ADMM

iterations and the total number of Cholesky factorizations, respectively.

5 Numerical experiments

This section investigates the performance of the augmented ADMM algorithm (augADMM),

the standard ADMM algorithm (stanADMM), a path following algorithm (genlasso) pro-

posed by Arnold and Tibshirani (2015), and an accelerated proximal gradient method

(fGFL) proposed by Xin et al. (2014). The later two algorithms were designed specifically

for solving the sparse fused lasso problem. Note that the fGFL algorithms combines a para-

metric flow algorithm with the fast first-order method FISTA (Beck and Teboulle, 2009).

This characteristic seems to make fGFL more suitable for solving (17) at a fixed single

tuning parameter, because no trivial warm start strategy could be used when solving the

problem over a sequence of tuning parameters. In contrast, the path-following genlasso

algorithm is more suitable when solving the problem over a sequence of tuning parameters.
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5.1 Experimental settings

We consider a high-dimensional sparse fused lasso over a graph problem motivated by a

gene network example considered by Li and Li (2010), where an entire network consists of

many subnetworks, each with one transcription factor (TF) and its 10 regulatory target

genes; see Li and Li (2010) for a display of the network.

To mimic a regulatory relationship, the predictor matrix X ∈ Rn×p is generated as

follows. First, predictors corresponding to the TFs’ are generated according to N (0, 1).

Then predictors of each target gene and the TF are constructed to have a bivariate normal

distribution with correlation .7. Moreover, the target genes are independent conditional on

the TF. The true regression coefficients are set to be

β0 =
(

1, . . . , 1︸ ︷︷ ︸
11

,−1, . . . ,−1︸ ︷︷ ︸
11

, 2, . . . , 2︸ ︷︷ ︸
11

,−2, . . . ,−2︸ ︷︷ ︸
11

, 0, . . . , 0︸ ︷︷ ︸
p−44

)>
,

and the response vector y = Xβ0+ε with ε1, · · · , εn
iid∼ N(0, σ2

e) with error variance σ2
e = .1.

We generate the graph G as follows. First, we specify all sub-networks to be complete

graphs, which amounts to 55 × 200 edges. Second, we randomly add some “erroneous”

edges between nodes from different sub-networks.

Given data (y,X) and the graph G specified as above, we shall investigate the per-

formance of augADMM (proposed method), stanADMM, genlasso, and fGFL on the sparse

fused lasso problem (17) either for a fixed tuning parameter or for a sequence of tuning

parameters. All experiments were performed using an Intel(R) Xeon Dual Eight Core CPU

at 2.7GHz with 384GB memory. The fGFL was implemented in MATLAB and C++, and the

other three algorithms were implemented in R and C++.

5.2 Running time comparison

This subsection compares the empirical running time of the four algorithms for solving

(17). As discussed previously, we exclude genlasso in our comparison when solving (17)

at a fixed tuning parameter, and we exclude fGFL when solving (17) over a sequence of

tuning parameters.

First, we report the running time of augADMM, stanADMM, and fGFL when solving (17) at

20 different pairs of tuning parameters (λ, ν) under four different levels of suboptimality.
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Figure 1: Runtime comparisons for the augmented ADMM (augADMM), the standard

ADMM (stanADMM), and the fast proximal gradient method of Xin et al. (2014) (fGFL)

under four different suboptimality: 10−2, 10−4, 10−6, 10−8.

Specifically, for a fixed ν, we pick 20 different λ uniformly in log-scale from [10−4 , λmax],

where λmax is the largest λ at which the solution path changes slope (calculated using

genlasso). For each pair of (λ, ν), we run all algorithms until the relative function sub-

optimality reaches some desired level and we record their runtime. Here, we choose four

different levels of suboptimality: 10−2, 10−4, 10−6, 10−8. Note that the same starting point

is used for problems with different tuning parameters.

The runtime results are shown in Figure 1. The four plots correspond to four different

scenarios with different choices of (p, ν). Each plot shows the runtime of the three algo-
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rithms at 20 different values of λ under four levels of suboptimality. As see from Figure

1, the augmented ADMM (augADMM) runs the fastest for most choices of λ across all sce-

narios. Interestingly, the accelerated proximal gradient algorithm fGFL runs faster when

λ was large, but it slows down significantly for smaller values of λ. The standard ADMM

is less efficient than the augmented ADMM as expected, but it is still more efficient than

fGFL for moderate and small values of λ. Also worthy of note is that the runtime for both

ADMM algorithms to reach higher-accuracy (10−4, 10−6, 10−8) solutions are essentially the

same. This is due to the fact that the per-iteration cost of both ADMM algorithms are

ignorable as compared to the Cholesky factorization steps, which often occur before the

iterates attain to high accuracy.

Next we inspect the convergence speed of the three methods and how the operator

norm of D influences the convergence speed of the augmented ADMM. Toward this end,

we include three additional augmented ADMM algorithms using three different D’s: (i)

augADMMx1 with D = ‖A‖2
optI; (ii) augADMMx5 with D = 5‖A‖2

optI; and (iii) augADMMx10

with D = 10‖A‖2
optI, where ‖A‖opt denotes the operator norm of A. Then, we chooe four

different pairs of tuning parameters: ν = 5 or 10 and λ = .01 or .1, and plotted the objective

suboptimality versus the number of iterations in Figure 2. Clearly fGFL converges faster

than all the ADMM algorithms as expected, because the accelerated first order methods

converge at rate of O(1/k2) whereas ADMM algorithms converge at rate of O(1/k). More-

over, stanADMM, augADMM, and augADMMx1 all have similar rates of convergence, although

stanADMM usually converges slightly faster. Finally, increasing the operator norm of D

slows down the convergence speed of augmented ADMM algorithm. Based on our limited

experience, the number of iterations required (to reach a given suboptimality) would be

at worst linearly dependent on the operator norm of D. Nevertheless, note that there are

cases (see the second row of Figure 2) where increasing the operator norm of D does not

change the convergence speed significantly.

From Figure 1 and Figure 2, we can see that although fGFL converges faster than the

augmented ADMM algorithm, it still runs much slower, possibly due to its much higher

per-iteration cost. Overall, the proposed augmented ADMM is the most efficient algorithm

among the three competing algorithms for a wide range of tuning parameter values.
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Figure 2: Convergence speed of the augmented ADMM (augADMM) with different choices

of D, the standard ADMM (stanADMM), and the fast proximal gradient method of Xin

et al. (2014) (fGFL).

Finally, we compare the runtime of augADMM, stanADMM, and genlasso when solving

(17) at a sequence of different tuning parameters. Note that genlasso only approxi-

mately solves the problem when p > n. To make a fair comparison, we use the following

parameter settings for the three algorithms. For the genlasso package, we change the

default value of minlam—the value at which the algorithm terminates—from 0 to 1e-4,

because the default choice would make the algorithm extremely slow when the problem

dimension is large. Moreover, we change the default value of maxsteps—the maximum

number of steps—from 2000 to 1e5 so that it always compute the entire solution path. For
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both ADMM algorithms, we choose 100 tuning parameters (λ) uniformly in log-scale over

[10−4, λmax]. Stopping criteria are chosen such that both ADMM algorithms’ suboptimality

are comparable to each other and are smaller than that of genlasso.
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Figure 3: Runtime of the augmented ADMM (augADMM), the standard ADMM

(stanADMM), and the path-following algorithm of Arnold and Tibshirani (2015) (genlasso)

for finding a solution path.

With the above setup, we apply all algorithms to a sequence of problems with varying

dimensions at two choices of ν, and plot their runtime in Figure 3. First, the augmented

ADMM is comparable to the standard ADMM in problems with smaller dimensions, but it

runs much faster for higher dimensions, which is in agreement with our earlier complexity

analysis. Moreover, both ADMM algorithms run much faster than genlasso. However,

readers should treat the comparison to genlasso with caution. On the one hand, genlasso

computes the entire solution path over the selected tuning parameter range, whereas both

ADMM algorithms only compute 100 solutions. On the other hand, genlasso has its

own limitations: (i) it only approximately solves the problem when p > n; and (ii) it

seems nontrivial to make it applicable to other loss functions other than the quadratic loss

functions.

In summary, the augmented ADMM algorithm seems to be the algorithm of choice for

solving the sparse fused lasso problem, especially when the number of covariates greatly

exceeds the sample size.
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6 Conclusions and future works

We investigated an augmented ADMM algorithm for solving a class of statistical estimation

problem. We have shown that by introducing “augmented” variables, the resulting ADMM

updates could be carried out more efficiently. Unlike the standard ADMM where one of the

updates may involve a linear operator A, our augmented ADMM algorithm only requires

evaluations of two proximal maps at each iteration. This leads to an algorithm with same

(theoretical) convergence speed as that of the standard ADMM, but with much lower per-

iteration cost in many situations. The efficiency of the augmented ADMM algorithm was

demonstrated using a high-dimensional sparse fused lasso problem.

Although we mainly focused on a high-dimensional linear regression problem as an

application of the proposed algorithm, many other potential applications such as, convex

clustering (Hocking et al., 2011; Lindsten et al., 2011; Pan et al., 2013; Chi and Lange, 2014),

trend filtering (Kim et al., 2009; Tibshirani et al., 2014; Ramdas and Tibshirani, 2014),

and isotonic regression (Geyer, 1991), could also be considered. Moreover, for generalized

linear models with the (sparse) fused lasso penalty, the extension introduced in Section 2.4

could be employed.

Finally, it is unclear how to choose D in (13). As suggested by one referee, one could

let D be a diagonal matrix with diagonal elements Dii =
∑p

i=j |(A>A)ij| to ensure that

D dominates A>A (see Corollary 5.6.17 of Horn and Johnson, 2013). But this approach

requires computing A>A, which might have high computational cost when the dimension

of A is large. Another possible way could be to choose D = c2I, where c is an upper bound

on the largest singular value of A. Simple upper bounds such as the one proposed by Byrne

(2009) could be employed. Both approaches are worthy of further investigation.

Supplemental materials

Source code: The supplemental files for this article include R and MATLAB programs

which can be used to reproduce the simulation study included in the article. Please

read file README contained in the zip file for more details. (Zhu.zip, zip archive)

Appendix: The supplemental files include the Appendix which gives the proofs for Theo-
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rem 1 and 2, and a detailed analysis of the computational complexity for both ADMM

algorithms. (ZhuAppendix.pdf)
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